
MATH 200 LECTURE NOTES

DAN ROGALSKI

1. Crash course on groups

These notes are for a graduate course in algebra which assumes you have seen an undergraduate

course in algebra already. Generally a first undergraduate course in algebra concentrates on groups,

so basic group theory is the material which we will review most quickly. The purpose of this first

section is to remind you of the basic definitions, examples, and theorems about groups.

Definition 1.1. Let G be a set with a binary operation ∗. Then G is a group with respect to that

operation if

(1) ∗ is associative.

(2) There is an element e ∈ G such that e ∗ a = a = a ∗ e for all a ∈ G.

(3) For all a ∈ G there is an element b ∈ G such that a ∗ b = e = b ∗ a.

For your info, a structure satisfying only axiom (1) is a semigroup, and a structure satisfying

only (1) and (2) is a monoid. We will refer to these weaker structures only in passing.

The operation ∗ is usually called the multiplication in G, e is the identity element, and the b ∈ G

such that a ∗ b = e = b ∗ a is called the inverse of a. If we need to emphasize the operation in

the group G, we write it as the pair (G, ∗). But usually the operation is clear and we omit the ∗,

writing a ∗ b simply as ab. We also usually write 1 for e, as the identity element in many standard

groups of numbers under multiplication is already called that. We write the inverse of a as a−1.

We have referred to “the” identity and “the” inverse of a. This is appropriate since they are

uniquely determined: if e′, e are identity elements, then e′ = e′e = e. If b, b′ are both inverses of a,

then b = be = b(ab′) = (ba)b′ = eb′ = b′.

We use throughout the following standard names for the traditional number systems one uses in

mathematics: the natural numbers N = {0, 1, 2 . . . } (our convention is that 0 is a natural number);

the integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }; the rational numbers Q = {p/q | p, q ∈ Z and q 6= 0}; the

real numbers R; and the complex numbers C = {a + bi|a, b ∈ R} (where i2 = −1). We take the

existence of the real numbers R as a given; in an analysis course you see how they can be constructed
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from the rational numbers through a limiting process. Later on we will introduce formal concepts

which recover the construction of Q from Z and the construction of C from R.

We can get some simple examples of groups from these familiar number systems.

Example 1.2. (Q− {0}, ·), (R− {0}, ·), and (C− {0}, ·) are all groups under multiplication. The

associative property is a basic fact about multiplication in these number systems. It is easy to

check that 1 is an identity element and that a−1 = 1/a exists for all nonzero a. On the other hand,

(Z− {0}, ·) is a monoid but not a group, as only 1 and −1 have multiplicative inverses in Z.

Example 1.3. (Z,+), (Q,+), (R,+), and (C,+) are all groups under addition, with identity

element 0 and where the inverse of a is −a. On the other hand, (N,+) is not a group.

Given a group which is a familiar set with an operation usually called addition and written +,

as in Example 1.3, all of our notational conventions are modified. As in the previous example, we

always write the identity element as 0 and the inverse of a as −a, and refer to it as the additive

inverse to stress this. Of course we also always write a + b and do not omit the symbol for the

operation—writing ab for the sum would be way too confusing. Given a group in the abstract,

however, that is, something that satisfies the definition but without any further knowledge about

it and its operation, we will use the multiplicative notation.

A somewhat more interesting example comes from considering modular arithmetic.

Example 1.4. Fix n ≥ 1. We can define an equivalence relation on Z by a ∼ b if a ≡ b mod n,

that is, b− a = nq for some q ∈ Z. This partitions Z into n equivalence classes, called congruence

classes. We write the congruence class containing a as a, so formally a = {a + nq|q ∈ Z}. If we

need to emphasize what n is we might also write this as an. Another common notation for the

congruence class of a is [a] or [a]n.

The set Zn = {a|a ∈ Z} = {0, 1, . . . , n− 1} is a group under the operation + of addition of

congruence classes, defined by a + b = a+ b. The identity element is 0 and the (additive) inverse

of a is −a. We call (Zn,+) the additive group of integers modulo n.

The addition rule a+ b = a+ b can be viewed in two ways, both of which are useful. One should

show that it is well-defined, because when we write a we are referring to the class by one of its

representatives a, but we could equally well refer to it by a different representative, say a+nq, since

a+ nq = a. Whenever an operation is defined by referring to representatives of sets, one needs to

check that choosing different representatives would not lead to a different result. In this case, one

needs that if a′ = a and b′ = b, then a+ b = a′ + b′, which is an easy exercise in arithmetic.
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We can also think of a + b = a+ b as an addition rule on sets; we add each of the elements of

a to each of the elements of b, and take the entire set that results; this set is another congruence

class which is a+ b, as the reader may check. We will come back to this point shortly when we

review factor groups.

To give a more explicit example of the above, suppose n = 5. Then 2 = {. . . ,−8,−3, 2, 7, 12, . . . }

and 3 = {. . . ,−7,−2, 3, 8, 13, . . . }. By definition 2 + 3 = 5 = 0 = {. . . ,−10,−5, 0, 5, 10, . . . }. If

we take any element of 2 and add it to an element of 3, then 0 is the unique congruence class that

contains the result. Hence 0 is also the set arising from adding each of the elements in 2 to each of

the elements in 3 and collecting the results.

One way of getting interesting further examples of groups is to start with a monoid M , where

elements need not have inverses, and simply remove the elements without inverses.

Lemma 1.5. Let M be a monoid. Then the subset

G(M) = {a ∈M |there exists b ∈M such that ab = 1 = ba}

of M is a group under the restriction of the operation of M to the subset G(M).

Proof. If a, b ∈ G(M), say with ac = 1 = ca and bd = 1 = db, then (ab)(dc) = a(bd)c = a1c = ac =

1, and similarly (dc)(ab) = 1, so that ab ∈ G(M). This shows that the binary operation of M does

restrict to give a binary operation on the subset G(M). It is clear that associativity still holds after

restricting to a subset, and 1 is in G(M) (since (1)(1) = 1) and still behaves as an identity for the

subset. Finally, inverses exist for all elements in G(M) by construction since if a ∈ G(M), say a

has an inverse c, then c has the inverse a so that c ∈ G(M) also. �

We can recover Example 1.2 using Lemma 1.5, for instance. Each of Q,R, and C is a monoid

under multiplication with identity 1. In each case 0 is the only element without a multiplicative

inverse, so throwing it away we get a group.

Here are some other examples of groups that arise naturally by applying this construction.

Example 1.6. Let F be a field. We will define this notion later when we study rings; if you have

forgotten the definition, for now simply take F to be Q, R, or C when fields are mentioned. Let

Mn(F ) be the set of all n × n matrices whose entries are elements in F . We write an element

A of Mn(F ) as (aij), which indicates the matrix whose entry in the ith row and jth column is

aij ∈ F . Now Mn(F ) is a monoid under matrix multiplication, defined by (aij)(bij) = (cij) where

cij =
∑n

k=1 aikbkj . The identity element is the identity matrix I = (eij) where eij = 1 if i = j and

eij = 0 if i 6= j.
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Applying the construction above, we get that the subset

G(Mn(F )) = {A ∈Mn(F )| there exists B ∈Mn(F ) s.t. AB = I = BA}

is a group under matrix multiplication. It is called the general linear group over F and written as

GLn(F ). By a standard result in linear algebra, an element of Mn(F ) has a multiplicative inverse

if and only if it is a nonsingular matrix, or equivalently has nonzero determinant, so we also have

GLn(F ) = {A ∈Mn(F )| det(A) 6= 0}.

Let f : X → Y be a function between two sets. Recall that we say f is injective if f(x) = f(y)

implies x = y for x, y ∈ X. We say that f is surjective if for all y ∈ Y there exists x ∈ X such that

f(x) = y. Finally a function f is bijective if it is injective and surjective.

Example 1.7. Let X be any set. Consider the set Fun(X,X) of all functions from X to itself. If

f : X → X and g : X → X are functions, then f◦g : X → X is the function with [f◦g](x) = f(g(x)).

Note that we will use the standard notation for composition in this course, sometimes called right

to left composition because in the expression f ◦ g, the function g is performed first, and then the

function f . This is the most natural definition because of the standard convention of writing f(x)

for the image of x under f , that is, the function name is written on the left of the argument. There

is nothing inevitable about that choice and in fact some authors choose the opposite convention,

in which case they also choose left to right composition.

Now Fun(X,X) is a monoid, where the operation is the composition ◦. The identity element is

the identity function 1X : X → X where 1X(x) = x for all x ∈ X. Thus

G(Fun(X,X)) = {f : X → X|there is g such that f ◦ g = 1X = g ◦ f}

is a group under composition called the symmetric group on X and written Sym(X). The functions

with multiplicative inverses under composition are precisely the bijective functions, so we also have

Sym(X) = {f : X → X|f is bijective}. The functions in Sym(X) are also called permutations of

X and Sym(X) is called the permutation group of X.

As a special case, when X = {1, 2, . . . , n} is the set of the first n positive numbers, we write the

group Sym(X) as Sn and call it the nth symmetric group.

Example 1.8. Let Zn = {0, 1, . . . , n− 1} be the set of congruence classes modulo n, as in Exam-

ple 1.4. There is also a multiplication of congruence classes, where we put a b = ab. Again it is

straightforward to check that this definition is independent of the choice of representatives for the
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congruence classes. This is an associative operation with identity element 1, so Zn is a monoid

under multiplication. Note that ab = ba for all a, b. Thus the subset

Un = {a ∈ Zn|there is b ∈ Zn such that ab = 1}

is a group under multiplication, called the units group of Zn.

We can say more about exactly which congruence classes are in Un. If ab = ab = 1, then

ab = 1 + nq for some q ∈ Z. Thus ab − nq = 1 and it follows that gcd(a, n) = 1. Conversely, if

gcd(a, n) = 1, then since the gcd is a Z-linear combination we get ba + qn = 1 for some b, q ∈ Z.

Then ba = ba = 1. We conclude that Un = {a ∈ Zn| gcd(a, n) = 1}.

We now review some of the most basic properties of a group. Given a set X, we write |X| for the

cardinality of the set, as usual. In particular, for a group G, the number |G| is called the order of

the group. For example, consider the group Un. Recall that Euler ϕ function is ϕ : N→ N where

ϕ(n) is the number of integers a with 1 ≤ a ≤ n such that gcd(a, n) = 1. Thus by definition we

have that |Un| = ϕ(n). For a specific example, note that U12 = {1, 5, 7, 11} and φ(12) = 4. The

study of finite groups, i.e. those with finite order, tends to have a rather different flavor than the

study of infinite groups. We will focus much of our attention on finite groups below.

Let G be a group. Two elements a, b ∈ G are said to commute if ab = ba. If all pairs of elements

in a group commute, we say that G is abelian; otherwise G is non-abelian. A more obvious name

for the abelian property would be commutative, and in fact that is the name given to the analogous

property in ring theory. In group theory the term abelian was chosen to honor the mathematician

Niels Henrik Abel, whose work on the unsolvability of the quintic equation was a precursor to the

development of group theory. All of the examples of groups given so far are abelian except for

GLn(F ), which is non-abelian if n ≥ 2, and Sym(X), which is nonabelian as long as X has at

least three elements. In general, non-abelian groups are much more difficult to understand. For

example, we will see that abelian groups with finitely many elements can all be described rather

easily. The structure of finite non-abelian groups, on the other hand, attracted the intense efforts of

many mathematicians in the latter half of the twentieth century, especially to try to classify finite

simple groups. That project was declared complete in the 1980’s but the details are so technical

that they are accessible only to specialists.

1.1. Subgroups and further examples.
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Definition 1.9. Let G be a group. A nonempty subset H ⊆ G is a subgroup if (i) ab ∈ H for

all a, b ∈ H; and (ii) a−1 ∈ H for all a ∈ H. When H is a subgroup of a group G we sometimes

indicate this by writing H ≤ G.

In words, a subset of a group is a subgroup if it is closed under products and closed under

inverses. Some people prefer to use the following alternate definition: H is a subgroup if (i)′:

ab−1 ∈ H for all a, b ∈ H. It is easy to check that this single condition (i)′ is equivalent to (i) and

(ii). Having only one condition is more elegant, though in practice the work required to check this

single condition usually amounts to the same as checking (i) and (ii) separately.

If H is a subgroup of G, then we claim that H is itself a group under the same operation

restricted to H. Note that condition (i) guarantees that the binary operation of G restricts to a

binary operation on H, which is necessarily also associative. Since H is nonempty, picking any

a ∈ H we have a−1 ∈ H by (ii) and hence 1 = aa−1 ∈ H by (i), so 1 ∈ H and clearly 1 is still an

identity element for H. Finally, (ii) ensures that every a ∈ H has an inverse element in H, so H

is a group as claimed. The reader may check conversely that a subset of G is a group under the

restricted binary operation precisely when it is a subgroup as defined above.

In the next examples we define some new interesting groups as subgroups of the groups we have

defined so far.

Example 1.10. Let F be a field and let G = GLn(F ). Define

SLn(F ) = {A ∈ GLn(F )| det(A) = 1}.

Then SLn(F ) is a subgroup of GLn(F ) called the special linear group. To check that it is a subgroup,

if A,B ∈ SLn(F ), so that det(A) = det(B) = 1, just note that det(AB−1) = det(A) det(B−1) =

det(A) det(B)−1 = 1 so that AB−1 ∈ SLn(F ) as well.

Example 1.11. Let I be the identity matrix in GL2(C). We also define

A =

 0 1

−1 0

 , B =

0 i

i 0

 , and C =

i 0

0 −i


in GL2(C). Let Q8 be the subset of GL2(C) consisting of the 8 matrices {±I,±A,±B,±C}.

The matrices A, B, and C are easily checked to satisfy the following rules for multiplication:

A2 = B2 = C2 = −I; AB = C = −BA; BC = A = −CB; and CA = B = −AC. Using these

rules it easily follows that Q8 is closed under taking products and inverses, and so is a subgroup of

GL2(C). You could also check that these 8 matrices are exactly those matrices in GL2(C) that are

either diagonal or anti-diagonal; have determinant 1; and have nonzero entries taken from the set
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{1,−1, i,−i}. These properties are preserved under multiplication and taking inverses, so this set

of matrices must be a subgroup for that reason. In fact Q8 is also a subgroup of SL2(C).

Often instead of thinking of Q8 as a subgroup of GL2(C), one thinks of it abstractly as a group

with 8 elements {±1,±i,±j,±k} with multiplication rules i2 = j2 = k2 = −1, ij = k = −ji, jk =

i = −kj, ki = j = −ik. This is the traditional notation that is borrowed from the ring of quaternions

invented by Hamilton, which we will describe later in the ring theory section. One could also just

define Q8 by these multiplication rules, but checking associativity directly is messy. Defining it as

a subgroup of GL2(C), as we did, has the advantage that associativity of the operation comes for

free.

Example 1.12. Let n be a positive integer with n ≥ 3. Define θ = 2π/n. We define

R =

cos θ − sin θ

sin θ cos θ

 and S =

−1 0

0 1


inside the group GL2(R). A matrix A ∈ GL2(R) gives a linear transformation of the real plane

R2 via the formula v 7→ Av for column vectors v ∈ R2. Under this correspondence R gives the

counterclockwise rotation of the plane about the origin by θ radians, and S is the reflection of the

plane about the y-axis.

Direct calculation shows that the matrices R and S satisfy the rules Rn = I; S2 = I; and

SR = R−1S. Using these relations it is straightforward to see that the set of matrices

D2n = {RiSj | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1}

is a subgroup of GL2(R), consisting of 2n distinct elements. It is called the dihedral group of 2n

elements. (Warning: some authors call this group Dn. We prefer to have the subscript label the

number of elements in the group.)

The dihedral group arises naturally as a group of symmetries. If one takes a regular n-gon in the

plane centered at the origin, such that the y-axis is an axis of symmetry for it, then the elements

of D2n are exactly those linear transformations of the plane which send the points of the n-gon

bijectively back to itself. These transformations are also called rigid motions of the n-gon.

Similarly as in the example Q8 above, when working with the group D2n abstractly, it is useful

simply to take it to be a group with 2n distinct elements of the form {aibj |0 ≤ i ≤ n−1, 0 ≤ j ≤ 1}

satisfying the rules an = 1, b2 = 1, ba = a−1b. This is essentially the point of view of a presentation

of a group, which we will define and study more formally in a later section.
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1.2. Cosets and Factor Groups. The following notation for products of subsets of a group is

quite convenient.

Definition 1.13. Let G be a group and let X and Y be any subsets of G. Then we define

XY = {xy |x ∈ X, y ∈ Y }.

When we apply the product notation to a subset with a single element x, we write the subset as

x rather than the more formally correct {x}. As an example we have the following.

Definition 1.14. Let H be a subgroup of a group G. Given any x ∈ G, then xH = {xh|h ∈ H} is

the left coset of H with representative x. Similarly, Hx = {hx|h ∈ H} is the right coset of H with

representative x.

Note that cosets are named after which side of H the representative x is on. We will generally

focus on left cosets. The theory of right cosets is completely analogous, and the reader can easily

formulate and prove analogous versions for right cosets of the following results.

As always, the notation changes in a group G with addition operation +: for subsets X and Y

the ”product” becomes X + Y = {x+ y|x ∈ X, y ∈ Y }. Given a subgroup H of G and x ∈ G, the

corresponding left coset with representative x is written x+H = {x+ h|h ∈ H}.

Here are the important basic facts about the left cosets in a general (multiplicative) group.

Proposition 1.15. Let H ≤ G, i.e. let H be a subgroup of a group G. For any x, y ∈ G, we have

(1) xH = yH if and only if y−1x ∈ H if and only if x−1y ∈ H.

(2) Either xH = yH or else xH ∩ yH = ∅.

(3) |xH| = |H|.

Proof. Define a relation on elements of G by x ∼ y if x−1y ∈ H. Then for any x ∈ G, x−1x = 1 ∈ H,

so x ∼ x. If x ∼ y, then x−1y ∈ H. Since H is closed under inverses, (x−1y)−1 = y−1x ∈ H and

y ∼ x. Finally, if x ∼ y and y ∼ z, so x−1y ∈ H and y−1z ∈ H, then (x−1y)(y−1z) = x−1z ∈ H

since H is closed under products, and so x ∼ z. We have shown that ∼ is an equivalence relation

on G. Therefore G is partitioned into disjoint equivalence classes. Given x ∈ G, the equivalence

class containing x is

[x] = {y ∈ G|x ∼ y} = {y ∈ G|x−1y ∈ H} = {xh|h ∈ H} = xH.

Thus the equivalence class containing x is precisely the left coset with representative x. Now (2)

follows from the fact that the equivalence classes partition G, and (1) follows from the definition

of the equivalence relation.
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Now define a function θ : H → xH by θ(h) = xh. The function θ is injective, since if θ(h1) =

θ(h2), then xh1 = xh2, and multiplying by x−1 on the left yields h1 = h2. The function θ is also

clearly surjective. Thus θ is a bijection and |xH| = |H|. �

Lagrange’s Theorem, one of the most fundamental results in group theory, is an immediate

consequence of the observations in the previous result. If H is a subgroup of a group G, we write

|G : H| for the number of distinct left cosets of H in G. We call |G : H| the index of H in G.

Theorem 1.16. (Lagrange’s Theorem) Let G be a group and let H ≤ G be a subgroup. Then

|G| = |H||G : H|.

