Tensor products.

Motivation. Let F be a field. V an F-space. $\dim_F V = \infty$. Define $V^* = \text{Hom}_F(V, F)$

"linear functionals on $V"$

"dual space of $V"$.

There is a natural pairing

$$\Theta : V^* \times V \rightarrow F$$

$$(\psi, v) \mapsto \psi(v)$$

but Θ is not linear.

(consider $V^* \times V$ as $V^{\times 2}$).

Instead:

$$\Theta(\psi + \phi, v) = (\psi + \phi)(v) = \psi(v) + \phi(v)$$

$$= \Theta(\psi, v) + \Theta(\phi, v)$$
\[\Theta(\phi, v + w) = \Theta(v + w) = \Theta(v) + \Theta(w) = \Theta(\phi, v) + \Theta(\phi, w) \]

We say \(\Theta \) is bilinear, i.e., linear separately in each coordinate.

But \(\Theta : V^* \otimes V \rightarrow F \)
\[(\epsilon, v) \mapsto \epsilon(v) \]

is not \(F \)-linear since
\[\Theta((\phi, v) + (\psi, w)) = \Theta(\phi + \psi, v + w) = \Theta(\phi, v) + \Theta(\psi, w) + \Theta(\phi, w) + \Theta(\psi, v) \neq \Theta(\phi, v) + \Theta(\psi, w) \].

Want a way to replace \(\Theta \) by a linear map with the same information.

We will define a tensor product \(V^* \otimes V \) and a linear map
\[\tilde{\Theta} : V^* \otimes V \rightarrow F \]
with the same information as \(\Theta \).
Def. Let R be a ring.
Let M be a right R-module.
Let N be a left R-module.
Let P be an Abelian group.
A function $\phi: M \times N \to P$ is R-balanced if

1. $\phi(m_1 + m_2, n) = \phi(m_1, n) + \phi(m_2, n)$
2. $\phi(m, n_1 + n_2) = \phi(m, n_1) + \phi(m, n_2)$
3. $\phi(m, n) = \phi(m, n)$

$\forall r \in R, \forall m \in M, \forall n \in N$.
Ex. M a left R-module.
R right R-module by multiplication.

\[\Phi: R \times M \rightarrow M. \]
\[(r, m) \rightarrow r \cdot m \]

is R-balanced.

\[\Phi(r, sm) = rs \cdot m \]
\[\Phi(r, s \cdot m) = r \cdot s \cdot m \]

Def. M a right R-module, P left R-module.
A tensor product of M and N over R
is an abelian group \(T \) and a
R-balanced map \(\Theta: M \times N \rightarrow T \)
\[(m, n) \mapsto \Theta(m, n) \]
s.t. for any R-balanced map
\[
\phi : M \times N \longrightarrow R
\]
there is a unique homomorphism of abelian groups $\psi : T \longrightarrow P$ s.t.
\[
M \times N \xrightarrow{\phi} T \xrightarrow{\psi} P
\]
commutes.
\[
(\psi \circ \Theta = \phi).
\]

Note ψ has all of the information in ϕ since
\[
\phi = \psi \circ \Theta.
\]

Ev. If M is a left R-module,
\[
R \times M \longrightarrow M
\]
is a free R-module product of R and M over R.

Thm. Tensor products are unique up to isomorphism.

Let M be a right R-module, N be a left R-module.

Let $\Theta_1 : M \times N \rightarrow T_1$, $\Theta_2 : M \times N \rightarrow T_2$ be tensor products. Then there is a unique isomorphism of abelian groups $\psi : T_1 \rightarrow T_2$ such that $\psi \circ \Theta_1 = \Theta_2$.

Pf. - same as other universal property proofs of uniqueness.

Thm. If M is a right R-module, N is a left R-module. Then there exists a tensor product $\Theta : M \times N \rightarrow T$.

Pf.
Consider \(S = \mathbb{M} \times \mathbb{N} \) write \((m, n) \in S\) as \(m \circ n \)

\(F \) will be a free \(\mathbb{Z} \)-module with basis \(\{ m \circ n \mid (m, n) \in S \} \).

So an element of \(F \) looks like

\[a_1 (m_1 \circ n_1) + \cdots + a_k (m_k \circ n_k) \]

some \(a_i \in \mathbb{Z} \), \(m_i \in \mathbb{M} \), \(n_i \in \mathbb{N} \)

Let \(T = \mathbb{E} / \mathbb{I} \) where

\(\mathbb{I} \) is the subgroup generated by

all elements of the form

- \((m_1 + m_2) \circ n - m_1 \circ n - m_2 \circ n \)
- \(m \circ (n_1 + n_2) - m \circ n_1 - m \circ n_2 \)
- \(m \circ n - m \circ n \)
A \ w, m_1, m_2 \in M, n, n_1, n_2 \in N, r \in R.

Let \(\Theta : M \times N \rightarrow T = F/I \)

\((m, n) \mapsto mn + I \)

So \(\Theta \) is \(R \)-balanced.

Also \(\Theta \) is a tensor product if \(\Phi : M \times N \rightarrow P \) is \(R \)-balanced. We need:

\(M \times N \overset{\Theta}{\rightarrow} T \overset{\psi}{\rightarrow} P \)

\(P \rightarrow P \)

\(\psi \) a homomorphism s.t.

\(\Phi \circ \Theta = \Phi. \)

There is a unique \(R \)-linear map \(\Phi : F \rightarrow P \)

\(\sum_{(m, n)} \Phi(m, n) \rightarrow \phi(m, n) \)
(F is true)

Since \(\phi \) is \(R \)-balanced, check \(I \subseteq \ker \phi \).

(all of the generators of \(I \)

are in \(\ker \phi \), so \(I \subseteq \ker \phi \))

so \(\phi \) induces \(\psi: \mathbb{F} / I \to P \).

\[\text{and} \quad \psi \circ \Theta = \phi. \]

Also \(\psi \) is unique (check).

\[\text{Rule.} \]

Give a tensor product \(\Theta: M \times N \to T \). \]
we write T as $M \otimes N$

we call $M \otimes N$ the tensor product and don't write \otimes in the notation.

But we write $\Theta(m, n)$ as $m \otimes n$.

Caution: an arbitrary element of T

is an element of the form

$$
\sum_{i=1}^{d} a_i (m_i \otimes n_i) \quad a_i \in \mathbb{R}
$$

$\quad m_i \in M, \quad n_i \in N$

by the proof.

$$
\frac{d}{dx} \left(\sum_{i=1}^{d} (m_i \otimes n_i) \right) \quad \left(\text{linearity in the first coordinate} \right)
$$

$$
= \sum_{i=1}^{d} \frac{d}{dx} (m_i \otimes n_i) \quad \text{where } m_i \otimes n_i
$$

(*) an element of $M \otimes N$ looks like

$$
\sum_{i=1}^{d} (m_i \otimes n_i) \quad \text{where } m_i \otimes n_i
$$

are pure tensors.