Lecture 26 3/12/2021

Review:

- \(F \subseteq K \) is an algebraic closure if
- \(K \) is algebraically closed and \(K/F \) is algebraic.

Last time: for any \(F, K \) exists.

Thus, let \(\varphi: F \to F' \) be an iso of fields

Let \(F \subseteq K \) and \(F' \subseteq K' \) be alg. closures.

The claim is an iso \(\Theta: K \to K' \) s.t.

\[\Theta \varphi = \varphi. \]

Pf: Take the set of all triplets \((E, E', \psi)\)

\(E \subseteq E' \subseteq K \), \(E' \subseteq E' \subseteq K' \), \(\psi: E \to E' \)

an iso s.t. \(\psi|_{F} = \varphi. \)

\(k \rightarrow k' \)

Put an order on this set where

\((E, E', \psi) \leq (E, E', \psi') \) if

\(E \subseteq L, E' \subseteq L', E|_{L} = \psi. \)
Apply Ben - not given any claim $\{(E_k, E'_k, \psi_k) \mid k \in I\}$ a upper bound is $\{UE_k, UE'_k, \psi\}$. So there is a maximal element (L, L', ψ).

Suppose $L \neq L'$. Pick $k \in \mathbb{L}/\mathbb{L}$ and if $\mathfrak{m} \in \mathfrak{m}(L' \cap k) \neq \emptyset$ take $\mathfrak{m} \in L' \cap k$, let p' be a root of $\mathfrak{m}(L')$. There is an isomorphism $L \xrightarrow{\psi} L'$ s.t. $p' \in L' \cap L$.

Contradicting maximality since $L \rightarrow \mathfrak{m}(L') \xrightarrow{\psi} L' \cap \mathfrak{m}(L')$. So $L = L'$. Now $E : K \rightarrow L' \subseteq K'$ is an isomorphism. Note L' is alg. dom. since K' is. Since K'/P' is algebraic, K'/L' is algebraic. Since $L' \subseteq K'$ is alg. dom., this forces $K' = L'$.

So $E = \Theta : K \rightarrow K'$ is an isomorphism.
and $\mathfrak{B} \mid F = \mathfrak{F}$.

Con if $F \subseteq K$ and $F \subseteq K'$ are alg. closure, then there is an iso $\Theta : K \to K'$ s.t. $\Theta \mid F = 1_F$.

Notation: the alg closure of F is written \overline{F}.

Ex. Consider $\overline{F_p}$ where p is prime.

for each $n \geq 1$, we have a field $\overline{F_p}$

if we consider $\overline{F_p} \leq \overline{F_p^n} \leq \overline{F_p}$

Note $\overline{F_p^n} / \overline{F_p}$ is algebraic and $\overline{F_p^n}$
is alg. closed. So $\overline{F_p} \leq \overline{F_p^n}$ is an alg. closure to $\overline{F_p^n} = \overline{F_p}$.

So $\overline{F_p} \leq \overline{F_p^n} \leq \overline{F_p}$ for all n.
Claim $\mathbb{F}_p = \bigcup_{n} \mathbb{F}_{p^n}$.

Since if $x \in \mathbb{F}_p$, if $f(x)$ is in every $\mathbb{F}_p(d)$ has degree n, then $\mathbb{F}_p(d) = \mathbb{F}_{p^n}$.

Note $\mathbb{F}_{p^n} = \{x \in \mathbb{F}_p \mid x^{p^n} = x^3\}$.

So $x \in \mathbb{F}_{p^n}$.

Last topic: \mathbb{C}

Fact: \mathbb{C} is alg. closed — many proofs.

This is the most "algebraic" proof.

It uses only.

Lemma.

1. If $f \in \mathbb{R}[x]$ and f has odd degree, then f is a root in \mathbb{R}.

2. If $g \in \mathbb{C}[x]$ and $\deg g = 2$, then g splits over \mathbb{C}.
Ps. If \(D \) is closed, let \(f \) by \(-f\) if necessary

\[f = a_n x^n + \ldots + a_0 \text{ with } a_n > 0 \]

The limit \(\lim_{x \to -\infty} f = \infty \), \(\lim_{x \to \infty} f = -\infty \).

Use intermediate value thm.

\[\exists \] if \(f: a x^2 + b x + c \in C(x) \),

\[f = a(x - r_1)(x - r_2) \]

where \(r_1, r_2 \) are \(-b \pm \sqrt{b^2 - 4ac} \) \(\frac{2a}{2a} \)

where every \(z \in C \) has a square root.

since if \(t = r e^{i\theta} \) with \(r > 0 \)

then \(\sqrt{t} = \sqrt{r} e^{i\theta/2} \).

Next: positive reals have a square root.

Then, \(C \) is alg. closed.

Ps: Let \(C \subseteq \mathbb{L} \) be an extension with \(C_1 : C \subseteq \infty \). We'll prove \(L = C \).
$R \leq G \leq L$.

Look at L/R. Maybe not locally, but it is separable. Let L/E be a locally algebraic to E/R is locally.

$R \leq G \leq L \leq E$. $6 = \text{Gal}(E/R)$.

Let P be the second 2-subgroup. So $[6; P]$ is odd. Let $K = \text{Fix}(P)$.

$R \leq K \leq G$. $[K : R] = [6 ; P]$ is odd.

If $x \in K$, uniquely $\alpha(x)$ has odd degree because it divides $[K : R]$.

So it is a root in R, and it is invertible over R, so it has degree 1. So $K = R$. And $P = G$.

So $|6|$ is a power of 2.
\[R \leq G \leq E \] now \([E:C] = [E:N]/2 \) is also a power of 2.

\(\text{mod}(E/C) \) is a 2-group so it has a subgroup of index 2. \(H \).

The \(\text{Fix}(H) = M \leq C \) and \([C:G] = \left[\text{mod}(E/C): H \right] = 2 \).

\[G \subseteq M \] now if \(d \in M \) then

\[\text{index}(C(d)) \text{ has degree } 1 \text{ or } 2 \]

but it splits by the lemma. So \(d \in G \). So \(H = C \), a contradiction.

So \(G \) is algebraically closed.

\[\text{An interesting fact about } G. \]
\[\text{Aut}(R) = 1 \) (exercise) \]

But \(\text{Aut}(G) \) is huge!
This was the idea of a transcendental basis:

Given any field extension \(F \subseteq K \), you can find a set \(\{ y_a | a \in \mathbb{I} \} \subseteq K \) which is a transcendental basis:

\(\{ y_a \} \) is algebraically independent:

\[T = F(\{ y_a \}_{a \in \mathbb{I}}) \supseteq \text{field of fractions of } F[\{ y_a \}_{a \in \mathbb{I}}], \text{ and } T \subseteq K \]

is algebraic.

(Left as an exercise)

Note: the cardinality of a transcendental basis is uniquely determined.

Apply this to \(\mathbb{Q} \subseteq \mathbb{C} \).

So \(\mathbb{Q} \subseteq T = \mathbb{Q}(\{ y_a | a \in \mathbb{I} \}) \subseteq \mathbb{C} \).
Now give a permutation of \(I \), we get an automorphism of \(T \) that permutes the \(\mathbb{I} \) in this way. Then since \(C \) is the alg. closure of \(T \) this extends to an aut. of \(C \).

6. \(\text{Sym}(I) \) embeds in \(\text{Aut}(C) \).

And \(I \) is uncountable.

\(|\text{Sym}(I)| \) has an even bigger cardinality than \(I \).

One can show: any such automorphism is discontinuous and sends \(\mathbb{R} \) to a dense subset of \(C \).