In particular, if G is finite, then |H| divides |G|.

Proof. By the previous proposition, G is partitioned by the distinct left cosets of G. Also, each left

coset xH has size |xH| = |H|. Therefore G is the disjoint union of |G : H| subsets, each of which

has size |H|. The result follows. �

Definition 1.17. Let G be a group. For x, g ∈ G, the conjugate of x by g is gxg−1. Note that

g and x commute (i.e. xg = gx) if and only if gxg−1 = x. We also write gx = gxg−1 and

think of g as “acting” on x on the left by conjugation. We use the same notation for subsets, so

gX = {gxg−1|x ∈ X}.

Definition 1.18. A subgroup H of G is normal if gH = gHg−1 ⊆ H for all g ∈ G. In this case

we write H �G.

Example 1.19. Let G = GLn(F ) for some field F . Then H = SLn(F ) is a normal sub-

group of G. For if A ∈ G and B ∈ H, so det(A) 6= 0 and det(B) = 1, then det(ABA−1) =

det(A) det(B) det(A)−1 = det(B) = 1. Thus ABA−1 ∈ H.

Example 1.20. If G is abelian, then any subgroup H of G is normal, since ghg−1 = gg−1h = h

for all g ∈ G and h ∈ H.

Proposition 1.21. Let H ≤ G. The following are equivalent:

(1) H �G, i.e. gH ⊆ H for all g ∈ G.

(2) gH = H for all g ∈ G.

(3) gH = Hg for all g ∈ G.

(4) Every right coset of H is also a left coset of H.
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Proof. (1) =⇒ (2). By definition we have gH ⊆ H, or gHg−1 ⊆ H. Multiplying by g−1 on the

left and g on the right gives H ⊆ g−1Hg. Applying this to the element g−1 gives H ⊆ gHg−1.

Thus H = gHg−1 = gH.

(2) =⇒ (3). Multiplying gHg−1 = H on the right by g gives gH = Hg.

(3) =⇒ (4). This is trivial.

(4) =⇒ (1). Given the right coset Hg, we know it is equal to xH for some x. Now g ∈ Hg = xH

and of course g ∈ gH, so gH ∩ xH 6= ∅. By Proposition 1.15, gH = xH. Thus gH = Hg. Since g

was arbitrary, we have (3). Now (3) implies (2) by multiplying gH = Hg on the right by g−1, and

(2) trivially implies (1). �

Example 1.22. Let H be a subgroup of a group G such that |G : H| = 2. In this case, there are

only two left cosets. Since one of the them is H = 1H, there other must be G−H. Similarly, the

right cosets must be H = H1 and its complement G−H. We see that any right coset is a left coset,

so H �G by the preceding proposition. We conclude that every subgroup of index 2 is normal.

We can now define the quotient of a group by a normal subgroup.

Proposition 1.23. Let H � G. The set G/H = {the distinct left cosets of H in G} is a group

under the operation (aH) ∗ (bH) = abH. The identity element is 1H = H and (aH)−1 = a−1H.

Moreover, |G/H| = |G : H|.

The group G/H is called the factor group or quotient group of G by H. We often read G/H as

“G mod H”.

Proof. The main content of the proposition is that the operation is well defined. To see this,

suppose that a′H = aH and b′H = bH, so we have chosen other representatives for these cosets.

Then a′ = a′ ∈ a′H = aH and so a′ = ah1 for some h1 ∈ H. Similarly b′ = bh2 for some h2 ∈ H.

Now h1b ∈ Hb = bH since H is normal, by Proposition 1.21. Thus h1b = bh3 for some h3 ∈ H. We

now get a′b′ = ah1bh2 = abh3h2 ∈ abH. By Proposition 1.15, this forces a′b′H = abH. Thus the

product operation is well defined.

Once we have a well defined operation, it is trivial to check that it is associative (because the

operation of G is) and that the identity and inverses are as indicated, so that G/H is a group. We

have |G/H| = |G : H| since this is the number of left cosets, which are the elements of G/H by

definition. �

As stated, we defined the operation on left cosets in G/H by using representatives: take two

cosets, multiply their representatives, and take the coset containing that product. Similarly as in
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Example 1.4, we could also think of this as a product of sets. Namely, in the setup of Propo-

sition 1.23, we could define (aH) ∗ (bH) to be the product (aH)(bH), using our usual prod-

uct of subsets of a subgroup. Since G is associative, product of subsets is associative. Hence

(aH)(bH) = a(Hb)H = a(bH)H = abHH = abH, using that H is a normal subgroup. In this way

we recover the formula for the product in G/H.

Example 1.24. Let G = (Z,+). Then H = nZ = {qn|q ∈ Z} is clearly a subgroup of G, and

it is normal automatically since G is abelian. The factor group G/H consists of additive cosets

{a+H|a ∈ Z}, with addition operation in G/H defined by (a+H) + (b+H) = (a+ b) +H. The

coset a + H = a + nZ is precisely the congruence class a, and the addition operation on cosets

is precisely the usual addition on congruence classes, a + b = a+ b. In this way the factor group

Z/nZ is identified with the group (Zn,+) of integers mod n under addition.

Example 1.25. Consider the dihedral group G = D2n = {1, a, a2, . . . , an−1, b, ab, . . . , an−1b},

where an = 1, b2 = 1, ba = a−1b. Recall that a corresponds to a rotation and b to a reflection

of real two space. Thus H = {1, a, a2, . . . , an−1} is a subgroup of G called the rotation subgroup; it

consists of those elements of G which are rotations. Since |H| = n is is clear that |G : H| = 2 and

so H has just two cosets, H and bH = {b, ab, . . . , an−1b} which consists of all of the reflections.

Since H has index 2 in G, it is automatic that H �G by Example 1.22, so we can define the factor

group G/H = {H, bH}. This factor group has multiplication rules (H)(H) = H, (H)(bH) = bH,

(bH)(H) = (bH), and (bH)(bH) = H, which exactly express the facts that a product (i.e. compo-

sition) of two rotations is a rotation; a product of a rotation and a reflection is a reflection; and a

product of two reflections is a rotation.

1.3. Products of subgroups and normalizers. Suppose that H and K are subgroups of a group

G. The product HK = {hk|h ∈ H, k ∈ K} need not be a subgroup of G.

Example 1.26. Let G = D6, which we think of as the set of 6 distinct elements {1, a, a2, b, ab, a2b}

with multiplication rules a3 = 1, b2 = 1, ba = a−1b = a2b. Let H = {1, b}, K = {1, ab}. Since

b2 = 1 and (ab)2 = abab = aa−1bb = b2 = 1, it is easy to see that H and K are subgroups of G.

However, HK = {1, b, ab, a2} consists of 4 distinct elements, and this cannot be a subgroup of G

by Lagrange’s Theorem, since 4 is not a divisor of 6.

We will now investigate some conditions under which the product HK of two subgroups will be

a subgroup again.
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Definition 1.27. Let H be a subgroup of G. The normalizer of H in G is

NG(H) = {g ∈ G | gH = gHg−1 = H}.

Here are some basic facts about this definition.

Lemma 1.28. Let H ≤ G.

(1) H �G iff NG(H) = G.

(2) NG(H) ≤ G.

(3) H �NG(H).

(4) NG(H) is the unique largest subgroup K of G such that H �K.

Proof. (1) This is by definition of normal.

(2) If g, h ∈ NG(H), then ghH(gh)−1 = ghHh−1g−1 = gHg−1 = H, so gh ∈ NG(H). Multplying

gHg−1 = H on the left by g−1 and on the right by g gives H = g−1Hg, so g−1 ∈ NG(H).

(3) Clearly H ⊆ NG(H). Then H �NG(H) follows by the definition of normal.

(4) By (3), NG(H) is such a K. If H�K, Then every k ∈ K satisfies kHk−1 = H, so k ∈ NG(H),

and thus K ⊆ NG(H). �

We can now give a useful sufficient condition under which a product of two subgroups is again

a subgroup.

Proposition 1.29. Let H ≤ G and K ≤ G.

(1) HK ≤ G if and only if HK = KH.

(2) If K ≤ NG(H), then HK ≤ G.

(3) If H ≤ NG(K), then HK ≤ G.

Proof. (1) Suppose that HK ≤ G. Note that H ⊆ HK and K ⊆ HK. Since HK is a subgroup

of G containing H and K, closure under products gives (K)(H) ⊆ HK. Given x ∈ HK, then

x−1 ∈ HK since HK is a subgroup. Thus we can write x−1 = hk with h ∈ H, k ∈ K. Now

x = (hk)−1 = k−1h−1 ∈ KH. Thus HK ⊆ KH. So KH = HK.

Conversely, suppose that KH = HK. Given h1, h2 ∈ H and k1, k2 ∈ K, we have k1h2 ∈ KH =

HK so k1h2 = h3k3 some h3 ∈ H, k3 ∈ K. Now (h1k1)(h2k2) = h1(k1h2)k2 = h1(h3k3)k2 =

(h1h3)(k3k2) ∈ HK, so HK is closed under products. Next, (h1k1)−1 = k−1
1 h−1

1 ∈ KH = HK so

HK is closed under inverses. Hence HK is a subgroup of G.

(2) For all k ∈ K we have kHk−1 = H or equivalently kH = Hk. Then KH =
⋃
k∈K kH =⋃

k∈K Hk = HK and so part (1) applies to show that HK is a subgroup.
12



(3) This is proved in the same way as (2). �

One doesn’t always need the full strength of the preceding proposition; often the following result

suffices.

Corollary 1.30. Let H ≤ G and K ≤ G.

(1) If either H �G or K �G then HK ≤ G.

(2) If both H �G and K �G then HK �G.

Proof. (1) If H � G then NG(H) = G so certainly K ⊆ NG(H) and Proposition 1.29(2) applies.

Similarly, if K �G then Proposition 1.29(3) applies.

(2) We know that HK ≤ G by (1). If g ∈ G then gHKg−1 = gHg−1gKg−1 = HK, so

HK �G. �

1.4. Fundamental homomorphism theorems.

Definition 1.31. If G and H are groups, a function φ : G → H is a homomorphism if φ(ab) =

φ(a)φ(b) for all a, b ∈ G. If a homomorphism φ is a bijection, it is called an isomorphism. An

isomorphism φ : G→ G is called an automorphism of G.

Homomorphisms are the functions that relate the multiplicative structure of two groups. The

word is used for the analogous maps between many other kinds of algebraic structures as well, such

as rings and modules, as we will see later. An isomorphism between two groups perfectly matches

up the objects of one with those of the other in such a way that the multiplication operations

correspond. You should think of isomorphic groups as being essentially the same group, just that

the elements have been renamed. When there exists an isomorphism φ : G→ H, we say that G and

H are isomorphic and write G ∼= H. It is easy to check that φ−1 : H → G is also an isomorphism

in this case. Also, if φ : G→ H and ψ : H → K are homomorphisms of groups, then ψ ◦φ : G→ K

is easily seen to be a homomorphism; if φ and ψ are isomorphisms, then so is ψ ◦ φ.

By definition a homomorphism φ : G→ H preserves the product structure of the two groups. It

also automatically preserves the identity element and inverses. Namely, φ(1) = φ(1 · 1) = φ(1)φ(1);

so multiplying on the left by φ(1)−1 gives 1 = φ(1). Then for any a ∈ G, we have 1 = φ(1) =

φ(aa−1) = φ(a)φ(a−1), which implies that φ(a−1) = (φ(a))−1.

Some results in linear algebra or calculus can be elegantly phrased in terms of homomorphisms.

For example we have the multiplicativity of the determinant.

Example 1.32. Let F be a field. Then φ : GLn(F ) → F× given by φ(A) = detA is a homomor-

phism of groups, since det(AB) = det(A) det(B) for any two matrices A and B.
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As another example, we have the rules for exponents:

Example 1.33. Let φ : (R,+) → (R×, ·) be defined by φ(x) = ex. Then φ is a homomorphism,

since φ(x+ y) = ex+y = exey = φ(x)φ(y).

We will be more concerned with examples internal to group theory.

Example 1.34. Let H be a subgroup of G. Then the inclusion map i : H → G is a homomor-

phism of groups. If H � G then the natural surjection π : G → G/H given by π(g) = gH is a

homomorphism of groups.

Example 1.35. Let g ∈ G. Let φg : G → G be defined by φg(a) = gag−1. Then φg is an

automorphism of the group G called a conjugation automorphism.

To see this, first it is easy to verify that φg is a homomorphism, since φg(ab) = gabg−1 =

gag−1gbg−1 = φg(a)φg(b). Then we see that φg is a bijection since φg−1 is the inverse function.

We now present the fundamental homomorphism theorems, which will be used frequently later.

The most important one is the first one, appropriately often called the “first isomorphism theorem”.

Definition 1.36. Let φ : G→ H be any homomorphism. Then K = kerφ = {a ∈ G|φ(a) = 1} =

φ−1(1) is called the kernel of φ, and L = φ(G) is referred to as the image of φ.

It is an easy exercise to show that the image L is a subgroup of H, and the kernel K is a normal

subgroup of G.

Theorem 1.37. (1st isomorphism theorem) Let φ : G → H be a homomorphism. Let K = kerφ

and L = φ(G). Then there is an isomorphism of groups φ : G/K → L given by φ(gK) = φ(g).

Proof. We have remarked that K = kerφ is a normal subgroup of G, so the factor group G/K

makes sense. Also, L is a subgroup of H, so it is certainly a group in its own right. As usual, since

we are trying to define the function φ on a factor group by referring to the coset representative,

we must check that this function is well defined. Suppose that gK = hK. Then g−1h ∈ K, so

φ(g−1h) = φ(g−1)φ(h) = φ(g)−1φ(h) = 1 since K = kerφ. This implies that φ(g) = φ(h) and so φ

is indeed well defined.

Now that we know that φ is well-defined, the rest is routine. The function φ is a homomorphism

since φ(gKhK) = φ(ghK) = φ(gh) = φ(g)φ(h) = φ(gK)φ(hK). It is a surjective function because

an element of L has the form φ(g) for g ∈ G, and then φ(g) = φ(gK). Finally, if φ(gK) = φ(hK)

then φ(g) = φ(h), so φ(g−1h) = 1 and g−1h ∈ kerφ = K. Then gK = hK, so φ is injective. We

have shown now that φ is bijective and hence it is an isomorphism. �
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The 1st isomorphism theorem shows that any homomorphism leads to an isomorphism between

2 closely related groups, a factor group of the domain and a subgroup of the codomain.

Example 1.38. Consider the homomorphism φ : GLn(F ) → F× of Example 1.32, where φ(A) =

det(A). Then φ is surjective, for given a nonzero scalar λ, the diagonal matrix Bλ whose diagonal

entries are λ, 1, 1, . . . , 1 satisfies φ(Bλ) = λ. Thus the first isomorphism theorem says that φ induces

an isomorphism GLn(F )/K → F×, where K = kerφ. Now K consists of those matrices A such

that det(A) = 1, since 1 is the identity element of F×. Thus K is the subgroup of GLn(F ) we

called the special linear group SLn(F ). We conclude that GLn(F )/ SLn(F ) ∼= F×.

Example 1.39. Let φ : (R,+) → (R×, ·) be the homomorphism φ(x) = ex from Example 1.33.

Then from real analysis we know that the image of φ is all positive real numbers R>0. Thus R>0

must be a subgroup of (R×, ·) (which is also obvious). The kernel of φ is trivial, because ex is

well-known to be one-to-one. Thus the first isomorphism theorem simply tells us that restricting

the codomain of φ we obtain an isomorphism (R,+)→ (R>0, ·). The inverse map is obviously the

map ψ : (R>0, ·)→ (R,+) given by y 7→ ln(y).

Example 1.40. Let φ : (Z4,+) → (Z4,+) be defined by φ(a) = 2a. It is easy to check that this

is a well defined homomorphism whose kernel and image are both equal to K = {0, 2}. The first

isomorphism theorem states that Z4/K ∼= K.

Earlier, we studied a product of subgroups and gave some conditions under which it will again

be a subgroup. The 2nd isomorphism theorem is an important tool for better understanding such

products.

Theorem 1.41. Suppose that N �G and H ≤ G. Then N ∩H �H and H/(N ∩H) ∼= HN/N .

Proof. When one is attempting to prove that a factor group is isomorphic to another group, like

here, it is often cleanest to use the 1st isomorphism theorem– it can avoid having to check directly

that a function defined on cosets is well-defined (because that work was already done in the proof

of the 1st isomorphism theorem).

We note first that HN is indeed a subgroup of G, because N � G, using Corollary 1.30. Then

also N �HN and so the factor group HN/N makes sense.

Now we define a function φ : H → HN/N by φ(h) = hN . A general element of HN/N is of the

form hxN for h ∈ H,x ∈ N . Since xN = N we have hxN = hN = φ(h). Thus φ is surjective.

If h ∈ kerφ then φ(h) = hN = N which happens if and only if h ∈ N . Thus kerφ = H ∩ N .
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Now by the first isomorphism theorem, φ induces an isomophism φ : H/(N ∩H) → HN/N with

formula φ(h(N ∩H)) = hN . We also get that H ∩N �H automatically as H ∩N is the kernel of

a homomorphism. �

Here is an example of the 2nd isomorphism theorem in an additive setting. In an additive group

G we write the “product” of two subgroups H and K as H +K = {h+ k|h ∈ H, k ∈ K}.

Example 1.42. Let G = (Z,+). For any n ≥ 1 write nZ = {na|a ∈ Z} for the set of all integer

multiples of n. It is clearly a subgroup of G and is automatically normal since G is abelian.

Now consider the group nZ +mZ. By the theory of the greatest common divisor, the elements

of the form na+mb with a, b ∈ Z are exactly the multiples of d = gcd(m,n), i.e. nZ +mZ = dZ.

Similarly, the elements of nZ ∩mZ are exactly the common multiples of n and m, which are the

multiples of the least common multiple ` = lcm(m,n). So nZ ∩mZ = `Z.

Now the 2nd isomorphism theorem says that (nZ + mZ)/mZ ∼= nZ/(nZ ∩ mZ). We can also

write this as dZ/mZ ∼= nZ/`Z.

Now one may check that dZ/mZ is a finite group with m/d elements. So our equation says in

particular that m/d = n/`, or `d = mn. This is the familiar statement that lcm(m,n) gcd(m,n) =

mn.

Here is another example of the 2nd isomorphism theorem.

Example 1.43. Consider the general linear group G = GLn(F ) for a field F , and its normal

subgroup the special linear group H = SLn(F ). Let D be the set of diagonal matrices with nonzero

entries. It is easy to see that D is a subgroup of GLn(F ) (but it is not normal unless n = 1). By

the second isomorphism theorem we have DH/H ∼= D/(D ∩H).

Note that for any A ∈ GLn(F ), where λ = det(A), if Bλ ∈ D is the diagonal matrix whose entries

are λ, 1, 1 . . . , 1, then A = Bλ((Bλ)−1A) expresses A as an element of DH, since det((Bλ)−1A) =

det((Bλ)−1) det(A) = λ−1 det(A) = 1. So DH = G and DH/H = G/H. We saw earlier that this

group is isomorphic to F×. So we get that D/(D ∩H) ∼= F×. This is also easy to prove directly

using the determinant map and the 1st isomorphism theorem.

The remaining isomorphism theorems show how we can understand a factor group—in particular,

its subgroups and factor groups—in terms of the original group.

