Lecture 4 1/11/21.

Internal direct sums.

→ if \(N_1, \ldots, N_m \subseteq M \) are submodules
then \(N_1 + \cdots + N_m = \sum_{i=1}^m N_i \) if \(\forall i \in N_i \).

which is an \(R \)-submodule.

The sum of the submodules.

Thus, \(M \) an \(R \)-module.

\(N_1, \ldots, N_m \) \(R \)-submodules of \(M \).
if (i) \(N_1 + \cdots + N_m = M \) and
(ii) \(N_i \cap (N_1 + \cdots + N_{i-1} + N_{i+1} + \cdots + N_m) = 0 \)
for all \(i \).

Then \(M \cong N_1 \oplus \cdots \oplus N_m \).
and we say \(M \) is an internal direct sum
of the \(N_i \).

PROOF: By the group version,
\(\phi: N_1 \oplus \cdots \oplus N_m \rightarrow M \)
\((n_1, \ldots, n_m) \mapsto n_1 + \cdots + n_m\)
is an \mathbb{F} of Abelian groups.

Now notice ϕ is a homomorphism of \mathbb{F}-modules.

\[
\text{Def. A surjective module homomorphism } f : N \rightarrow M \text{ is split if there is a homomorphism } g : M \rightarrow N \text{ s.t. } fog = 1_M.
\]

\[
\text{Lemma 16 } f : N \rightarrow M \text{ is split } \iff N \cong M \oplus (\ker f).
\]

\[
\text{Proof: } \text{let } M' = g(M), \; fog = 1_M
\]

\[
\Rightarrow \; g \text{ is injective. Then } M' \cong M.
\]

\[
\text{We'll show } N \text{ is internal direct sum of } M' \text{ and } (\ker f) = K.
\]

- $M' \cap K = 0$: if $x \in M' \cap K$, $x = g(y), \; y \in M, \; f(x) = 0$.
\[f(x) = f(g(x)) = y = 0 \]
So \(x = g(y) = g(0) = 0 \).

\[M^1 + K = N : \]

If \(y \in N \), consider \(y - g(f(y)) \).

Then \[
f(y - g(f(y))) =
\frac{f(y) - f(g(f(y)))}{f(y) - f(y)}
= f(y) - f(y) = 0.
\]
So \(y - g(f(y)) \in K = \ker(f) \).
So \(y = g(f(y)) + (y - g(f(y))) \in M^1 + K \).
So \(N = M \oplus K \approx M \oplus K \).

Cor. If \(f: M \rightarrow F \)

is a \(\mathbb{R} \)-module surjection, and if \(F \) is free, then

\(f \) is split, i.e., \(M \cong \mathbb{R}(\ker f) \).
Proof: We want \(g : F \to M \)

\(s.t. \ f \circ g = 1_F \). Let \(\{ e_1, \ldots, e_n \} \) be a basis for \(F \). For each \(\alpha \), fix \(\alpha \in M \) s.t. \(f(\alpha) = e_\alpha \).

Now there is a unique \(g : F \to M \)

\(s.t. \ g(e_\alpha) = \alpha \) and so

\(f \circ g(e_\alpha) = e_\alpha \) for all \(\alpha \),

so \(f \circ g = 1_F \). Now apply the lemma to get \(M \cong F \otimes_R (\text{coker} f) \).

Now: Let \(R \) be commutative.

Goal: understand \(\mathbb{F} \)-modules over a PID \(R \).

Definition: If \(M \) is an \(R \)-module, \(m \in M \)

\(\text{ann}_R(m) := \{ r \in R \mid rm = 0 \} \)

the annihilator of \(m \).

The annihilator of \(M \) is

\(\text{ann}_R(M) := \{ r \in R \mid rm = 0 \ \forall \ m \in M \} \).
\[\bigcap_{i \in I} \text{ann}_R(m_i) \]

Not \(\text{ann}_R(m) \) and \(\text{ann}_R(M) \) are ideals of \(R \).

Def. Let \(R \) be an integral domain, \(M \) an \(R \)-module.

- \(m \in M \) is torsion if \(\text{ann}_R(m) \neq 0 \), i.e. \(rm = 0 \) for some \(r \neq 0 \) in \(R \).
- Otherwise \(m \) is non-torsion.

\(\text{Tors}(M) = \{ m \in M \mid m \text{ is torsion} \} \).

- \(M \) is torsion if \(M = \text{Tors}(M) \)
- \(M \) is torsion-free if \(\text{Tors}(M) = 0 \).

Lemma. \(R \) an integral domain, \(M \) a module.

1. \(\text{Tors}(M) \) is a submodule of \(M \).
2. \(M/\text{Tors}(M) \) is torsion-free.

Pf. If \(m_1, m_2 \in \text{Tors}(M) \),

\[rm_1 = 0 \quad r_2m_2 = 0 \quad \text{for } r_1, r_2 \in R \]

then \(r_1 (m_1 - m_2) = 0 \)

and \(r_2m_2 = 0 \Rightarrow m_1 = m_2 \in \text{Tors}(M) \).

Also \(r_1(s m_1) = 0 \) for \(r_1 \in R \) and \(s m_1 \notin \text{Tors}(M) \).
2. If \(r \neq 0 \) and \(r(m + \text{Tor}(M)) = 0 \) then \(rm + \text{Tor}(M) = 0 \). So \(rm \in \text{Tor}(M) \).

Then \(s(rm) = 0 \) so \(s \neq 0 \).

Now \(sr \neq 0 \) so \(m \in \text{Tor}(M) \).

So \(m + \text{Tor}(M) = 0 \).

So \(M/\text{Tor}(M) \) is torsion-free.

Ex. \(\mathbb{Q} = \mathbb{Q} \).

A module \(M \) is torsion iff every element of \(M \) has finite order. \(M \) is torsion-free iff all \(m \neq 0 \) in \(M \) has infinite order. e.g. \(\mathbb{Q} \) is torsion-free.

e.g. \(\mathbb{Z}/(m) \) is torsion with annihilator = \((m) \).
Modules over PIDs.

Theorem. Let R be a PID.
Let M be a f.g. R-module.
Then

1. $M \cong \mathbb{Z}^{r} \oplus R/(p_{1}) \oplus \cdots \oplus R/(p_{m})$

for some primes p_{1}, \ldots, p_{m}.

$r \geq 1$.

r is the rank of M.

p_{1}, \ldots, p_{m} are the elementary divisors.

2. Also, r and the elementary divisors are unique, up to reordering.

The elementary divisors can be replaced by an associate.
Ruler.

1. M being f.g. is essential.
 - Q is a \(\mathcal{D} \)-module
 which is not a direct sum
 of cyclic \(\mathcal{D} \)-modules (so not free).
 - \(Q \) can't be an internal
direct sum \(N \oplus P \)
 since if \(0 \neq N \subseteq Q \)
 \(0 \neq P \subseteq Q \) then
 \(N \cap P \neq 0 \).

2. \(R \) being a PID is
 essential, since
 \(R x + R y \subseteq K[x, y] \)
is not a direct sum of cyclics.