Math 200b Winter 2020 Homework 1

Due $1 / 17 / 2020$ by 5 pm in TA Jake Postema's mailbox

1. Let R be an integral domain, i.e. a commutative domain. If M is an R-module, then an element $m \in M$ is called torsion if there exists $0 \neq r \in R$ such that $r m=0$. Let $\operatorname{Tor}(M)=\{m \in M \mid m$ is torsion $\}$. The module M is torsion if $M=\operatorname{Tor}(M)$ and M is torsionfree if $\operatorname{Tor}(M)=0$.
(a). Show that $\operatorname{Tor}(M)$ is a submodule of M.
(b). Show that the factor module $M / \operatorname{Tor}(M)$ is torsionfree.
(c). Suppose that $\left\{M_{i} \mid i \in I\right\}$ is a collection of R-modules, where every M_{i} is a torsion R-module. Must the direct sum $\bigoplus_{i \in I} M_{i}$ be a torsion R-module? Must the product $\prod_{i \in I} M_{i}$ be a torsion R-module? In each case, prove or give a counterexample.
2. Let V be a finite dimensional vector space over a field F, with basis v_{1}, \ldots, v_{n}. Define a linear transformation $\phi: V \rightarrow V$ by $v_{i} \mapsto v_{i+1}$ if $1 \leq i \leq n-1$, and $v_{n} \mapsto 0$. Consider the $F[x]$-module ${ }_{\phi} V$, that is, the uniquely determined $F[x]$-module structure on V for which $x \cdot v=\phi(v)$.

Show that V has a series of $F[x]$-submodules $V_{0}=\{0\} \subseteq V_{1} \subseteq \cdots \subseteq V_{n}=V$ where $\operatorname{dim}_{F} V_{i}=i$ for all i. Prove that the V_{i} are the only $F[x]$-submodules of V. (A module with finitely many submodules which are totally ordered under inclusion is called uniserial.)
3. Let R and S be rings. An Abelian group M is an (R, S)-bimodule if it is both a left R-module and a right S-module, and these two actions are compatible in the sense that $(r m) s=r(m s)$ for all $r \in R, m \in M, s \in S$. For example, R is an (R, R)-bimodule, where R acts on both the left and right by multiplication.
(a). Suppose that M is an (R, S)-bimodule and N is a left R-module. Show that $\operatorname{Hom}_{R}(M, N)$ is a left S-module using the action $s \cdot \phi$, where $[s \cdot \phi](m)=\phi(m s)$ for $s \in S$, $\phi \in \operatorname{Hom}_{R}(M, N), m \in M$.
(b). Suppose that M is a left R-module and N is an (R, T)-bimodule. Show that $\operatorname{Hom}_{R}(M, N)$ is a right T-module using the action $\phi \cdot t$, where $[\phi \cdot t](m)=\phi(m) t$ for $t \in T$, $\phi \in \operatorname{Hom}_{R}(M, N), m \in M$.
(c). Suppose that M is an (R, S)-bimodule and N is an (R, T)-bimodule. By parts (a) and (b), $\operatorname{Hom}_{R}(M, N)$ is both a left S-module and a right T-module. Show that in fact $\operatorname{Hom}_{R}(M, N)$ is an (S, T)-bimodule.
4. Let R be a commutative ring. Recall that if I is an ideal of R and M is an R-module, we write $I M=\left\{\sum_{i=1}^{n} x_{i} m_{i} \mid x_{i} \in I, m_{i} \in M\right\}$, which is an R-submodule of M.
(a). Let I be an ideal of R. Show that if M is an R-module, then $M / I M$ is an R-module which is also an R / I-module via the action $(r+I) \cdot(m+I M)=r m+I M$.
(b). Recall that two sets X and Y have the same cardinality, written $|X|=|Y|$, if there is a bijective function $f: X \rightarrow Y$. Continue to assume that R is commutative, and suppose that M is a free R-module with basis X, and N is a free R-module with basis Y. Show that $M \cong N$ as R-modules if and only if $|X|=|Y|$. (Hint: If $M \cong N$, pick any maximal ideal I of R and show that $M / I M \cong N / I N$ is an isomorphism of vector spaces over the field $F=R / I$. Assume without proof the theorem from linear algebra that any two bases of a vector space have the same cardinality.)
5. In this problem you will see that the property proved in problem $4(b)$, called invariance of basis number, fails for free modules over noncommutative rings in general.

Let K be a field and let V be a countable-dimensional vector space over K with basis $v_{1}, v_{2}, v_{3}, \ldots$ Let $R=\operatorname{End}_{K}(V)$, the ring of all K-linear transformations of V, where the ring product is function composition as always. Let $\phi \in R$ be given by $\phi\left(v_{i}\right)=v_{i / 2}$ for all even i, and $\phi\left(v_{i}\right)=0$ for odd i. Similarly let $\psi \in R$ be given by $\psi\left(v_{i}\right)=v_{(i+1) / 2}$ for all odd i, and $\psi\left(v_{i}\right)=0$ for all even i.

Show that R is an internal direct sum $R=R \phi \oplus R \psi$. Show also that $R \phi \cong R \cong R \psi$ as left R-modules. Conclude that there is an isomorphism of left R-modules $R \cong R \oplus R$. So the free modules of rank 1 and 2 over R are isomorphic.
6. A left R-module M is called simple or irreducible if the only submodules of M are 0 and M.
(a). Let $V=F^{n}$ be the module of column vectors of length n over a field F, and let V be a left module over the $n \times n$ matrix ring $M_{n}(F)$ by left multiplication. Prove that V is a simple left $M_{n}(F)$-module.
(b). Let M be a simple module over any ring R. Show that the $\operatorname{ring} \operatorname{End}_{R}(M)$ is a division ring, that is, that every nonzero element of this ring is a unit. (This result is sometimes called Schur's Lemma. Hint: what can you say about the kernel and image of an endomorphism of M ?)
(c). What is $\operatorname{End}_{R}(M)$ when $R=M_{n}(F)$ and $M=V$ as in part (a)?