Theorem 1.44. (Correspondence theorem) Let K be a normal subgroup of G and let π : G→ G/K

be the natural quotient map with π(g) = gK. There is a bijective correspondence

S = {H |K ≤ H ≤ G} → T = {N |N ≤ G/K}
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Given by H 7→ π(H) = H/K. Under this bijective correspondence H�G if and only if H/K�G/K.

Proof. Since π(H) is the image of a subgroup under a homomorphism, π(H) = H/K is a subgroup

of G/K and so π does give a function S → T . Suppose that L is a subgroup of G/K. We can

define H = π−1(L), where π−1 means the inverse image, i.e. π−1(L) = {h ∈ G|π(h) ∈ L}. One

checks that H is a subgroup of G containing K. Thus π−1 gives a map T → S. Because π is a

surjective function, it is immediate that π(π−1(L)) = L for any subgroup (in fact any subset) of

G/K. It is always true that H ⊆ π−1(π(H)) for any subgroup (in fact subset) of G. But if K ≤ H,

then π−1(π(H)) consists of elements a ∈ G such that π(a) = aK ∈ H/K, or aK = hK for some

h ∈ H. Then h−1a ∈ K and so a ∈ hK ⊆ H. So H = π−1(π(H)). This shows that we do have a

bijection as required.

The fact that normal subgroups correspond is an easy consequence of the definitions. �

Here is the final isomorphism theorem, which shows we don’t have to think about a “factor group

of a factor group”, because we can identify it with a factor of the original group.

Theorem 1.45. (3rd isomorphism theorem) Let K�G and G′ = G/K. Then any normal subgroup

of G′ has the form H/K for a unique H �G with K ⊆ H, and (G/K)/(H/K) ∼= G/H.

Proof. We know from the correspondence theorem that the normal subgroups of G/K are in one-

one correspondence with normal subgroups H of G with K ≤ H ≤ G under the map π : G→ G/K.

Thus every normal subgroup of G/K does have the form π(H) = {hK|h ∈ H} = H/K for a unique

such H with H �G.

Now we define a homomorphism φ : G/K → G/H by φ(aK) = aH. To show this is well-defined,

note that if aK = bK then a−1b ∈ K. So a−1b ∈ H which means aH = bH. Now φ is obviously

surjective. If aK ∈ kerφ then aH = H and so a ∈ H. Thus kerφ = {hK|h ∈ H} = H/K and by

the 1st isomorphism theorem, (G/K)/(H/K) ∼= G/H as required. �

Example 1.46. Let G = (Z,+). We apply the correspondence and 3rd isomorphism theorems to

factor groups of G.

First let us recall the classification of subgroups of G. We have the trivial subgroup {0} of

Z. We often abuse notation and write this subgroup as 0. Suppose that H ≤ Z is a nontrivial

subgroup. Then if a ∈ H, its additive inverse −a ∈ H as well. So H has some positive element. Let

n = min{a ∈ H|a > 0}. If a ∈ H then by the usual division with remainder in Z, a = qn+r for some

q, r ∈ Z with 0 ≤ r < n. But since n ∈ H, qn (the qth multiple of n) is in H. Thus r = a−qn ∈ H.

By the definition of n, this forces r = 0 and hence a = qn. Thus H ⊆ nZ = {qn|q ∈ Z}. Conversely,
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since n ∈ H we easily get that nZ ⊆ H since H is a subgroup. We conclude that H = nZ for some

n ≥ 1. It is also trivial to see that nZ really is a subgroup of Z for all n ≥ 1.

Thus the subgroups of Z are 0 together with the subgroups nZ for all n ≥ 1. Since Z is abelian,

these are all normal subgroups and so the possible factor groups of Z are Z/0 ∼= Z and Z/nZ = Zn,

the integers modulo n under +, for all n ≥ 1.

Given a nontrivial factor group of Z, Z/nZ for some n ≥ 1, then the correspondence theorem

tells us the subgroups of Z/nZ are in bijective correspondence to subgroups of Z which contain nZ.

These are the dZ such that d is a divisor of n. Thus the subgroups of Z/nZ are the groups dZ/nZ

where d is a divisor of n. There is one for each divisor d of n.

Moreover, by the 3rd isomorphism theorem, (Z/nZ)/(dZ/nZ) ∼= Z/dZ. This tells us exactly

what factor groups of factor groups look like up to isomorphism.

1.5. Generators and cyclic groups.

Definition 1.47. Let X ⊆ G where G is a group, and X is any subset. The subgroup of G generated

by X is the intersection of all subgroups of G which contain X. We write 〈X〉 for this group.

It is easy to see that an arbitrary intersection of subgroups of G is again a subgroup. Thus

〈X〉 is indeed a subgroup of G, and so it must be the uniquely minimal subgroup of G containing

X, as it is contained in all others. We claim that a more explicit way of describing 〈X〉 is as

〈X〉 = {x±1
1 . . . x±1

k |xi ∈ X}. In other words, this is the set of all finite products of elements in X

and their inverses. It is easy to see that the set of all such products is a subgroup of G. On the

other hand, any subgroup of G containing X must contain all such products. Hence 〈X〉 is indeed

the set of such products as claimed.

When X is finite, say X = {x1, . . . , xn}, we write 〈x1, . . . , xn〉 for 〈X〉. In particular, when

X = {x} we just write 〈x〉.

Definition 1.48. A group G is cyclic if G = 〈a〉 for some a ∈ G. In this case g is called a generator

of G. A subgroup H of G is called cyclic if it is cyclic as a group in its own right, i.e. if H = 〈a〉

for some g in G.

We will see momentarily that cyclic groups are easy to understand, as they have quite a simple

structure.

We first need to review notation for powers and define the order of an element. Given a ∈ G,

where G is a group, we define an ∈ G for all n ≥ 1 as the product of n copies of a, i.e. an =

n︷ ︸︸ ︷
aa . . . a.

When n = 0, we let a0 = 1, where 1 is the identity of G, by convention. We have already defined
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a−1 to be the inverse of a. Then for any n < 0 we let an = (a−1)|n|, the product of |n| copies of

a−1. A simple case-by-case analysis shows that the usual rules for exponents hold, that is

(1.49) aman = am+n for all m,n ∈ Z.

In an additive group, as always, we change our notation as powers are not appropriate. So if the

operation in G is +, for n ≥ 1 instead of an we write na =

n︷ ︸︸ ︷
a+ a+ · · ·+ a and call it the nth multiple

of a. We have 0a = 0 and for n < 0, na = |n|(−a). Then (1.49) becomes na+ma = (n+m)a for

all m,n ∈ Z.

Now consider a cyclic subgroup 〈a〉 of an arbitrary group G, where we use the multiplicative

notation by default. By the explicit description of the subgroup generated by a subset we found

above, 〈a〉 consists of products of finitely many copies of a or a−1. Thus 〈a〉 = {ai|i ∈ Z}. The

structure of this group is closely related to the following notion.

Definition 1.50. Let G be a group and let a ∈ G. The order of a, written |a| or o(a), is the

smallest n > 0, if any, such that an = 1. If no such n exists we put |a| =∞.

Theorem 1.51. Let a ∈ G for a group G. Let 〈a〉 be the cyclic subgroup of G generated by a.

(1) If |a| =∞ then ai = aj if and only if i = j, and 〈a〉 ∼= (Z,+).

(2) if |a| = n <∞ then ai = aj if and only if i ≡ j mod n, and 〈a〉 ∼= (Zn,+).

Proof. We have noted that 〈a〉 = {ai|i ∈ Z}. Define φ : (Z,+) → 〈a〉 by φ(i) = ai. The rules for

exponents in (1.49) show that φ is a homomorphism of groups. It is clear that φ is surjective, so

by the first isomorphism theorem we have Z/ kerφ ∼= 〈a〉.

(1) Suppose o(a) =∞. If ai = aj , say with i ≤ j, we have aj−i = 1. This contradicts that a has

infinite order unless i = j. But this means that φ is injective so φ is an isomorphism and Z ∼= 〈a〉.

(2) Suppose instead that o(a) = n < ∞. Then kerφ is a nonzero subgroup of Z whose smallest

positive element is n, by the definition of order. As we saw in Example 1.46, this means that

kerφ = nZ and so Z/nZ ∼= 〈a〉 by the 1st isomorphism theorem. We can identify Z/nZ with the

group Zn of integers mod n, as we saw in Example 1.24. Now ai = aj if and only if aja−i = aj−i = 1,

if and only if j − i ∈ kerφ = nZ, or equivalently i ≡ j mod n. �

Corollary 1.52. Let G be a finite group. If a ∈ G, then the order |a| divides |G|.

Proof. Since G is finite, |a| is finite (else the powers of a are all distinct, which is impossible). We

have |〈a〉| = |Zn| = n = |a| by the theorem. By Lagrange’s Theorem, the order of the subgroup 〈a〉

must divide |G|. �
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All results about the properties of cyclic groups can be proved just for the specific additive

groups Z and Zn if we wish, and then transferred to general cyclic groups via the isomorphisms in

Theorem 1.51. For example, we have the following classification of subgroups of a cyclic group.

Proposition 1.53. Let G = 〈a〉 be a cyclic group.

(1) If |a| =∞, then every nonidentity element of G has infinite order. The subgroups of G are

{1} and the subgroups 〈an〉 = {ain|i ∈ Z} for each n ≥ 1, and they are all cyclic.

(2) If |a| = n < ∞ then |G| = n and the subgroups of G are 〈an/d〉 for each divisor d of n,

where |〈an/d〉| = d. In particular there is a unique subgroup of G of order d for each divisor

d of n, and these subgroups are also cyclic.

Proof. (1) We know that φ : (Z,+) → 〈a〉 given by φ(i) = ai is an isomorphism. We have shown

that the subgroups of (Z,+) are 0 and the subgroups nZ = 〈n〉 for each n ≥ 1, as discussed

in Example 1.46. It is obvious that all nonzero elements of Z have infinite additive order. Now

statement (1) follows from transferring all of this information to 〈a〉 via φ.

(2) Similarly as in (1), we have an isomorphism φ : (Z/nZ,+) → 〈a〉 given by φ(i) = ai. Now

we have seen using the correspondence theorem, in Example 1.46, that the subgroups of Z/nZ are

exactly the groups dZ/nZ for divisors d of n. Note that dZ/nZ is the cyclic subgroup 〈d + nZ〉

of Z/nZ. Transferring this information to 〈a〉, we get that the subgroups of 〈a〉 are those of the

form 〈ad〉 for divisors d of n, and there is exactly one of these for each divisor d. Since |a| = n, it

is straightforward to see that |ad| = n/d. Finally, as d runs over divisors of n, so does n/d, and

replacing d by n/d gives statement (2). �

1.6. Automorphisms. One way that groups arise very naturally is as sets of symmetries of objects

under composition. What one means by a symmetry depends on the setting but usually it is a

bijection that preserves the essential features. For example, the dihedral group D2n is the group

of symmetries of a regular n-gon; here a symmetry is an orthogonal (distance preserving) bijective

map of the plane that maps the n-gon back onto itself.

An automorphism of a group is a kind of self-symmetry that preserves the essential feature of a

group—its product. Correspondingly, the set of automorphisms of a group will themselves form a

group of symmetries.

Definition 1.54. Let G be a group. The set Aut(G) of all automorphisms of G is called the

automorphism group of G. It is itself a group under composition.
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It is very easy to check that the composition of two automorphisms is also an automorphism,

and that the inverse function of an automorphism is agan an automorphism. Thus Aut(G) really

is a group.

We already remarked earlier that for any g ∈ G, there is an automorphism θg : G→ G given by

θg(x) = gxg−1. In other words, θg is “conjugation by g”. Note that θg ◦θh = θgh and (θg)
−1 = θg−1 .

Thus Inn(G) = {θg|g ∈ G} is a subgroup of Aut(G). The elements of Inn(G) are called inner

automorphisms. They are in some sense the most obvious automorphisms of a group, the ones that

are derived in a natural way from the multiplication in the group itself.

This is a good time as any to introduce the center of a group and centralizers of elements, since

the center appears in the next theorem.

Definition 1.55. If g ∈ G, then the centralizer of g is CG(g) = {x ∈ G|gx = xg}. The center of

the group G is Z(G) = {x ∈ G|gx = xg for all g ∈ G}.

In other words, the centralizer is the set of all elements which commute with the element g. A

quick argument shows that CG(g) is a subgroup of G. Since the powers of g all commute with each

other by (1.49), we always have 〈g〉 ⊆ CG(g). The center is the set of all elements which commute

with all other elements. One also easily check directly that Z(G) is a subgroup of G. Alternatively,

one notes that Z(G) =
⋂
g∈g CG(g), and thus Z(G) is a subgroup since it is an intersection of

subgroups. In fact Z(G) � G, since gxg−1 = x for all x ∈ Z(G) and all g ∈ G. The group G is

abelian if and only if G = Z(G).

Note that if G is abelian, then θg = 1 for all g ∈ G and so Inn(G) = {1} is trivial. More generally,

we can relate Inn(G) to the center of G as follows:

Lemma 1.56. Let G be a group. Then there is an isomorphism φ : G/Z(G) → Inn(G) given by

φ(gZ(G)) = θg.

Proof. Define ψ : G → Inn(G) by ψ(g) = θG. Then ψ is a homomorphism by the fact that

θg ◦ θh = θgh, as we have already remarked. The map ψ is surjective by the definition of Inn(G).

The kernel of ψ consists of those g such that θg = 1. But θg(x) = gxg−1 = x holds for all x if and

only if g ∈ Z(G). Hence Z(G) = kerψ and so there is an isomorphism ψ = φ : G/Z(G)→ Inn(G)

with the desired formula, by the 1st isomorphism theorem. �

Thus if we understand the group G well (in particular if we know its center) there is not much

mystery about Inn(G).

Lemma 1.57. Let G be a group. Then Inn(G) � Aut(G).
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Proof. We have already remarked that Inn(G) ≤ Aut(G), so we just need to prove normality. Let

θg ∈ Inn(G) and let ρ ∈ Aut(G). Consider ρ ◦ θg ◦ ρ−1. Applying this to some x we have

ρθgρ
−1(x) = ρ(gρ−1(x)g−1) = ρ(g)xρ(g−1) = ρ(g)xρ(g)−1 = θρ(g)(x).

Hence ρθgρ
−1 = θρ(g) ∈ Inn(G) and so Inn(G) is normal in Aut(G). �

Because of the lemma, it makes sense to define the factor group Out(G) = Aut(G)/ Inn(G),

which is called the outer automorphism group. It is the part of the automorphism group that tends

to be harder to understand. We will give some examples of calculating automorphism groups in

the next section.

Suppose that K ≤ H ≤ G where K �H and H �G. It is natural to hope that being a normal

subgroup should be “transitive” in the sense that K �G in this situation, but this does not follow

in general.

Example 1.58. LetG = D8 be the dihedral group, where we writeG = {aibj |0 ≤ i ≤ 3, 0 ≤ j ≤ 1},

with a4 = 1, b2 = 1, and ba = a−1b. Then H = {1, a2, b, a2b} is a subgroup of G, as is easy to

check by direct calculation. Since |G : H| = 2, H � G. Let K = {1, b}, which is a subgroup of

G since b2 = 1. The index |H : K| = 2 as well, so K �H. However K is not normal in G, since

aba−1 = a2b 6∈ K.

Fortunately, in the next proposition we will see a useful situation where we are able to conclude

that at a normal subgroup of a normal subgroup is normal, by strengthening the hypothesis of

normality. Note that H �G is equivalent to gHg−1 = H for all g ∈ G, or alternatively θg(H) = H

for all inner automorphisms θg. So it is also interesting to consider those subgroups that are fixed

by all automorphisms, not just inner ones.

Definition 1.59. A subgroup H ≤ G is characteristic if for all automorphisms σ ∈ Aut(G),

σ(H) = H. We write H charG in this case.

Clearly from the remarks above, characteristic subgroups are normal.

Proposition 1.60. Let K ≤ H ≤ G.

(1) If K charH and H �G, then K �G.

(2) If K charH and H charG, then K charG.

Proof. (1) Suppose that g ∈ G. Since H � G, we know that θg(H) = gHg−1 = H. Thus the

restriction ρ = θg|H : H → H is an automorphism of H, because it has the inverse θg−1 |H . Since

K charH, we have ρ(K) = K. But this says that gKg−1 = K. Thus K �G.
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(2) This is similar to (1) except that we start with an arbitrary automorphism of G instead of

an inner automorphism θg. �

Example 1.61. Suppose that H �G where H is cyclic of finite order n. If K is any subgroup of

H, say of order d, then we have seen that K is the unique subgroup of H of order d. If σ ∈ Aut(H),

then σ(K) is a subgroup of H of order d as well, so σ(K) = K. Thus K charH. It follows from

proposition 1.60 that K �G.

For example, in G = D2n the rotation subgroup H is cyclic of order n and H�G since |G : H| = 2.

Then if K is any subgroup of H, K �G.

1.7. Direct products. We will study direct products in more detail in a later section, but since

direct products are very useful for building basic examples, it is good to have them at hand early

on.

The direct product is a natural way of joining together two groups which apriori have no rela-

tionship to each other.

Definition 1.62. Let H and K be groups. We define the direct product of H and K to be

H ×K = {(h, k)|h ∈ H, k ∈ K}, that is, the cartesian product of the sets H and K. The group

operation in H ×K is done coordinatewise, so (h1, k1)(h2, k2) = (h1h2, k1k2) using the product of

H in the first coordinate and the product of K in the second coordinate.

The group axioms for H ×K follow immediately from the axioms for H and K. In particular,

note that the identity element of H ×K is (1H , 1K) and that (h, k)−1 = (h−1, k−1).

If we understand the groups H and K well, it is usually quite easy to understand the properties

of the group H ×K. For example, clearly |G| = |H||K|. If g = (h, k) ∈ H ⊗K, then gn = (hn, kn).

This is equal to (1, 1) if and only if hn = 1 and kn = 1. So if |h| =∞ or |k| =∞ then |(h, k)| =∞.

If h and k have finite order then gn = 1 if and only if n is a multiple of |h| and a multiple of |k|,

and thus |(h, k)| = lcm(|h|, |k|).

There is no reason to restrict the definition to 2 groups above. We can define the product of a

finite number of groups G1, G2, . . . , Gk in an analogous way, as the set of all k-tuples (g1, g2, . . . , gk)

with gi ∈ Gi, with coordinatewise operations.

2. Free groups and presentations

2.1. Existence and uniqueness of the free group on a set. We have informally described the

dihedral group D2n as a group with elements {aibj |0 ≤ i ≤ n− 1, 0 ≤ j ≤ 1} where an = 1, b2 = 1
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and ba = a−1b. This is appropriate because we first defined it as a subgroup of the orthogonal group

with 2n elements, and then showed it its elements can be described in terms of a rotation a and

a reflection b as the 2n elements in the above set with the listed multiplication rules. Sometimes,

however, we would like to define a group just by listing a set of elements (or even just a set of

generators) and the rules that they should satisfy. One needs to be careful that there really is a

group with the desired number of elements that satisfies those rules. The formalism of presentations,

which we will describe in this section, allows one to make this precise.

We will first need to spend some time defining free groups. These are interesting groups we have

not encountered yet that satisfy a certain universal property.

Definition 2.1. Let G be a group. We say that G is free on a subset X ⊆ G if given a group

H together with a function f : X → H, there is a unique homomorphism f̂ : G → H such that

f̂(x) = f(x) for all x ∈ X.

The universal property of a free group can be indicated by the following commutative diagram:

G
∃!f̂
// H

X

i

OO

f

>>

Here i : X → G is just the inclusion map of X into G, i.e. i(x) = x.

Commutative diagrams are convenient ways of visualizing properties that assert that certain

compositions of functions are equal. The convention is that by saying the diagram is commutative

or that it commutes, one means that all different paths that follow arrows from one object to

another give equal compositions of functions. In the diagram above, that means that f̂ ◦ i = f as

functions X → H, which is clearly the same as f̂(x) = f(x) for all x ∈ X, the property stated in

the definition of a free group. We have illustrated some other common conventions in the diagram

above. Since the maps i and f are part of the given data, they are regular arrows, while the map

f̂ is a dashed arrow because it is a map that is not given but whose existence is asserted by the

property being illustrated. The exclamation point ! stands for “unique”, so the notation ∃! is read

“there exists a unique” since the uniqueness of the function f̂ completing the diagram is part of

the universal property.

The uniqueness is what makes a universal property so useful. It means in this case that we can

define a homomorphism from a free group G on a set X to another group H simply by choosing

any function f : X → H. In other words, the elements in X are “free” to be sent anywhere we
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please. There is then a unique extension of this function to a homomorphism of groups f̂ : G→ H

which does the given map f on the subset X.

It is not at all obvious that any groups with such a property exist, but we will show that any set

X can be embedded in a free group on that set. The case where X has one element is especially

easy, as we have already seen that group before.

Example 2.2. Let G be an infinite cyclic group with generator x ∈ G. So G = 〈x〉 = {xi|i ∈ Z}

where xi = xj if and only if i = j. Then we claim that G is free on the one-element subset X = {x}.

To prove this we check the definition directly. Let H be any other group and let f : X → H be a

function. Since X has one element, such a function amounts to a choice of a single element h ∈ H

for which f(x) = h. Now we define f̃ : G→ H by f̂(xi) = hi for all i ∈ Z. It is immediate that f̂

is a homomorphism by our rules for exponents in groups (1.49). Clearly also f̂(x) = h = f(x) by

construction. Finally, if φ : G→ H is any homorphism of groups for which φ(x) = f(x) = h, then

φ(xi) = hi for all i by the properties of homomorphisms, and so φ = f̂ . This shows the uniqueness

of f̃ and completes the claim that G is free on {x}.

Thus we have constructed a free group on a one-element set. Could there be an essentially

different group which is also free on a one-element subset? The answer is no. In fact, free groups

are determined up to isomorphism by the size of the set X. This is actually a general principle for

objects in algebra that are called “free”— the object is uniquely determined up to isomorphism by

the size of the subset it is free on.

Theorem 2.3. Let G be a free group on a subset X and let G′ be a free group on a subset X ′.

Suppose there is a bijection of sets f : X → X ′. Then there is a unique isomorphism of groups

φ : G→ G′ such that φ(x) = f(x) for all x ∈ X.

Proof. Note that f : X → X ′ can be considered as a function f : X → G′. Then by the universal

property of G being free on X, there is a unique homomorphism φ : G→ G′ such that φ(x) = f(x)

for all x ∈ X. Once we prove that φ is an isomorphism of groups, we see from this that it will be

unique.

Since f is a bijection, the inverse function f−1 : X ′ → X makes sense. Then similarly, using

the universal property of G′ on X ′, there is a unique homomorphism ψ : G′ → G such that

ψ(x′) = f−1(x′) for all x′ ∈ X ′.

Now ψ ◦ φ : G → G is a homomorphism, being a composition of two homomorphisms. By

construction, we have ψ ◦ φ(x) = ψ(f(x)) = f−1(f(x)) = x for all x ∈ X. But the identity map
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1G : G→ G is also a homomorphism G→ G such that 1G(x) = x for all x ∈ X. Since both 1G and

ψ ◦ φ restrict on X to the inclusion function i : X → G, by the uniqueness part of the universal

property we must have ψ ◦φ = 1G. A symmetric argument using the universal property of G′ gives

φ◦φ = 1G′ . We conclude that φ : G→ G′ is an isomorphism of groups with inverse ψ : G′ → G. �

Recall that two sets X,X ′ have the same cardinality if there is a bijection f : X → X ′. Nota-

tionally this is indicated by |X| = |X ′|. The theorem shows that there is only one free group on a

set of a given cardinality, up to isomorphism. So we can speak of “the” free group on n generators

for a given finite number n, for example.

We now settle the trickier issue of showing that free groups exist, by giving a direct construction.

Definition 2.4. Let X be a set. We create an alphabet A of formal symbols consisting of the

elements in X along with a new symbol x−1 for each x ∈ X. For example, if X = {x, y, z} then

the alphabet is A = {x, y, z, x−1, y−1, z−1}. A word in X is a finite sequence of symbols in the

alphabet A, written consecutively without spaces (like actual dictionary words). By convention we

also have an “empty” word which we write as 1. The length of a word is the number of symbols it

contains, where the empty word 1 has length 0.

Example 2.5. Let X = {x, y, z}. Then w = xx−1xyzyy−1x is a word in X of length 8. For each

n ≥ 0, there are precisely 6n distinct words of length n in X, since there are six symbols in the

associated alphabet A to choose from for each of n spots.

Definition 2.6. Given a word in X, a subword is a some subsequence of consecutive symbols

within the word. A word w in X is reduced if it contains no subwords of the form xx−1 or x−1x

for x ∈ X.

For example, in the word w = xx−1xyzyy−1x given above, x−1xyzy and yy−1x are subwords.

This word is not reduced, for it contains xx−1, x−1x and yy−1 as subwords. On the other hand,

xyx−1zx−1yxy−1x is a reduced word.

Given a word w which is not reduced, say of length n, a reduction is the removal of some subword

of w of the form xx−1 or x−1x, squeezing the remaining symbols together to obtain a new word

of length n− 2. If that word is also not reduced, we can perform some other reduction on it, and

continue in this way. Obviously this process must stop at some point, leaving us with a reduced

word we call the reduction of w, notated red(w) (which could be the empty word 1).
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Example 2.7. If w = yxyy−1x−1x, we can first remove yy−1 leaving yxx−1x. Now we can remove

xx−1, leaving the reduced word yx. We could instead have started by removing the x−1x at the

tail end of w, leaving yxyy−1, and then removing yy−1 to obtain yx.

Proposition 2.8. Given a word w on a set X, any possible sequence of reductions leads to the

same reduced word red(w) (and thus red(w) is well-defined).

This proposition seems intuitively reasonable, but it certainly needs proof. We leave it to the

reader as an exercise so as not to interrupt the flow of the discussion here.

Definition 2.9. Given a set X, we define F (X) as follows. As a set, F (X) consists of all reduced

words in X, that is words from the associated alphabet A, which do not contain any subwords of

the form xix
−1
i or x−1

i xi. The product in F (X) is defined as v ∗ w = red(vw) for v, w ∈ F (X),

where vw means the concatenation of the two words. (Note that although v and w are reduced,

vw may not be, which requires passing to the reduction red(vw) to obtain another element of the

set F (X). We are also relying on Proposition 2.8 here to be sure that red(vw) is a well-defined

element of F (X).)

Example 2.10. If X = {x, y}, then in F (X) we have (xyx)∗ (x−1y−1x) = red(xyxx−1y−1x) = xx.

Theorem 2.11. Let X be a set and let F (X) be the set defined above. Identify X with the subset

of F (X) consisting of length 1 words on the symbols in X.

(1) F (X) is a group under the operation ∗.

(2) F (X) is free on the subset X.

Proof. (1) It is not immediately obvious in this case that ∗ is associative. Note that if u, v, w ∈ F (X)

are reduced words, then (u ∗ v) ∗ w = red(red(uv)w), while u ∗ (v ∗ w) = red(u red(vw)). Both

of these expressions are obtained by applying some sequence of reductions to uvw. Thus they are

equal to red(uvw) by the uniqueness of the reduced word obtained through applying reductions,

as stated in Proposition 2.8. So ∗ is indeed associative. The trivial word 1 is clearly an identity

element for F (X), since 1 ∗w = red(1w) = red(w) = w and similarly w ∗ 1 = w, for any w ∈ F (X).

Finally, if w = xe11 . . . xenn is some reduced word, where each xi ∈ X, and ei = ±1, then it is easy to

check that x−enn . . . x−e11 is also a reduced word and gives an inverse for w under ∗.

(2) If H is any group and f : X → H is some function, we define f̂ : F (X) → H by

f̂(xe11 . . . xenn ) = f(x1)e1 . . . f(xn)en , for any reduced word xe11 . . . xenn ∈ F (X), where e1 = ±1 and

xi ∈ X. Suppose that v, w ∈ F (X) and that v∗w = vw, in other words the concatenation of v and w
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is already reduced. In this case from the definition of f̂ we easily get f̂(v ∗w) = f̂(vw) = f̂(v)f̂(w).

In the general case, when calculating v ∗ w = red(vw), note that all of the reductions happen

along the “join” between the two words. In other words, there is a word u such that v = v′u and

w = u−1w′, and v ∗ w = red(vw) = v′w′. Since the products v′w′, v′u amd u−1w′ are already

reduced, we obtain

f̂(v ∗ w) = f̂(v′w′) = f̂(v′)f̂(w′) = f̂(v′)f̂(u)f̂(u−1)f̂(w′) = f̂(v′u)f̂(u−1w′) = f̂(v)f̂(w).

(Here, the product f̂(u)f̂(u−1) has the form f(x1)e1 . . . f(xn)enf(xn)−en . . . f(x1)−e1 , which is triv-

ial in H). Thus f̂ is a homomorphism. This homomorphism certainly satisfies f̂(x) = f(x) for

x ∈ X. Finally, any element of F (X) is equal to a product in F (X) of elements of X and their

inverses. It is clear from this that any homomorphism is determined by its action on the elements

of X, so that f̂ is the unique homomorphism extending f . �

Note that in a free group F (X), for a given x ∈ X the word

n︷ ︸︸ ︷
xx . . . x is equal to the product of

n copies of x in F (X). So we can write this as xn from now on. Similarly, we write

n︷ ︸︸ ︷
x−1x−1 . . . x−1

as x−n. By abuse of notation we will also call expressions involving powers of the elements in

X and their inverses words. For example we can refer to x2yx−2y as a word in {x, y}, with the

understanding that this stands for the word xxyx−1x−1y.

We have seen that a free group on a set with one element is just an infinite cyclic group. To

close this section we remark that free groups on sets X with at least two elements, on the other

hand, are very large and have some counterintuitive properties.

Example 2.12. The free group G = F (X) on a set X = {x, y} with two elements contains a

subgroup H which isomorphic to a free group on a countably infinite set. We claim that one such

example is H = 〈y, xyx−1, x2yx−2, . . . 〉. If Z = {z0, z1, z2, . . . , } is a countably infinite set, note

that by the universal property we certainly get a unique homomorphism φ : F (Z) → H with

φ(zi) = xiyx−i for all i. Because the image of φ contains a set of generators for H, φ(F (Z)) = H.

One can show furthermore that φ is injective (we leave this as an exercise), so that F (Z) ∼= H as

claimed. Moreover, this means that G also contains subgroups isomorphic to free groups on any

finite number of generators, for Hn = 〈y, xyx−1, . . . xn−1yx−n+1〉 will be isomorphic to a free group

on n elements.

It is at least true that if F (X) ∼= F (Y ) for some sets X and Y , then |X| = |Y |. This can be seen

by noting that the set of groups H such that there is a surjective homomorphism φ : F (X) → H

is the same as the set of groups that can be generated by a subset of at most |X| elements. But
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for each X one can exhibit a group that is generated by |X| elements but cannot be generated by

a set of smaller cardinality.

A group is called free if it is isomorphic to F (X) for some set X. There is also the following

interesting theorem, which we will not prove in this course:

Theorem 2.13. (Nielsen-Schreier) Every subgroup of a free group is also free.

2.2. Presentations. Suppose that H is any group, and that H = 〈X〉 for some subset X, i.e.

that H is generated as a group by the subset X. We can use that same X to define a free group

F (X) which is free on the set X. Then by the universal property of the free group, there is a

unique homomorphism φ : F (X) → H with φ(x) = x for all x ∈ X. Since the elements in H are

expressions of the form xe11 . . . xenn with xi ∈ X and ei = ±1, it is clear that all of these elements

are in the image of φ, so φ is surjective. By the first isomorphism theorem, H ∼= F (X)/N for some

N � F (X). We have thus shown that every group is isomorphic to a factor group of some free

group. We will now how such a description is especially useful when we can also give an explicit

generating set for the normal subgroup N .

The comments above also give another way of thinking about the “freeness” of the free group.

Note that because the elements of F (X), namely reduced words in X, are products in F (X) of

the length one words x and x−1 with x ∈ X, the free group on X is also generated by its subset

X. Since any other group generated by X is isomorphic to F (X)/N , we can think of F (X) as the

most general group which is generated by a set X.

We are now ready to define presentations.

Definition 2.14. Let F (X) be a free group on a set X and let W ⊆ F (X) be some set of elements

in F (X) (that is, some set of reduced words in X). Let N be the intersection of all normal subgroups

of F (X) which contain W . The notation 〈X|W 〉 is called a presentation and by definition it is

equal to the group F (X)/N . We call the elements in X generators and the elements in W relations.

By definition N above is the intersection of all normal subgroups of F (X) containing W . It

can also be described as the unique smallest normal subgroup of F (X) containing W , because an

intersection of normal subgroups is again normal. There is an explicit description of the elements

of N in terms of the generators in W , but it is awkward, and not needed in order to work with the

presentation.

It is often useful to find a presentation which is isomorphic to a given known group. Let us do

this carefully now for D2n.
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Example 2.15. Consider the dihedral group D2n = {1, a, a2, . . . , an−1, b, ab, a2b, . . . , an−1b}. From

the original construction of D2n as a set of transformations of the plane, we know that the 2n listed

elements are distinct and that a and b satisfy the relations an = 1, b2 = 1, and ba = a−1b. Note

that the last relation can also be written as b−1aba = 1, by multiplying on the left by b−1a.

Consider the presentation G = 〈x, y|xn, y2, y−1xyx}. We claim that this presented group is

isomorphic to D2n.

Step 1. By the universal property of the free group, there is a unique homomorphism φ :

F (x, y)→ D2n such that φ(x) = a and φ(y) = b.

Step 2. One checks that φ(w) = 1 for all words w ∈ W . This is immediate in this case

because these correspond to relations among the generators a, b ∈ D2n we already know. Namely

φ(xn) = an = 1, φ(y2) = b2 = 1, and φ(y−1xyx) = b−1aba = 1.

Step 3. By definition G = F (x, y)/N , where N is the smallest normal subgroup of F (x, y)

containing the set of relations W = {xn, y2, y−1xyx}. Since kerφ is a normal subgroup of F (X)

and by the previous step W ⊆ kerφ, we obtain N ⊆ kerφ. This implies that φ factors through

F (x, y)/N , that is there is an induced homomorphism φ : F (x, y)/N → D2n such that φ(vN) = φ(v)

for all v ∈ F (x, y).

Step 4. Note that {a, b} generates D2n and since the image of φ is a subgroup, this forces

φ(G) = D2n. So φ is surjective.

Step 5. We claim that |G| ≤ 2n. This is the only step that can be tricky and where the details

vary from example to example. The idea is to use the relations to show that an arbitrary reduced

word in x, y must be equal mod N one of a few special words.

Let us write the coset vN ∈ F (x, y)/N as v. We know that y−1xyx = 1, or equivalently

yx = x−1y. This equation also implies yx−1 = xy. Similarly, we also have y−1xe = x−ey−1 for

e = ±1. Using these relations, we can move each y or y−1 that occurs in v to the right of the x and

x−1 terms, flipping the exponents of x, until finally we obtain v = xiyj for some i, j ∈ Z. But since

xn = 1 (as xn ∈ N), and similarly y2 = 1, we can actually get v = xiyj with 0 ≤ i ≤ n − 1 and

0 ≤ j ≤ 1. This shows that every element of G/N is equal to one of at most 2n cosets, so |G| ≤ 2n.

(This argument does not show that all of the elements xiyj with 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ 1 are

actually distinct in G, so apriori we just have an inequality as claimed).

Step 6. Since φ : G→ D2n is a surjective homomorphism from a group G with |G| ≤ 2n onto a

group with 2n elements, this forces |G| = 2n and φ is injective, hence an isomorphism.

Steps 1-3 of the example above are routine and so we don’t need to be so explicit about them in

every example. They can summed up by a universal property for a presentation which generalizes
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the universal property of the free group itself. If w is a word in X, H is a group, and f : X → H

is some function, we write evalf (w) for the element of H obtained by substituting f(xi) ∈ H for

xi everywhere in the word w, and think of this as “evaluating” the word at the given elements of

H. In other words, when w is reduced, evalf (w) is just f̂(w) where f̂ : F (X) → H is the unique

homomorphism of groups extending f , we see saw by the proof of the universal property of F (X)

in Theorem 2.11(2).

Theorem 2.16. Let 〈X|W 〉 be a presented group and let H be another group. Given a function f :

X → H which has the property that evalf (w) = 1 for all w ∈W , there is a unique homomorphism

of groups ψ : 〈X|W 〉 → H with the property that ψ(x) = f(x) for all x ∈ X.

The proof of the theorem is similar to what was done in steps 1-3 of the preceding example and so

we leave it to the reader. The upshot is that defining homomorphisms from presentations is easy:

we can send the generators anyplace we like as long as the relations evaluate to 1; and then there

is a unique homomorphism from the presentation that does that.

Remark 2.17. Some other notations for the relations in a presentation are in common use. Rather

than writing 〈x1, . . . , xn|w1, . . . , wm〉, one might write 〈x1 . . . , xn|w1 = 1, . . . , wm = 1〉 to emphasize

that the relations become equal to 1 in the presented group. Also more general than a relation of

the form w = 1, it is common to allow relations of the form w1 = w2 which set two words equal.

Such a relation should be interpreted to mean w−1
2 w1 = 1.

For example, the presentation for D2n is often written as 〈x, y|xn = 1, y2 = 1, yx = x−1y〉.

Example 2.18. Here is an example where we start with a presentation to show that it is hard to

predict from a glance at the relations what kind of group it is, for example what its order is.

Let G = 〈x, y|xyx, yxy〉. By definition this is F (x, y)/N where N is the smallest normal subgroup

of F (x, y) containing xyx and yxy. Write vN = v ∈ F (x, y)N for v ∈ F (x, y), as in the earlier

example. Now notice that xyxy = x since yxy = 1 but also xyxy = y since xyx = 1. Thus x = y

in G. Moreover, this also means that 1 = xyx = x3 in G.

The upshot of these calculations is that for any v ∈ F (x, y), since modulo N we can replace any

y by x, we get v = xi for some i ∈ Z. Then since x3 = 1, we even get v = xi with 0 ≤ i ≤ 2. So

|G| ≤ 3.

To see that G actually has order 3 and is not smaller, it is enough to find a surjection from G

onto a group of order 3. Let H be cyclic of order 3, where H = 〈h〉 so |h| = 3. There is a unique

homomorphism φ : G→ H with φ(x) = h and φ(y) = h, since both xyx and yxy evaluate to h3 = 1
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under the evaluation of x to h and y to h. Since φ is clearly surjective, this forces |G| = 3 and φ is

an isomorphism. So G is cyclic of order 3.

Let us also do an example of a presentation of a infinite group.

Example 2.19. Consider Z2 = {(a, b)|a, b ∈ Z} under the operation of vector addition. It is easy

to see that this is an abelian group. We claim that G = 〈x, y|yx = xy〉 is a presentation of Z2.

Define a function f : {x, y} → Z2 by f(x) = (1, 0) and f(y) = (0, 1). Since Z2 is additive, the

relation yx = xy evaluates under f to (1, 0)+(0, 1) = (0, 1)+(1, 0), which is certainly true since Z2

is abelian. Thus there is a unique homomorphism of groups φ : 〈x, y|yx = xy〉 → Z2 which restricts

to f . The homomorphism φ is surjective because the set {(1, 0), (0, 1)} generates Z2.

Now for v ∈ G we write v for the image vN of v in G = F (x, y)/N , where N is the smallest

normal subgroup of F (x, y) containing y−1x−1xy. The relation yx = xy tells us that yj and xi also

commute for all i, j ∈ Z. Thus for an arbitrary word v ∈ F (x, y), by pushing all powers of y to the

right we get v = xiyj for i, j ∈ Z.

We have see that G = {xiyj |i, j ∈ Z}. Now note that φ(xiyj) = (i, j) ∈ Z2. This means that the

elements xiyj must be distinct for distinct ordered pairs (i, j), and that φ is injective and hence an

isomorphism of groups.

We will see more examples of presentations of groups and how they are useful later on.

3. Group actions

3.1. Definition and basic properties of actions. Many groups can be naturally thought of

as symmetries of other objects, such as the dihedral group which is the group of symmetries of

a regular polygon. Each group element gives a way of permuting the points of the object while

preserving its essential structure. We can think of a group element as “acting on” the object of

which it is a symmetry, in the sense that applying the group element moves each point to another

point. The idea of a group acting on a set is an abstraction of this. It will turn out to be an essential

tool in the applications of groups as well as in understanding the structure of groups themselves.

Definition 3.1. Let X be a set and G a group. A (left) group action of G on X is a rule assigning

an element g · x to each x ∈ X and g ∈ G, where we think of g · x as the result of g acting on x.

Formally this is a function f : G ×X → X where f(g, x) = g · x. To be a group action this must

satisfy

(i) 1 · x = x for all x ∈ X.
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(ii) g · (h · x) = (gh · x) for all g, g, h ∈ G, x ∈ X.

In words, the axioms for a group action say that the identity element acts trivially on all elements,

and the result of acting by two group elements in succession is the same as the result of acting

all at once by their product. As another consequence of the axioms, note that if g · x = y, then

g−1 · y = g−1 · (g · x) = g−1g · x = 1 · x = x. In other words, g−1 “undoes” whatever g does to

points in X. When the context is clear, we often write gx instead of g · x unless this would lead to

confusion.

We now give a series of examples. Usually verifying that the axioms of an action are satisfied is

routine, and so we leave it to the reader without further comment.

Example 3.2. Let G = Sn and X = {1, 2, . . . , n}. Then G acts on X, where given σ ∈ G and

i ∈ X, σ · i = σ(i).

Example 3.3. Let X = Rn, where we think of elements of X as column vectors, and G = GLn(R).

Then G acts on X by A · v = Av for A ∈ G and v ∈ X. This is just the usual action of matrices

on column vectors. We can also think of G as the group of linear symmetries of n-space.

By taking X to be related to the group G itself we obtain interesting actions which will play a

key role in investigating the structure of groups further.

Example 3.4. Let G be a group and let X = G. Then G acts on X by left multiplication, where

g · x = gx for g, x ∈ G. Note that axiom (ii) is just the associative property of G.

Example 3.5. Let G be a group and let X = G. Then G acts on X by conjugation, where

g · x = gx = gxg−1 for g, x ∈ G. (This is a case where it would be confusing to write this action as

gx; the exponent notion gx is a convenient alternative).

Example 3.6. Given any action of G on X, if H is a subgroup of G then clearly we can restrict

the action of G on X to an action of H on X with the same formula. For example, if G acts on

itself by left multiplication, we can also consider the action of H on G by left multiplication.

Example 3.7. Let G be a group and let H ≤ G be a subgroup. Let X = {gH|g ∈ G} be the set

of left cosets of H in G. Then G acts on X by left multiplication: g · xH = gxH. As usual, one

must check that this formula for the action is well-defined.

Example 3.8. Let H be a subgroup of G. Let X = {xHx−1|x ∈ G} be the set of all conjugates

of the subgroup H. Then G acts on X by conjugation: g ·K = gKg−1 for g ∈ G, K ∈ X.
33



Example 3.9. There are many variations of the example above which take different sets of sub-

groups. For example, we could take X = {subgroups of G} or X = {subgroups of G with order d}.

Really any set of subgroups which is closed under conjugation would suffice.

Group actions can be thought of in an alternate way which is conceptually very important. Let

G act on X. Then we can define a function φ : G→ Sym(X) where φ(g) = φg, with φg(x) = g · x

for x ∈ X. First of all, φg is indeed a bijection and hence an element of Sym(X), for φg−1 = (φg)
−1

since as we remarked earlier, g−1 undoes what g does. Then φ is a homomorphism of groups: since

φgh(x) = gh · x = g · (h · x) = φg(φh(x)) for all x, we have φgh = φg ◦ φh as functions.

Conversely, suppose that G is a group and X is a set, and we are given a homomorphism

φ : G → Sym(X). Then we can define an action of G on X by g · x = [φ(g)](x): first, 1 · x =

φ(1)(x) = 1X(x) = x since any homorphism sends 1 to 1, and second g · (h · x) = φ(g)(φ(h)(x)) =

[φ(g) ◦ φ(h)](x) = φ(gh)(x) = gh · x.

A quick calculation shows that these processes are inverse to each other, in other words if we start

with an action and define the homorphism φ, the action obtained from φ is the original one; and if

we start with a homomorphism φ and use it to define an action, the associated homomorphism is

the original φ. Thus we have proved

Proposition 3.10. For a fixed group G and set X, there is a bijection between actions of G on X

and homomorphisms φ : G→ Sym(X).

This gives us two ways of thinking about what a group action is, both of which are useful. The

definition focuses more on how a group element acts on the elements of X one at a time. The

homomorphism version considers how each element of G acts on X as a whole.

One immediate application is known as Cayley’s Theorem:

Theorem 3.11. Every finite group G with |G| = n is isomorphic to a subgroup of Sn.

Proof. Let G act on itself by left multiplication. Let φ : G → Sym(G) be the corresponding

homomorphism; thus writing φ(g) = φg, we have φg(h) = gh. If g ∈ kerφ, then φg(h) = gh = h

for all h ∈ G, which clearly forces g = 1. Thus φ is injective. Hence G is isomorphic to its image

φ(G), which is a subgroup of Sym(G). Since G has n elements, clearly Sym(G) ∼= Sn. �

Cayley’s Theorem suggests that we will understand all finite groups if we can sufficiently un-

derstand the symmetric groups and their subgroups. This sounds more promising than it actually

is. Finite groups are very complicated in general, and Cayley’s Theorem simply means that the

structure of subgroups of symmetric groups must be horrendously complicated as well. In fact we
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will usually get much more interesting information from other group actions than the action of G

on itself by left multiplication.

Remark 3.12. We defined the notion of a “left” action of a group on a set. There is an analogous

notion of a right action of a group G on a set X as well. This is a rule associating an element

x ∗ g ∈ X to each g ∈ G and x ∈ X, where x ∗ 1 = x and (x ∗ g) ∗ h = x ∗ (gh) for all x ∈ X,

g, h ∈ G. Left and right actions are not quite the same concept; however, given a right action of G

on X one can define a left action of G on X by g ·x = x ∗ g−1 for all g ∈ G, x ∈ X. This left action

has all of the same information as the right action. For this reason we will not have any need to

consider right actions below.

3.2. Orbits and Stabilizers. Let G act on a set X. We define a relation on X by x ∼ y if y = gx

for some g ∈ G. Note that x ∼ x since x = 1x. If x ∼ y with y = gx then x = g−1y so that y ∼ x.

Finally, if x ∼ y and y ∼ z, say with y = gx and z = hy, then z = hy = hgx and so x ∼ z. We

have proved that ∼ is an equivalence relation on X.

Given any equivalence relation on X, it partitions X into disjoint equivalence classes, where we

write the class containing x as Ox and call it the orbit of x. By definition,

Ox = {y ∈ X|y = gx for some g ∈ G}.

Since the equivalence classes partition X, for each x and y either x ∼ y and Ox = Oy, or else

Ox ∩ Oy = ∅. We say that the action of G on X is transitive if there is only one orbit; so for any

x, y ∈ X there is g ∈ G such that gx = y. For example, Sn clearly acts transitively on {1, 2, . . . , n}.

Given an action of G on X, the stabilizer of x ∈ X is Gx = {g ∈ G|gx = x}. It is easy to check

that this is a subgroup of G. There is a close relationship between orbits and stabilizers, as we see

now.

Theorem 3.13. (Orbit-Stabilizer theorem) Let G act on a set X.

(1) Given x ∈ X, |Ox| = |G : Gx|.

(2) if gx = y for x, y ∈ X and g ∈ G, then Gy = gGxg
−1.

Proof. (1) Let S = {gGx|g ∈ G} be the set of left cosets of Gx in G. Then |S| = |G : Gx| by

definition. Define a function f : S → Ox by f(gGx) = gx. To check that this is well-defined, note

that if gGx = hGx, then g−1h ∈ Gx and so g−1hx = x. Then acting on both sides by g we get

hx = gx. It is obvious that f is surjective. If gx = hx, then g−1hx = x and so g−1h ∈ Gx; hence

gGx = hGx. This shows that f is also injective. Hence f is a bijection and so the cardinalities

|S| = |G : Gx| and |Ox| are equal.
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(2) Note that if h ∈ Gx, then since x = g−1y, we have ghg−1y = ghx = gx = y. Thus

gGxg
−1 ⊆ Gy. The same argument applied to g−1y = x with the roles reversed shows that

g−1Gyg ⊆ Gx. Multiplying by g on the left and g−1 on the right gives Gy ⊆ gGxg
−1. Thus

Gy = gGxg
−1 as claimed. �

Many applications of group actions by finite groups arise from the following corollary.

Corollary 3.14. Let G act on a set X. If |G| < ∞, then every orbit O of X is finite and |O|

divides |G|.

Proof. If O = Ox then we have |Ox| = |G : Gx| by the Orbit-Stabilizer theorem. Since G is finite,

the subgroup |Gx| divides |G| by Lagrange’s theorem, and |G : Gx| = |G|/|Gx| is also a divisor of

|G|. �

We gave a number of examples of group actions earlier. Let us consider what the orbits look like

for some of them and what information the orbit-stabilizer theorem tells us.

Example 3.15. Let G = Sn act on X = {1, 2, . . . , n} as in Example 3.2. As we already remarked,

this is a transitive action and has one orbit X. Hence |X| = n = |G : Gi| for each i ∈ X, and so

Gi is a subgroup of index n. Explicitly, Gi is the subgroup of permutations that fix the number i.

This is clearly identified with the group of arbitrary permutations of the remanining n−1 numbers,

and so each Gi is isomorphic as a group to Sn−1. It is clear that all of the Gi are different, though

by Theorem 3.13 they are all conjugate in Sn.

Example 3.16. Let G act on X = G by left multiplication as in Example 3.4. This is again

a transitive action, since if g, h ∈ G, then kh = g where k = gh−1. There is one orbit and all

stabilizers are trivial: Gg = {1} for all g.

A bit more interesting is to restrict this action to some subgroup H of G, as in Example 3.6, so

that H acts on G by left multiplication. Now the orbit Og is clearly equal to the right coset Hg,

and so there are |G : H| orbits, each of size |H|. The stabilizers are again all trivial.

3.3. Applications of orbit stabilizer.

3.3.1. Producing normal subgroups. Given an action of G on X, we have seen that we can express

it in terms of a homomorphism φ : G → Sym(X) instead. The kernel of this homomorphism

K = kerφ is a normal subgroup of G which we naturally call the kernel of the action. Since

φ(g) = φg where φg(x) = g · x, we see that g ∈ K if and only if φg = 1X or equivalently g · x = x

for all x. Thus K =
⋂
x∈X Gx is the intersection of the stabilizer subgroups of all elements in X.
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This is the part of G that is not “doing anything” in the action. In fact, if we wanted we could

mod out by K and define an induced action of G/K on X by gK · x = g · x.

Taking kernels of actions is a useful way of producing normal subgroups in a group G, by finding

an action of G on a set X and taking the kernel.

Theorem 3.17. Let G be a group with subgroup H such that |G : H| = m <∞.

(1) G has a normal subgroup K with K ⊆ H and with |G : K| dividing m!.

(2) If |G| <∞ and m is the smallest prime dividing |G|, then H �G.

Proof. (1) Let G act on the set X of left cosets of H by g ·xH = gxH. Consider the corresponding

homomorphism φ : G → Sym(X). Since |X| = |G : H| = m, Sym(X) ∼= Sm. In particular,

| Sym(X)| = m!. By the 1st isomorphism theorem, if K = kerφ then G/K ∼= φ(G). Also, by

Lagrange’s theorem, |φ(G)| divides | Sym(X)| = m!. Thus K is a normal subgroup of G with

|G/K| = |G : K| dividing m!. Note that if k ∈ K then in particular k · H = kH = H, and so

k ∈ H. Thus K ⊆ H.

(2) Suppose now that m = p is prime and is the smallest prime dividing the order of G. Note

that p! = p(p− 1)! and that all prime factors of (p− 1)! must be smaller than p. This implies that

gcd(p!, |G|) = p. Now |G : K| = |φ(G)| is a divisor of both |G| and p!. Hence it divides p. Since

|G : H| = p already and K ⊆ H, we must have K = H. Thus H �G. �

One can be more explicit about the subgroup K constructed in the previous result. Let G act

on left cosets of H and consider the stabilizer subgroup GxH = {g ∈ G|gxH = xH} of some

coset xH. We have gxH = xH if and only if x−1gx ∈ H if and only if g ∈ xHx−1. Thus each

stabilizer subgroup GxH = xHx−1 is a conjugate of H. (This could also have been proved by using

Theorem 3.13(2).) As observed above, the kernel of the action K =
⋂
x∈GGxH is the intersection

of all stabilizer subgroups, so K =
⋂
x∈G xHx

−1. This subgroup is sometimes called the core of H.

It is the unique largest subgroup of H which is normal in G.

Example 3.18. Suppose that G is a finite group with |G| = pm for some prime p. Such a group is

called a p-group. If H ≤ G with |G : H| = p, then H�G by Theorem 3.17. We will study p-groups

in more detail later on.

Example 3.19. We will construct later a group G with |G| = 60 such that G is simple, that is,

where the only normal subgroups of G are G and {1}. Suppose that H is a subgroup of this simple

group G, with |G : H| = m. Then by the theorem, G has a normal subgroup K contained in H
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with |G : K| ≤ m!. If m ≤ 4 we get |G : K| ≤ 24 and hence {1} ( K ⊆ H ( G, a contradiction.

We conclude that the smallest possible index of a proper subgroup of G is 5.

3.3.2. Products of subgroups. Another application of the orbit-stabilizer theorem is the following

formula for the size of a product of subgroups.

Lemma 3.20. Let H ≤ G and K ≤ G, with H and K finite. Then |HK| = |K||H|/|K ∩H|.

Proof. Let G act on the left cosets of K as usual. We may restrict this action to H, so that H acts

on left cosets of K by h · xK = hxK. Now consider the orbit containing the coset K = 1K. This

orbit is OK = {hK|h ∈ H}. The stabilizer of the coset K is

HK = {h ∈ H|hK = K} = {h ∈ H|h ∈ K} = H ∩K.

By the orbit-stabilizer theorem we have |OK | = |H|/|H ∩K|. On the other hand, note that each

element of OK is itself a coset with |K| elements, and the union of all of the elements in the cosets

in OK is HK. Thus |HK| = |OK ||K|. Then |HK| = |H||K|/|H ∩K|. �

Note that if either H or K is normal in G, then the formula in the lemma easily follows from

the 2nd isomorphism theorem. But it is occasionally useful to be able to know this formula holds

regardless of whether or not HK is even a subgroup of G.

3.3.3. Applications to counting. Next we discuss an application of the orbit-stabilizer theorem to

combinatorics. This section is optional reading and will not be covered in lecture, and you are not

responsible for it on exams.

Sometimes when G acts on a set X we are especially interested in the number of orbits, and

would like to know this information without first finding all of the orbits explicitly. There is an

orbit-counting formula that is often very helpful in this regard.

Theorem 3.21. Let a finite group G act on a finite set X. We define χ(g) = |{x ∈ X|gx = x}|

for each g ∈ G. Then the number of orbits of the action is

1

|G|
∑
g∈G

χ(g).

Proof. Consider the set G×X and its subset S = {(g, x)|gx = x}. Note that by considering one g

at a time, we have |S| =
∑

g∈G χ(g). On the other hand, we can consider one x at a time. The set of

g ∈ G for which gx = x is the stabilizer subgroup Gx. Thus |S| =
∑

x∈X |Gx|. We also know from
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the orbit-stabilizer theorem that the orbit Ox containing x has size |Ox| = |G : Gx| = |G|/|Gx|.

Now we get
1

|G|
∑
g∈G

χ(g) =
∑
x∈X

|Gx|
|G|

=
∑
x∈X

1

Ox
.

For each orbit O, there are |O| terms in sum of the form 1/|O| as x ranges over x ∈ O. Thus in

the final sum we get a contribution to the sum of 1 for each orbit, and so the sum is equal to the

number of orbits. �

The formula is sometimes called “Burnside’s counting formula” though it is not due to Burnside,

but was known to Cauchy many years before Burnside popularized it.

The reason the formula is useful is that it is often easier to compute χ(g) for group elements g

than it is to find the orbits and their sizes directly, especially if |G| is much smaller than |X|. Note

that χ(g) can be interpreted as the number of fixed points of g.

Example 3.22. One has an unlimited collection of black and white pearls and one wants to string

r of them into a necklace. How many different necklaces are possible? Note that 2 necklaces are

the same if they look alike after one is rotated or possibly flipped over.

The key to solving this problem is to interpret it in terms of a group action. We think of

each necklace of r beads as sitting on a plane, arranged in a circle with center the origin. Then

the dihedral group D2r acts on the collection of all necklaces. By definition, two necklaces are

considered the same if and only if they are in the same orbit of this action. So the solution to the

problem is the number of orbits of this action.

The full set of possible necklaces (without considering which are deemed the same) is a set X

where for each position we can choose one of 2 colors of pearls. Thus |X| = 2r.

By the orbit counting formula, the number of orbits is

1

|D2r|
∑
g∈D2r

χ(g) =
1

2r

∑
g∈D2r

χ(g).

The fact that we chose pearls of two colors is not important, and the same method we present

below would also work to count the number of necklaces with some larger number of different

possible colors.

It is not difficult to develop from the expression above an explicit formula that works for all r,

though the cases where r is even or odd are slightly different. For simplicity we work out the case

when r = 6 only here, to demonstrate the method.

We have to consider the elements g of D12 one at a time and calculate how many fixed points

they will have in their actions on the set of necklaces. Suppose first that g is a rotation. The
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rotation subgroup R = 〈a〉 is cyclic of order 6. If g = a, then it is clear that if action by g leaves

the necklace type fixed, since each pearl gets sent to its neighbor, all pearls must have the same

color. So there are only 2 fixed necklaces. The same is true for g = a5 = a−1. If g = a2 or a4,

then each pearl gets moved two places. This divides the 6 pearls into two groups of 3 which are

permuted cyclically by this action. There are then 22 = 4 necklaces that are fixed, since the pearls

in each group can be chosen black or white independently. Similarly if g = a3 there are 23 = 8

fixed necklaces. Of course, when g = 1 all 26 necklaces are fixed. Finally, if g is a reflection, then

either the axis of reflection goes through the centers of two pearls and flips the other pearls in two

pairs—in this case there are 24 fixed necklaces; or the axis of reflection goes between the pearls and

flips all of the pearls in three pairs—in this case there are 23 fixed necklaces. There are 3 reflections

of each type. The final answer is (1/12)(26 + 23 + 2(22) + 2(2) + 3(24) + 3(23)) = 13 possibilities.

3.3.4. The class equation. Consider the action of G on itself by conjugation: g · x = gxg−1 = gx.

The orbit of x, Ox = {gxg−1|g ∈ G}, is called a conjugacy class in this case and we write it as

Cl(x) or ClG(x) if we need to emphasize in which group we are working. The stabilizer subgroup

of x is

Gx = {g ∈ G|gxg−1 = x} = {g ∈ G|gx = xg} = CG(x),

the centralizer of x in G. The orbit-stabilizer theorem now implies that |Cl(x)| = |G : CG(x)|. By

Corollary 3.14, if G is finite than all conjugacy classes have order dividing the order of |G|. Note

also that since conjugation preserves the order of an element (as conjugation gives an automorphism

of the group), all members of a conjugacy class have the same order.

Example 3.23. Let G be a group and let x ∈ G. From the equation |Cl(x)| = |G : CG(x)| we see

that Cl(x) has one element if and only if CG(x) = G. But the centralizer of x is the whole group

G if and only if x is in the center, i.e. x ∈ Z(G). We see that the elements that have conjugacy

classes of size one are precisely the elements in the center of G. In particular, if G is abelian, then

all conjugacy classes have size one.

Example 3.24. Let G = D2n = {1, a, . . . , an−1, b, ab, . . . , an−1b} be the dihedral group of order

2n, where n ≥ 3. Let us find the conjugacy classes of G. Let x = ai and consider Cl(x). If

g = aj then gxg−1 = x = ai since g and x commute, while if g = ajb then gxg−1 = ajbaib−1a−j =

aj−ibb−1a−j = aj−ia−j = a−i. Hence Cl(ai) = {ai, a−i}. If i = 0 this is the one-element class {1},

and if n is even and i = n/2 then this is the one-element class {an/2}. Otherwise {ai, a−i} is a class

of two elements.
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If x = aib and g = aj then gxg−1 = ajaiba−j = ai+jajb = a2j+ib, while if g = ajb then

gxg−1 = ajbaibb−1a−j = aj−iajb = a2j−ib. We see that if n is odd then Cl(aib) = {b, ab, . . . , an−1b}

is the set of all reflections. If n is even, on the other hand, then the reflections break up into two

conjugacy classes {b, a2b, . . . , an−2b} and {ab, a3b, . . . , an−1b}, each of size n.

Since we understand the sizes of the conjugacy classes, we automatically get information about

the centralizers of elements. Note that when n is odd, Z(D2n) = {1}, while if n is even, ZD2n =

{1, an/2}. This follows from the calculation of which conjugacy classes have size 1. If {ai, a−i}

is a conjugcacy class of size 2, then |G : CG(ai)| = 2, so |CG(ai)| = n. Clearly then CG(ai) =

{1, a, . . . , an−1} is the rotation subgroup, since this is an abelian subgroup of order n containing ai.

If n is odd, then |Cl(aib)| = n and so |CG(aib)| = 2. Thus in ths case CG(aib) = 〈aib〉 = {1, aib}

must be the cyclic subgroup of order 2 generated by the reflection aib. On the other hand, if n is

even then we get that |CG(aib)| = 4. Again this centralizer contains 〈aib〉 = {1, aib} but it also

contains the non trivial center Z. Thus CG(aib) must be the product 〈aib〉Z = {1, aib, an/2, ai+n/2b}

in this case, since this already contains 4 distinct elements.

Suppose that G is finite. The information given by the orbit-stabilizer theorem applied to the

conjugaction action of G on itself is often organized into a form called the class equation, which is

especially useful for deriving consequences about the center Z(G). The equation is

(3.25) |G| = |Z(G)|+
∑
x

|G|/|CG(x)|,

where the sum runs over one representative x of each conjugacy class of size bigger than 1. The

equation is just a way of expressing that there are |Z(G)| conjugacy classes of size 1, and picking

one x from each conjugacy class of bigger size, the class Cl(x) has size |Cl(x)| = |G|/|CG(x)|. Then

since G is the disjoint union of its conjugacy classes, the formula follows.

The class equation will be a key tool in proving the Sylow Theorems in the next section. Here

is an immediate interesing application.

Theorem 3.26. Let G be a group of order pm for some prime p and m ≥ 1. Then |Z(G)| is a

multiple of p. In particular, Z(G) is nontrivial.

Proof. Let |G| = pm where m ≥ 1. Consider the class equation for G. Each term |G|/|CG(x)| in

the sum is the size of an conjugacy class not of size 1. Since it is a divisor of |G|, it is a prime

power pi for some i ≥ 1. Thus p divides every term in
∑

x |G|/|CG(x)|. Since p also divides |G|,

from the class equation we see that p divides |Z(G)|. �

The following fact is sometimes called the “G/Z-theorem”. We leave it as an exercise.
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Lemma 3.27. Let G be a group with center Z = Z(G). If G/Z is cyclic, then G is abelian.

Ultimately, one of the goals of group theory is to classify groups of certain types. For example,

given an integer n, one would like to be able to give a list of groups of that order such that every

group of order n is isomorphic to exactly one group on the list. We would then say that we have

classified groups of order n “up to isomorphism”. This goal is attainable only for certain special

values of n; in general, groups are too complicated and one must settle for less exact kinds of results.

We can use the results developed so far to classify groups of order p and p2, where p is a prime.

Theorem 3.28. Let G be a group and let p be a prime.

(1) If |G| = p then G ∼= Zp.

(2) If |G| = p2 then either G ∼= Zp2 or G ∼= Zp × Zp.

Proof. (1) Let x be any non-identity element of G. Then |x| is a divisor of |G| = p by Corollary 1.52,

and |x| 6= 1. So |x| = p. This means that |〈x〉| = p and hence 〈x〉 = G. But 〈x〉 ∼= (Zp,+) by

Theorem 1.51.

(2) First we show that G is abelian. By Theorem 3.26, p groups have a nontrivial center Z =

Z(G), and so |Z| = p or |Z| = p2. If |Z| = p, then |G/Z| = p. By part (1), the group G/Z is cyclic.

Then by the G/Z-theorem (Lemma 3.27), G is abelian, contradicting |Z| = p. Thus Z = G and

|Z| = p2.

Now suppose that G has an element x of order p2. In this case G = 〈x〉 ∼= (Zp2 ,+), similarly

as in part (1). Otherwise, since all elements have order dividing |G|, all nonidentity elements of

G have order p. Let x 6= 1 and let H = 〈x〉. Then |H| = p. Pick y 6∈ H and let K = 〈y〉. Then

|K| = p as well. H ∩K is a subgroup of K and is not equal to K (since y 6∈ H), so by Lagrange’s

theorem, |H ∩K| = 1 and H ∩K = {1}.

Consider the function φ : H ×K → G given by φ(h, k) = hk. This is a homomorphism, because

φ((h1, k1)(h2, k2)) = φ((h1h2, k1k2)) = h1h2k1k2 = h1k1h2k2 = φ((h1, k1))φ((h2, k2)),

using that G is abelian. If (h, k) ∈ kerφ, then hk = 1, so h = k−1 ∈ H ∩ K = {1}, forcing

h = k = 1. Thus kerφ is trivial and φ is injective. Now |G| = p2 = |H ×K|. An injective function

between sets of the same size is bijective. Thus φ is an isomorphism. Finally, H ∼= K ∼= (Zp,+) by

part (1), so H ×K ∼= Zp × Zp. �

It is also fairly easy to classify groups of order p3 for a prime p. These are most easily described

using semi-direct products, which are defined later. Groups of order pn become complicated very

quickly as n grows, and a full classification is known only for small n (n ≤ 7).
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4. Sylow Theorems

Lagrange’s theorem shows that a subgroup H of a finite group G must have order dividing the

order of the group. The converse question is much harder: given a divisor d of |G|, where G is a

finite group, when must G have a subgroup of order d?

If one starts cataloguing examples of finite groups of small order, one would quickly see that the

answer is not always. The alternating group A4 has order 12 but no subgroup of order 6 (we will

define A4 in the next section and show this fact). This is the smallest possible such example. The

full symmetric group S4, which has order 24 (and of which A4 is a subgroup) also has no subgroup

of order 6.

On the other hand, the Sylow Theorems show that if d divides |G| and d = pi is a power of

a prime, then G does in fact have a subgroup of order d. This is the strongest positive result in

this direction. The theorems will also give information about how many subgroups of order pi one

should expect when pi is the largest power of p dividing |G|. These are the most powerful basic

results for understanding the structure of finite groups.

Definition 4.1. Let p be a prime. A finite group G is a p-group if |G| = pm for some m ≥ 0.

Definition 4.2. Let G be a finite group. Let p be a prime with |G| = pmk where gcd(p, k) = 1; in

other words, pm is the largest power of p dividing |G|. A Sylow p-subgroup of G is a subgroup H

with |H| = pm.

We will see soon that Sylow p-subgroups always exist for any prime p dividing |G|. As a first

step, we show an important result known as Cauchy’s Theorem, in the special case of an abelian

group.

Theorem 4.3. (Cauchy’s Theorem for abelian groups) Let G be a finite abelian group and let p be

a prime divisor of |G|. Then G has an element of order p.

Proof. We induct on the order of G, assuming the result is true for all groups of smaller order. If

|G| = 1 the result is trivial, so the base case holds. Assume that |G| 6= 1 and pick any 1 6= x ∈ G.

Consider the order |x| of x. Suppose first that p divides |x|, say |x| = pk. Then it is easy to see

that |xk| = p. So we have found an element of order p. On the other hand, suppose that p does

not divide |x|. Then H = 〈x〉 has order |〈x〉| = |x| which is relatively prime to p. It follows that

the factor group G/H (which makes sense since G is abelian and hence all subgroups are normal)

has order |G/H| = |G|/|H|, which is divisible by p. Since |G/H| < |G|, the induction hypothesis

tells us that G/H has an element of order p, say yH. Consider |y|. If yn = 1, then certainly
43



(yH)n = ynH = 1H = H. Thus n is a multiple of the order of yH in G/H, which is p. Now we

again have an element y of order which is a multiple of p, with |y| = n = p`, say. Then |y`| = p. �

4.1. Sylow Existence. We now prove that Sylow subgroups exist. Because more or less the same

argument works, we show in fact that there exist groups of any prime power order dividing the

order of the group.

Theorem 4.4. (Sylow existence) Let G be a finite group with |G| = pmk, where p is prime and

gcd(p, k) = 1. Then for all 0 ≤ i ≤ m, the group G has a subgroup of order pi. In particular, G

has a Sylow p-subgroup, that is, a subgroup H with |H| = pm.

Proof. We induct on the order of G. Assume we know the result for all groups of order smaller

than |G|. There is nothing to do when m = 0, so assume that m ≥ 1 and p divides |G|.

Consider the class equation |G| = |Z(G)| +
∑

x |G|/|CG(x)|, where x runs over a set of repre-

sentatives for the conjugacy classes of size bigger than 1. Suppose first that p does not divide

|Z(G)|. Since p divides |G|, p must not divide one of the terms in the sum. So there is x such

that |G|/|CG(x)| is not a multiple of p. This forces |CG(x)| = pm` where gcd(p, `) = 1. But

|CG(x)| < |G| since |G : CG(x)| = |Cl(x)| is at least 2, because x is in a conjugacy class of size

bigger than 1. By induction, for any i we choose with 0 ≤ i ≤ m, the subgroup CG(x) has a

subgroup H with |H| = pi. But of course H is a subgroup of G as well, of the desired order.

On the other hand, suppose that p does divide |Z(G)|. Since Z(G) is an Abelian group, by

Theorem 4.3, the abelian group Z(G) has an element of order p, say x. Since x ∈ Z(G), the

cyclic subgroup generated by x satisfies 〈x〉 � G and |〈x〉| = p. So we can form the factor group

G = G/〈x〉, where |G| = |G|/p = pm−1k. By the induction hypothesis, for each 0 ≤ i ≤ m − 1, G

has a subgroup of order pi. By the correspondence theorem, this subgroup has the form H/〈x〉 for

some subgroup H of G with 〈x〉 ≤ H ≤ G. Moreover, since |H/〈x〉| = |H|/|〈x〉| = pi, we must have

|H| = pi+1. This gives subgroups of G of orders pj for all 1 ≤ j ≤ m. But because it is trivial to

find a subgroup of order p0 = 1, we get subgroups of all orders pj with 0 ≤ j ≤ m as needed. �

An immediate consequence is Cauchy’s Theorem for a general (not necessarily abelian) finite

group.

Corollary 4.5. (Cauchy’s Theorem) Let G be a finite group. Let p be a prime dividing |G|. Then

G has an element of order p.

Proof. By Theorem 4.4, G has a subgroup of order p, say H. Choosing any x 6= 1 in H, we must

have |x| = p by Lagrange’s theorem. �
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4.2. Sylow conjugation and Sylow counting. Now that we know that a finite group G has a

Sylow p-subgroup for every prime p that divides its order, the next question is how many distinct

such Sylow p-subgroups G has. The knowledge of this number, or at least knowing that this number

lies among a small list of possibilities, often gives important information about the structure of G.

Given a Sylow p-subgroup P of G, there is an obvious way to potentially produce other Sylow

p-subgroups: if σ ∈ Aut(G), then σ(P ) is clearly again a Sylow p-subgroup. We may not know

about the structure of Aut(G), but at least we know that G has inner automorphisms, and so each

conjugate xPx−1 of P will again be a Sylow p-subgroup. We will now see that all of the Sylow

p-subgroups arise in this way from a given one through conjugation. In fact we can show that any

p-subgroup is contained in a conjugate of any fixed Sylow p-subgroup.

Theorem 4.6. (Sylow conjugates) Let G be a finite group and let p be a prime dividing |G|. let P

be a Sylow p-subgroup of G. Suppose that Q is any p-subgroup of G. Then there is g ∈ G such that

Q ⊆ gPg−1. In particular, if Q is a Sylow p-subgroup then Q = gPg−1 for some g ∈ G.

Proof. The key to this result is to consider a non-obvious group action and to which we apply

the orbit-stabilizer theorem. Let G act on the set X = {gP |g ∈ G} of left cosets of P by left

multiplication; this is just the standard action of Example 3.7. Now restrict this action to the

subgroup Q of G and let Q act on X.

Consider the orbit-stabilizer theorem for the action of Q on X. Every orbit has size dividing

|Q|, which is therefore a power of p. On the other hand, |X| = |G : P | = |G|/|P |, which is not

divisible by p, since P is a Sylow p-subgroup. Since X is the disjoint union of its orbits, it follows

that some orbit of the Q-action has size which is not a multiple of p. The only possible conclusion

is that there exists an orbit of size p0 = 1.

Let {gP} be such an orbit of size 1. Then for all q ∈ Q, we have qgP = gP . This is equivalent

to g−1qg ∈ P , or q ∈ gPg−1, for all q ∈ Q. Thus Q ⊆ gPg−1 for this g, proving the first statement.

Now apply this result to any Sylow p-subgroup Q of G. We get that Q ⊆ gPg−1 for some g. But

|Q| = |gPg−1| since both are Sylow p-subgroups. This forces Q = gPg−1. �

The conclusion that “all Sylow p-subgroups ofG are conjugate” is the easiest part of the preceding

theorem to remember, but the more general first statement—that any p-subgroup is contained in

a conjugate of a Sylow p-subgroup—is often useful as well.

The last Sylow theorem gives some numerical restrictions that the number of Sylow p-subgroups

has to satisfy. These restrictions are often enough to calculate this number in simple examples, or

at least narrow down the list of possibilities.
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Theorem 4.7. (Sylow counting) Let G be a finite group. Let p be a prime and write |G| = pmk

where gcd(p, k) = 1. Let np be the number of distinct Sylow p-subgroups of G. Then

(1) np = |G : NG(P )| for any Sylow p-subgroup P . In particular, np divides k.

(2) np ≡ 1 mod p.

Proof. (1) Fix a Sylow p-subgroup P and let X = {gPg−1|g ∈ G} be the set of conjugates of P .

By Theorem 4.6, X is the set of all Sylow p-subgroups of G. Let G act on X by conjugation.

Again by Theorem 4.6, this action is transitive, in other words the orbit OP of P is all of X. Then

by the orbit-stabilizer theorem, |X| = |G : GP | where GP is the stabilizer of P . But GP = {g ∈

G|gPg−1 = P} = NG(P ) is the normalizer of P by definition. So |X| = np = |G : NG(P )|. Since

P ⊆ NG(P ), |G : NG(P )| is a divisor of |G : P | = k.

(2) Now restrict the action of G on X by conjugation to the subgroup P , so P acts on the set

of Sylow p-subgroups by conjugation. In this case the orbit-stabilizer theorem gives us different

information. In particular, the size of every orbit of this action divides |P | and thus must be a power

of p. Note that {P} is an orbit of this action, since xPx−1 = P for all x ∈ P . Suppose conversely

that {Q} is a singleton orbit. Then gQg−1 = Q for all g ∈ P , in other words, P ⊆ NG(Q).

By Proposition 1.29, this means that PQ is a subgroup of G. Now |PQ| = |P ||Q|/|P ∩ Q| by

Lemma 3.20 (or the 2nd isomorphism theorem). Since |P |, |Q|, and |P ∩ Q| are all powers of p,

|PQ| must be a power of p. But P ⊆ PQ and P is a Sylow p-subgroup, so this forces PQ = P .

Thus Q ⊆ P . Since Q and P are both Sylow p-subgroups, P = Q.

We have shown that there is exactly one orbit of size one, namely {P}. All other orbits have size

a power of p. Since X is the disjoint union of the orbits of the P -action, it follows that |X| = np ≡ 1

mod p. �

One of the useful consequences of knowing the number of Sylow p-subgroups of a group G is that

we can tell if a Sylow p-subgroup is normal or not.

Corollary 4.8. Let G be a finite group and let p be a divisor of |G|. The following are equivalent:

(1) There is exactly one Sylow p-subgroup of G.

(2) G has a characteristic Sylow p-subgroup.

(3) G has a normal Sylow p-subgroup.

Proof. (1) =⇒ (2): If P the unique Sylow p-subgroup of G, then if σ ∈ Aut(G), σ(P ) is also a

Sylow p-subgroup and hence σ(P ) = P . So P charG.

(2) =⇒ (3): this is obvious.
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(3) =⇒ (1): If P is a Sylow p-subgroup of G with P � G, then the number np of Sylow

p-subgroups is np = |G : NG(P )| = |G : G| = 1. �

4.3. Examples of the use of the Sylow theorems.

Example 4.9. Let us consider groups G with order |G| = pq, where p < q are distinct primes.

By the Sylow Existence Theorem (or Cauchy’s Theorem), G has a subgroup P with |P | = p and a

subgroup Q with |Q| = q. The subgroup P ∩Q is contained in P and Q and so has order dividing

both p and q. Since p and q are distinct primes, |P ∩Q| = 1 so P ∩Q is trivial. By Lemma 3.20,

|PQ| = |P ||Q|/|P ∩Q| = pq = |G|. Thus PQ = G.

Let nq be the number of Sylow q-subgroups. By the information given by the Sylow counting

theorem, nq divides p and nq ≡ 1 mod q. Thus nq is 1 or p, but since p < q, p ≡ 1 mod q is

impossible. Thus nq = 1, which gives Q�G by Corollary 4.8. (One could also show that Q�G in

this case by observing that the index |G : Q| = p is the smallest prime dividing the order of G.)

Consider now the number np of Sylow p-subgroups. The Sylow counting theorem gives np divides

q and np ≡ 1 mod p. Either np = 1 or np = q. In the latter case we must have q ≡ 1 mod p, or p

divides (q − 1). We see that if p does not divide (q − 1), then np = 1 and so P �G as well.

Suppose P �G. We claim that in this case we have G ∼= P ×Q. We will have a general result

later about “recognizing internal direct products” which implies this, but for the moment let us just

show it in this case directly. First, note that if x ∈ P and y ∈ Q then xyx−1y−1 = (xyx−1)y−1 ∈ Q

since Q is normal, and = x(yx−1y−1) ∈ P since P is normal. But P ∩ Q = 1, so xyx−1y−1 = 1,

or xy = yx. This shows that the elements of P commute with the elements of Q. Now define

φ : P ×Q→ G by φ(x, y) = xy. Since P commutes with Q, if x1, x2 ∈ P and y1, y2 ∈ Q we have

φ((x1, y1)(x2, y2)) = φ(x1x2, y1y2) = x1x2y1y2 = x1y1x2y2 = φ((x1, y1))φ((x2, y2))

and so φ is a homomorphism. Since PQ = G, φ is surjective. Since |P × Q| = pq = |G|, φ must

automatically be injective as well and hence an isomorphism. Now note that since P and Q have

prime order, they are cyclic and thus P ∼= (Zp,+) and Q ∼= (Zq,+). Thus G ∼= Zp ×Zq. Moreover,

we will prove later when we study direct products that Zp×Zq ∼= Zpq, in other words G must itself

be cyclic.

We will also see later that in the case where P is not normal in G, the group G can still be

described by a more general construction called a semi-direct product.

The example above already gives a classification result for groups of certain orders:
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Proposition 4.10. Suppose that n = pq where p and q are primes with p < q for which p does not

divide q− 1. Then any group G of order n is cyclic and isomorphic to (Zpq,+). Thus there is only

one group of order n up to isomorphism.

A useful exercise in reinforcing the techniques of group theory is to try to classify all groups of

order n up to isomorphism for small n. Consider for example n < 36. So far, we know that groups

of prime order p are cyclic, which handles n = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31; groups of order p2

for a prime p are cyclic or else isomorphic to Zp×Zp, which handles n = 4, 9, 25; and now we know

that for n = 15 = (3)(5), 33 = (3)(11), and 35 = (5)(7), again all groups of order n are cyclic.

We will develop enough techniques below to handle the remaining orders, except n = 16. Groups

of order 16 are technically more complicated because 16 = 24 is a large power of a prime. There

happen to be 14 isomorphism classes of groups of order 16, so clearly the classification of those is

more sensitive.

Rather than trying to classify all groups of order n, often one is looking for less exact information.

Recall that a group G is simple if G is nontrivial and {1} and G are the only normal subgroups of

G. Having a normal subgroup allows one to take a factor group and apply inductive arguments,

so because of their lack of normal subgroups simple groups tend to be the hardest groups to

understand. The classification of finite simple groups was one of the major projects in algebra in

the last century. One of the first questions in this project is which orders n can possibly be the

order of a simple group. Because the Sylow theorems often allow us to show that a Sylow subgroup

must be normal, they can be used to show that groups of certain orders n cannot be simple.

Example 4.11. Let G be a group of order p2q where p and q are distinct primes. We will show

that G must have either a normal Sylow p-subgroup or a normal Sylow q-subgroup. In particular,

G cannot be simple.

Let np be the number of Sylow p-subgroups, and nq the number of Sylow q-subgroups. From the

Sylow counting theorem we have np divides q (so np ∈ {1, q}) and np ≡ 1 mod p; and nq divides

p2 (so nq ∈ {1, p, p2}) and nq ≡ 1 mod q.

If np = 1, then P � G for a Sylow p-subgroup P . Similarly, if nq = 1 then Q � G for a sylow

q-subgroup Q. So we will assume that np = q and nq ∈ {p, p2} and seek a contradiction. If q < p,

then q 6≡ 1 mod p, so this is ruled out. Thus assume p < q. If nq = p, then we again get a

contradiction because p 6≡ 1 mod q. So we can assume nq = p2.

To finish, we rule out the possibility that np = q and nq = p2 through the technique of “element

counting”. Each Sylow q-subgroup has order q, so if Q and Q′ are distinct Sylow q-subgroups, then
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|Q ∩ Q′| is a proper divisor of q and hence is equal to 1. This shows that any two distinct Sylow

q-subgroups intersect trivially. Now consider which elements of G have order q. Every nontrivial

element of a Sylow q-subgroup Q has order q, and any element x with |x| = q generates a cyclic

subgroup of order q. Thus the elements of order q are exactly the nontrivial elements contained in

the Sylow q-subgroups. Thus there are nq(q − 1) elements of order q, since each Sylow q-subgroup

contains q− 1 elements of order q once the identity is excluded, and none of these order q elements

are common to two Sylow q-subgroups. Since we are assuming that nq = p2, this gives p2(q − 1)

elements of order q. That leaves p2q− (p2)(q− 1) = p2 elements in the group unaccounted for. Let

P be any Sylow p-subgroup of G. Then |P | = p2 and none of the elements in P can have order q,

by Lagrange’s theorem. This implies that P is exactly the elements in G which do not have order

q. However, this means that there is exactly one Sylow p-subgroup, so np = 1, a contradiction.

Element counting, as in the example above, works best when the group order n has a prime

factor q occuring to the first power in the prime factorization of n. For example, suppose in the

example above we instead tried to count elements of order p to acheive a contradiction. Now since

Sylow p-subgroups have order p2, it is not true that any two distinct Sylow p-subgroups intersect

trivially; they could intersect in a subgroup of order p. In addition, maybe a Sylow p-subgroup is

cyclic and so has some elements of order p2. So things are more complicated.

Here is an example which shows that if one’s goal is just to show groups of a particular order

are not simple, we can combine techniques from the Sylow theorems with other ideas, in particular

taking the kernel of a group action.

Example 4.12. Let |G| = p3q for distinct primes p and q. We aim to show that G is not a simple

group. Most of this can be done exactly as in Example 4.11, and so we don’t repeat the details. In

particular, we can assume that np = q and nq ∈ {p, p2, p3} since otherwise some Sylow subgroup is

normal; q < p and np = q contradict np ≡ 1 mod p, so p < q; nq = p contradicts nq ≡ 1 mod q;

and finally nq = p3 leads to a contradiction by counting elements of order q.

The only case that needs to be analyzed in a different way from Example 4.11 is p < q, np = q,

and nq = p2. since nq ≡ 1 mod q, this means q divides p2 − 1 = (p − 1)(p + 1). Since q is prime,

either q divides p − 1 or q divides p + 1. Since p < q, this quickly leads to a contradiction unless

q = p+ 1. This can happen only if p = 2 and q = 3, so |G| = 24. In fact, there are groups of order

24 in which neither a Sylow 2-subgroup nor a Sylow 3-subgroup is normal, namely the symmetric

group S4.
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Since the goal is just to prove that G is not simple, in this last case we consider a group action

instead. We are assuming that there are 3 Sylow 2-subgroups. Let G act on the set of Sylow

2-subgroups by conjugation. This gives a homomorphism of groups φ : G → S3. We know that

all Sylow 2-subgroups are conjugate, so the action has one orbit. In particular this means that

ker(G) 6= G since the action is not trivial trivial. Also, since |G|/| ker(G)| = |φ(G)| ≤ |S3| = 6,

ker(G) 6= {1}. Thus ker(G) �G is a nontrivial proper normal subgroup and so G is not simple.

Here is an example where one can make use of the more precise information that np = |G : NG(P )|

in the Sylow counting theorem, rather than just that np divides |G : P |.

Example 4.13. Let G be a group with |G| = 105 = (3)(5)(7). We know that n3 divides 35 and

is congruent to 1 mod 3, so n3 ∈ {1, 7}. Similarly we get n5 ∈ {1, 21} and n7 ∈ {1, 15}. Thus

the simple divisibility and congruence conditions coming from Sylow counting do not allow us to

immediately conclude that any of n3, n5, or n7 is equal to 1. However, we will see that in fact

n5 = n7 = 1.

Consider n3. If P is a Sylow 3-subgroup, then n3 = |G : NG(P )| ∈ {1, 7} which means that

|NG(P )| ∈ {15, 105}. If |NG(P )| = 15, then let Q be a Sylow 5-subgroup of NG(P ). If NG(P ) = 105

then let Q be any Sylow 5-subgroup of G. Either way, we see that Q ≤ NG(P ) and so H = PQ is

a subgroup of G. By Lagrange’s theorem, |P ∩Q| = 1. Thus |PQ| = |P ||Q|/(P ∩Q) = 15.

Now by Proposition 4.10, every group of order 15 has normal Sylow 3 and 5-subgroups (and

is in fact cyclic). Thus Q � H which means that |NG(Q)| is a multiple of 15. In turn, since

|G : NG(Q)| = n5, we get n5 divides 15. Since n5 ∈ {1, 21} we conclude that n5 = 1 after all. Thus

Q�G.

In addition, now that we know that G has a normal sylow 5-subgroup Q, that means if R is

a Sylow 7-subgroup then QR is a subgroup of G, with |QR| = 35. By Proposition 4.10 again,

groups of order 35 have normal Sylow subgroups and are cyclic. So |NG(R)| ≥ 35 and since

n7 = |G : NG(R)| ∈ {1, 15} we also get n7 = 1. So R�G as well.

We will give more examples later once we develop the techniques of semidirect products, when

we will be in a better position to classify groups of other small orders.

5. Symmetric and Alternating groups

5.1. Cycle notation in Sn. In this section we discuss some of the important results for the

symmetric groups. Since we have not yet done much with Sn we begin by reviewing some of the

basic results and notation for these groups.
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Recall that Sn = Sym(X) for X = {1, 2, . . . , n}. One notation for an element σ ∈ Sn is to give a

2× n matrix in which the ith column consists of i and σ(i). Since the numbers in X can occur in

any order in the bottom row, defining a unique permutation, it is clear that |Sn| = n!, the number

of ways of ordering n distinct numbers.

Example 5.1. 1 2 3 4 5 6 7 8 9

6 5 3 1 2 4 7 9 8


represents the element σ ∈ S9 for which σ(1) = 6, σ(2) = 5, σ(3) = 3, etc.

For most purposes a much better notation for a permutation is the cycle notation we develop

next. If a1, a2, . . . , ak are k distinct numbers in X, then we can define an element σ ∈ Sn such that

σ(ai) = ai+1 for 1 ≤ i ≤ k − 1, σ(ak) = a1, and σ(b) = b for all b such that b 6= ai for all i. Such

a permutation is called a k-cycle and we have the special notation (a1a2 . . . ak) for σ. There is no

preference for which element is listed first in the cycle notation, and any k-cycle can be written in

k different ways: for example, (123) = (231) = (312). Note that a 1-cycle (a) is the same as the

identity element 1 in Sn. A 2-cycle (ab) is also called a transposition.

Example 5.2. Recall that the product in Sn is composition. As usual we omit notation for the

product in most cases, but the reader must remember that functions are composed from right

to left. On the other hand, the notation for a cycle is read left to right. For example, consider

σ = (12)(23)(123) ∈ S3. To find σ(1), first applying (123) sends 1 to 2; then applying (23) to the

element 2 sends it to 3; then applying (12) to the element 3 yields 3. So σ(1) = 3. The reader may

check similarly that σ(2) = 1 and σ(3) = 2. So σ = (132).

Two permutations τ, σ are called disjoint if for all a ∈ X, either τ(a) = a or σ(a) = a. Note that

two cycles (a1a2 . . . ak) and (b1b2 . . . bl) are disjoint if and only if ai 6= bj for all i, j, in other words

all of the k + l elements appearing in the notation are distinct.

We leave the proof of the following basic result to the reader.

Lemma 5.3. Let G = Sn.

(1) If τ and σ are disjoint then τσ = στ .

(2) Every permutation in Sn can be written as a product of pairwise disjoint cycles of length at

least 2. This representation is unique up to the order in which we write the cycles in the

product. We call this representation disjoint cycle form.
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Example 5.4. Consider the permutation σ ∈ S9 in Example 5.1. It is easy to find its disjoint

cycle form. One can start with any integer. Beginning with 1, following down the columns gives

1 7→ 6 7→ 4 7→ 1. Since this completes a cycle we now start with 2 and get 2 7→ 5 7→ 2. Similarly

we have 3 7→ 3, 7 7→ 7, and 8 7→ 9 7→ 8. The disjoint cycle form of σ is (164)(25)(89). The order in

which we write these cycles is immaterial because disjoint cycles commute, so σ = (89)(164)(25) is

also a disjoint cycle form, for example.

For some purposes it is useful to consider the variation of disjoint cycle form where 1-cycles are

included. This is also unique if one insists that all numbers belong to some cycle. So in this case

we would write the disjoint cycle form of σ as (164)(25)(89)(3)(7). We call this disjoint cycle form

with 1-cycles.

One advantage of disjoint cycle form is that when a permutation is written in this way its order

in the group Sn may be calculated easily.

Lemma 5.5. Let σ ∈ Sn be a permutation with disjoint cycle form τ1τ2 . . . τk where each τi is a

di-cycle. Then |σ| = lcm(d1, . . . , dk).

Proof. First, it is easy to observe that the order in Sn of a d-cycle is d. Then since disjoint

cycles commute we get σm = τm1 τ
m
2 . . . τmk for all m ≥ 1. Now since the τi are pairwise disjoint

permutations, so are the τmi . It follows that σm = 1 if and only if τmi = 1 for all i. Now since

τmi = 1 precisely when m is a multiple of the order di of τi, we get |σ| = lcm(d1, . . . , dk). �

Example 5.6. Suppose we want to find the smallest n such that Sn contains an element of order

12. Such a permutation σ would have disjoint cycle form τ1 . . . τk where τi is a di-cycle and

lcm(d1, . . . , dk) = 12. Observe that (123)(4567) ∈ S7 has order lcm(3, 4) = 12, while if n ≤ 6 then

it is impossible to find a set of integers that add to n and have least common multiple 12. Thus

n = 7. More generally, if m = pe11 . . . pekk is the prime factorization of m, where the pi are distinct

primes and ei ≥ 1, one can prove that the smallest n such that Sn contains an element of order m

is n = pe11 + · · ·+ pekk .

5.2. Conjugacy classes in Sn. The disjoint cycle form of a permutation is also closely connected

to its conjugacy class.

Definition 5.7. Given σ ∈ Sn, write σ = τ1τ2 . . . τk in disjoint cycle form with 1-cycles. The cycle

type of σ is 1n12n2 . . . where there are nd distinct d-cycles in the disjoint cycle form of σ. Since we

include 1-cycles, note that n = n1 + 2n2 + 3n3 + . . . . It is convenient to include 1-cycles so that it

is clear which permutation group we are working in.
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For example, the σ ∈ S9 given in Example 5.1 has cycle type 12 · 22 · 31.

Proposition 5.8. Permutations σ, σ′ ∈ Sn are conjugate in Sn if and only if σ and σ′ have the

same cycle type. Thus each conjugacy class in Sn consists of all permutations of some cycle type.

Proof. Let σ, τ ∈ Sn. If σ(i) = j, then

τστ−1(τ(i)) = τσ(i) = τ(j).

This shows that if σ = (a1a2 . . . ad) is some d-cycle, then σ′ = τστ−1 = (τ(ai)τ(a2) . . . τ(ad)) is

also a d-cycle. Then if σ is written as a product of pairwise disjoint cycles, σ′ will be a product of

cycles of the same lengths, where each integer a is replaced by τ(a) throughout. So any conjugate

σ′ = τστ−1 of σ has the same cycle type as σ.

Conversely, if σ and σ′ are two permutations with the same cycle type, we can pair up each cycle

in σ with some cycle of the same length in σ′, so that the pairing is one-to-one. Then clearly there

is a permutation τ so that for each cycle (a1a2 . . . ad) in σ, (τ(a1)τ(a2) . . . τ(ad)) is the paired cycle

in σ′. Then by the calculation above, σ′ = τστ−1 is a conjugate of σ. �

Example 5.9. Suppose that σ = (135)(246)(78)(9) ∈ S9 and σ′ = (1)(568)(39)(247). Then σ and

σ′ are conjugate in S9 by the proposition, since both have cycle type 11 ·21 ·32. Note that there are

multiple choices of τ such that τστ−1 = σ′, depending on how we pair the cycles and also how we

write the cycles. One choice in this case is to pair (135)→ (247), (246)→ (568), (78)→ (39) and

(9)→ (1). Then τ = (125734689) will give τστ−1 = σ′. Another possible pairing is (135)→ (685)

(since (685) is another notation for (568)), (246) → (247), (78) → (93) and (9) → (1). Then the

corresponding is τ = (1679)(38)(2)(4)(5) which also satisfies τστ−1 = σ′.

Note that a choice of cycle type of permutation in Sn is the same as a choice of decomposition of

n as a sum of positive integers (the cycle lengths) with repeats allowed. This is called a partition

of n. For example, if n = 5 then the possible partitions are 1 + 1 + 1 + 1 + 1, 2 + 1 + 1 + 1, 3 + 1 + 1,

4 + 1, 5, 2 + 2 + 1, and 2 + 3. The number of partitions of n is a function p(n) well-studied in

combinatorics. By Proposition 5.8, p(n) is the number of conjugacy classes in Sn.

Example 5.10. It is not hard to count the number of elements in a conjugacy class in Sn. For

example, let us consider a permutation σ of cycle type 11 · 32 in S7. A permutation of this type has

the form (abc)(def)(g) where the numbers a—g are all different. Considering the cycle shape as

fixed, there are 7! ways of writing the numbers 1 through 7 inside the parentheses. However, since

each 3-cycle can be written 3 ways, we have to divide by (3)(3). In addition, switching the order
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in which the two 3-cycles are listed does not change the permutation, and so we have to divide by

2. Thus |Cl(σ)| = 7!/(18) = 280.

We also know that |Cl(σ)| = |Sn|/|CSn(σ)| which implies that CSn(σ) = 18. For instance let

σ = (123)(456) ∈ S7, which has the particular cycle type we are studying. The permutation σ

obviously commutes with (123) and (456). In addition, if τ = (14)(25)(36), then by our formula

for conjugating permutations we get τστ−1 = (456)(123) = σ. So 〈(123), (456), (14)(25)(36)〉 ⊆

CSn(σ). One can check that these three elements do generate a subgroup of order 18, so in fact

CSn(σ) = 〈(123), (456), (14)(25)(36)〉.

5.3. The alternating group An. Let σ = (a1a2 . . . ad) be an d-cycle in Sn. Then an easy calcu-

lation shows that σ = (a1a2)(a2a3) . . . (ad−1ad). Then since every σ ∈ Sn is a product of (pairwise

disjoint) cycles, σ can be written as a product of (generally non-disjoint) transpositions.

In general there are many different ways to write a permutation as a product of transpositions.

For example, (1234) = (12)(23)(34) = (34)(24)(14) = (34)(24)(13)(34)(13). However, what cannot

change is the parity of the number of transpositions involved. So, for example, (1234) could never

be expressed as a product of an even number of transpositions.

Theorem 5.11. If σ ∈ Sn satisfies σ = τ1τ2 . . . τm and σ = ρ1ρ2 . . . ρk where all τi and ρi are

transpositions, then either m and k are both even or m and k are both odd.

There are many different proofs of this theorem; we will omit the proof here.

Definition 5.12. For each n ≥ 2, The alternating group is the subset An of Sn consisting of

those permutations that are equal to a product of an even number of transpositions. We call the

permutations in An even. The permutations that are equal to a product of an odd number of

transpositions (i.e. those in Sn −An) are called odd.

Lemma 5.13. Let n ≥ 2. Then An � Sn and |Sn : An| = 2, so that |An| = n!/2.

Proof. Suppose that σ = τ1τ2 . . . τm and σ′ = ρ1ρ2 . . . ρk where the τi and ρk are transpositions,

and m and k are even so that σ, σ′ ∈ An. Then σσ′ = τ1τ2τmρ1ρ2 . . . ρk is a product of m + k

transpositions and thus σσ′ ∈ An. In addition, σ−1 = τ−1
m τ−1

m−1 . . . τ
−1
1 = τmτm−1 . . . τ1 is a product

of m transpositions since a transposition is its own inverse. Thus σ−1 ∈ An. We see that An is a

subgroup of Sn.

Next, note that every permutation in the coset (12)An is odd. Conversely, if σ is odd, then (12)σ

is even, so (12)σ ∈ An; then σ = (12)(12)σ ∈ (12)An. We conclude that (12)An consists precisely
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of all of the odd permutations. Since every permutation is even or odd, we have Sn = An
⋃

(12)An

is a (disjoint) union of two cosets of An, forcing |Sn : An| = 2. Since |Sn| = n!, we get |An| = n!/2.

Finally, since An has index 2 in Sn, An is automatically normal in Sn, i.e. An � Sn. �

5.4. Using An to produce normal subgroups of index 2. Suppose that a group G gives

a left action on a set X of size n. We have seen that this corresponds to a homomorphism of

groups φ : G → Sn. We have now constructed a normal subgroup An of Sn of index 2. Suppose

that the subgroup φ(G) of Sn is not contained in An. Then φ(G)An is a subgroup of Sn which

is strictly larger than An and this forces φ(G)An = Sn by Lagrange’s theorem. We then have

Sn/An = φ(G)An/An ∼= φ(G)/(An∩φ(G)) by the second isomorphism theorem. So An∩φ(G)�φ(G)

with |φ(G) : An ∩ φ(G)| = 2. By subgroup correspondence, taking the inverse image we see that

φ−1(An) �G with |G : φ−1(An)| = 2.

This method gives a way of finding normal subgroups of index 2 inside a group G in some cases.

One just has to produce a homomorphism φ : G→ Sn for some symmetric group Sn, such that the

image of φ is not contained in An. Here is an interesting application.

Proposition 5.14. Suppose that G is a group with |G| = 2m for some odd integer m. Then there

is H �G with |G : H| = 2. Moreover, H is the unique subgroup of index 2 in G, and so H charG.

Proof. This is a rare instance in which one gets useful information from the left multiplication

action. So let G act on itself by left multiplication, g · x = gx. This gives a homomorphism of

groups φ : G→ Sym(G). Here, since |G| = 2m we have Sym(G) ∼= S2m. Now suppose that g ∈ G is

an element of order d. Then {1, g, g2, . . . , gd−1} are d distinct elements of g, so that for any x ∈ G,

the elements {x, gx, g2x, . . . , gd−1x} are also distinct. Moreover, since the action of g on the left

satisfies g · gix = gi+1x for 0 ≤ i ≤ d − 2 and g · gd−1x = gdx = 1x = x, we see that g permutes

these d elements in a d-cycle. It follows that every element of G is permuted under the action of

g in some d-cycle, so that the disjoint cycle form of φ(g) must be a product of pairwise disjoint

d-cycles, necessarily (2m)/d of them.

Suppose that d is even. Then (2m)/d is a divisor of m and hence is odd. Moreover, a d-cycle

is a product of (d − 1)-transpositions and is thus an odd permutation. The disjoint cycle form of

φ(g) thus is a product of an odd number of odd permutations and so is odd in S2m. On the other

hand, if d is odd, then φ(g) is a product of d-cycles, which are even, so φ(g) is even in S2m.

Now let H = φ−1(An) ≤ G. The group G does contain elements of even order; for example,

by Cauchy’s theorem G must have an element of order 2. Thus φ(G) * An. As we saw in the

comments before the proposition, we get from this that H � G, |G : H| = 2, and |H| = m. This
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shows that H exists. Moreover, from the previous paragraph we see that H consists precisely of the

elements in G that have odd order. Suppose that H ′ is another subgroup of G with |G : H ′| = 2.

Then |H ′| = m is odd. Thus every element of H ′ must have order a divisor of m, which will be

odd. Since H ′ consists of elements of odd order, H ′ ⊆ H. But then H ′ = H since |H ′| = |H| = m.

Finally, if ρ ∈ Aut(G), then ρ(H) is also a subgroup of order m. So ρ(H) = H and thus

H charG. �

5.5. An is simple for n ≥ 5. Above we have completely understood the structure of the conjugacy

classes in Sn. The conjugacy classes in An are closely related to those of Sn. Let us restrict the

action of Sn on itself by conjugation to the action of An on Sn by conjugation. Of course in this

case the orbits may be different in general. If σ ∈ Sn, its orbit Oσ under the An-action has size

|An|/|CAn(σ)| by the orbit stabilizer theorem. (Note we are not assuming σ ∈ An here, but the

notation CAn(σ) = {τ ∈ An|τστ−1 = σ} still makes sense.) In addition, its Sn-orbit ClSn(σ) has

size |Sn|/|CSn(σ)|. We also have CAn(σ) = CSn(σ) ∩An by definition. Using the 2nd isomorphism

theorem, CSn(σ)/(CSn(σ) ∩An) ∼= (CSn(σ)An)/An.

Now since |Sn : An| = 2, either CSn(σ)An = An or else CSn(σ)An = Sn. In the first case we

obtain CSn(σ) ⊆ An and so CSn(σ) = CAn(σ). Then the An-orbit of σ has size |Oσ| = |ClSn(σ)|/2

by the calculations above. If this happens, because ClSn(σ) is a union of An-orbits, the only

possibility is that ClSn(σ) is breaking up as a union of two An-orbits of equal size. Alternatively,

if CSn(σ)An = Sn the numerics above force |CSn(σ) : CAn(σ)| = 2 and |Oσ| = |ClSn(σ)|, so that

Oσ = ClSn(σ).

We conclude that every conjugacy class of Sn is either also an orbit of the action of An, or else

breaks up as a union of two An-orbits of equal size. Now apply this to σ ∈ An. The orbit under An

in this case is ClAn(σ). We get that the conjugacy class of σ ∈ An is either equal to its conjugacy

class in Sn, or else contains half of the elements of its conjugacy class in Sn. Moreover, one can

completely characterize which case happens for a given conjugacy class. We state the precise result

here for completeness, but leave the proof to the reader as an exercise.

Lemma 5.15. Let σ ∈ Sn and suppose and consider K = ClSn(σ), the conjugacy class of σ.

Restrict the action of Sn on itself by conjugation to the action of the subgroup An. Then either (i)

K is also an An-orbit, or else (ii) K is the disjoint union of two An-orbits of equal size. Case (ii)

occurs if and only if CSn(σ) = CAn(σ), if and only the disjoint cycle type (with 1-cycles) of σ is of

the form n1
1n

1
2n

1
3 . . . n

1
k for some distinct odd integers n1, . . . , nk.
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In words, for the conjugacy class of σ to split into two An-orbits, σ should be a product of cycles

with distinct odd lengths when written in disjoint cycle form. 1-cycles must be included for this

result to be correct.

Example 5.16. Consider conjugacy classes in A5. If σ = (123), writing it with 1-cycles as

(123)(4)(5) we see that its cycle type is 1231. Thus it is not of the special form in which case

(ii) occurs in the lemma above and so we have case (i): ClAn(σ) = ClSn(σ), which is the set of all

3-cycles in Sn, of which there are (5)(4)(3)/3 = 20. Similarly, if σ = (12)(34) then its conjugacy

class in An is the full class of all products of 2-disjoint 2-cycles in Sn; there are 5!/(2)(2)(2) = 15

of these.

However, if σ = (12345) then this has cycle type 51 and so ClSn , which has 5!/5 = 24 members,

splits into two conjugacy classes in An each of size 12. It is easy to check that the complement of

ClAn((12345)) in ClSn((12345)) is ClAn((12354)); in other words (12345) and (12354) are conjugate

in Sn but not conjugate in An.

The analysis above completely determines the sizes of conjugacy classes in An. Including the triv-

ial conjugacy class {1}, the order 60 group A5 breaks up into conjugacy classes of size 1, 12, 12, 15,

and 20.

Recall that a group G is simple if the only normal subgroups of G are the trivial subgroup {1}

and G itself. Based on our analysis of conjugacy classes in A5, there is an easy proof that A5 is

simple.

Proposition 5.17. A5 is a simple group.

Proof. Suppose that N �A5. If x ∈ N , then gxg−1 ⊆ gNg−1 = N for all g ∈ A5. This shows that

Cl(x) ⊆ N . As a consequence, N must be a disjoint union of conjugacy classes of A5. On the other

hand, by Lagrange’s Theorem, |N | is a divisor of |A5| = 60.

The conjugacy classes of A5 have sizes 1, 12, 12, 15, and 20. Obviously N contains the class {1} of

size 1. An easy check shows that there is no possible way to take some of these numbers, including

1, which sum to a proper divisor d of 60 with 1 < d < 60. So either N = {1} or N = A5. �

Consider the alternating groups A5 for n < 5. A1 = A2 = {1}, which is boring, and A3 =

{1, (123), (132)} is cyclic of order 3. These groups are simple. On the other hand, let us see now

that A4 is not simple. Let V = {{1}, (12)(34), (13)(24), (14)(23)} ⊆ A4. A quick calculation shows

that V is a subgroup of A4. Because V contains all of the possible permutations in S4 of cycle

type 22, V is a union of conjugacy classes of S4. Thus V � S4 and so V �A4 also. The letter V is
57



traditional for this subgroup; V stands for “vier”, the German word for 4. Since V is a group of

order 4 whose elements all have order 2, by our classification of groups of order p2 we must have

V ∼= Z2 × Z2. This is also easy to check directly.

We now show that n = 4 is the only outlier.

Theorem 5.18. Let n ≥ 5. Then An is a simple group.

Proof. The proof goes by induction on n with n = 5 as the base case, which we handled in

Proposition 5.17. Consider now n > 5 and assume that An−1 is simple. Consider the natural action

of An on {1, 2, . . . , n}. It is easy to see that this is a transitive action; given i, j ∈ {1, 2, . . . n}

with i 6= j, if we pick a third number k different from i and j then the 3-cycle (ijk) ∈ An

sends i to j. Consider Hi = (An)i, the stabilizer subgroup of i ∈ {1, 2, . . . , n}. This is the set

of even permutations which fix i. This is the same as the set of even permutations of the set

{1, 2, . . . , i− 1, i+ 1, . . . , n}, which can be identified with An−1. Thus each stabilizer subgroup Hi

is isomorphic to An−1. In addition, because the action is transitive, if σ ∈ An is such that σ(i) = j

then σHiσ
−1 = Hj by Theorem 3.13(2). So all of these stabilizer subgroups are conjugate.

Let N�An. We now consider two cases. First, suppose that N∩Hi 6= {1}. Now N∩Hi�Hi, and

since Hi
∼= An−1, it is a simple group by the induction hypothesis. So the only conclusion in this case

isN∩Hi = Hi. But then choosing σ ∈ An such that σ(i) = j, we haveHj = σHiσ
−1 ⊆ σNσ−1 = N .

Thus N contains Hj for all j, and so N contains the subgroup generated by all of the Hj . However,

any product of two 2-cycles involves at most 4 numbers and so fixes some number and is contained

in some Hj . It follows that N contains all products of two 2-cycles, and hence N = An.

The other case is where N ∩ Hi = {1} for all i. It could be that N = {1}, in which case

we are done, so suppose not. Pick 1 6= σ ∈ N . We claim that we can find τ ∈ An so that

1 6= σ−1τστ−1 ∈ Hi for some i. If we do this, then since N is normal we see that σ−1(τστ−1) ∈ N

and so N ∩Hi 6= {1}, and we get a contradiction. To prove the claim, by relabeling the integers

and moving the largest cycle to the front, we can assume without loss of generality that the disjoint

cycle form of σ either begins (12)(34) . . . or (123 . . . d) . . . for some d ≥ 3. Taking τ = (345) ∈ An,

since τ fixes 1 and 2, one easily sees that σ−1τστ−1 ∈ H1. To see that σ−1τστ−1 6= 1, from our

formula for conjugation we get that τστ−1 begins (12)(45) . . . or (124 . . . ) . . . , respectively. In

either case this is not the same as σ, so σ 6= τστ−1, or σ−1τστ−1 6= 1, verifying the claim. �

As already mentioned, classifying the finite simple groups up to isomorphism was one of the major

projects in algebra in the latter half of the 20th century. This was announced as complete in the

1980’s, though there is still ongoing work to streamline and explain the very technical proof, which
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is spread over the publications of many mathematicians. The abelian simple groups are simply

the cyclic groups of prime order p, so only the nonabelian case is interesting. The classification

of nonabelian simple groups involves a number of infinite families of simple groups, of which the

groups {An|n ≥ 5} are the easiest to handle. Some other infinite families arise naturally from

matrix groups over finite fields. After the infinite families there are a small number of exceptional

simple groups that don’t belong to any family; these 26 groups are called the sporadic simple

groups. The largest sporadic group is the Fisher-Griess Monster, named for its enormous size; it

has approximately 8 × 1053 elements. Still, the largest prime factor q dividing the order of the

monster group is 71, which is also the largest prime factor of the order of any of the sporadic

groups. So even the largest of the sporadic groups tend to have orders which are products of many

small primes.

One example of a family of simple groups coming from matrices are the projective special linear

groups. Recall that for any field F , we have the general linear group GLn(F ) of n × n matrices

with entries from F . This can’t be simple because it always has the special linear group SLn(F )

of matrices with determinant 1, where SLn(F ) � GLn(F ). It also has a nontrivial center Z =

{λI|λ ∈ F×} consisting of nonzero scalar multiples of the identity, and Z � GLn(F ). Then SZ =

Z∩SLn(F )�SLn(F ) and so SLn(F ) can’t be simple either. One then defines the projective special

linear group to be PSLn(F ) = SLn(F )/SZ. Its name comes from the fact that it has a natural

action on a projective space, rather than the Euclidean space Fn on which SLn(F ) usually acts.

The groups PSLn(F ) for n ≥ 2 are simple except in a few exceptional small cases (similar to how

An only becomes simple for n ≥ 5). Namely, PSLn(F ) is simple if n ≥ 3 for any F , and PSL2(F )

is simple as long as F has at least 4 elements. In particular, by taking F to be a field with finitely

many elements, we get an infinite family of finite simple groups in this way.

We will study finite fields in detail later in the course. For each prime q there is a unique field with

q elements, namely the ring Zq of integers modulo q with the standard addition and multiplication

of congruence classes. Then by the result above, PSL2(Zq) is a finite simple group as long as q ≥ 5.

One may see that PSL2(Z5) is isomorphic to A5. However, PSL2(Z7) is a new simple group of order

168. This is the next smallest possible order of a non-Abelian simple group after 60. Interestingly,

PSL3(Z2) also turns out to have 168 elements and it is isomorphic to PSL2(Z7).

The reader can see Rotman’s book, “An introduction to the theory of groups”, for the proof that

the projective special linear groups are simple. Rotman also gives an introduction to the Mathieu

groups, which are some of the sporadic simple groups that arise as automorphism groups of very

special combinatorial objects called Steiner systems.

59



6. Direct and semidirect products

6.1. External and internal direct products. In an earlier section we briefly recalled the def-

inition of the direct product of two groups G and H. This is the easiest way to stick two groups

together to form a new group. There is no reason to restrict this to two groups. If H1, . . . ,Hk are

finite groups, with no assumed relationship to each other, we define H1 ×H2 × · · · ×Hk to be the

cartesian product of sets, {(h1, h2, . . . , hk)|hi ∈ Hi}, with the product

(h1, h2, . . . , hk)(h
′
1, h
′
2, . . . , h

′
k) = (h1h

′
1, . . . , hkh

′
k),

where the product in the ith coordinate is done in the group Hi. It is easy to check that this is

a group, with identity element 1 = (1, 1, . . . , 1) and (h1, h2, . . . , hk)
−1 = (h−1

1 , h−1
2 , . . . , h−1

k ). This

group is called the external direct product of the groups H1, H2, . . . ,Hk.

Because the operations in the direct product are done separately in each coordinate with no

interaction, most of the basic properties of the direct product follow immediately from the properties

of the individual groups. For example, if all Hi are finite then |G| = |H1||H2| . . . |Hk|, since this

is true of the cartesian product of sets. If (h1, . . . , hk) ∈ H1 × · · · × Hk, then (h1, . . . , hk)
n =

(hn1 , . . . , h
n
k), which immediately implies that |(h1, . . . , hk)| = lcm(|h1|, . . . , |hk|) if all the |hi| are

finite.

For each i, the group G = H1 × · · · ×Hk has a subgroup

Hi = {(1, 1, . . . , 1,
i
h, 1, . . . , 1)|h ∈ Hi}

which is clearly isomorphic to Hi as a group. A quick calculation shows that Hi�G for all i. Note

that we have

H1H2 . . . Hi−1Hi+1 . . . Hk = {(h1, h2, . . . , hi−1, 1, hi+1, . . . , hk)|hi ∈ Hi}

and so Hi ∩H1H2 . . . Hi−1Hi+1 . . . Hk = {1}. A similar calculation shows that H1H2 . . . Hk = G.

We abstract the properties that the subgroups Hi satisfy in the following definition.

Definition 6.1. Let G be a group with subgroups H1, H2, . . . ,Hk. We say that G is the internal

direct product of the subgroups H1, H2, . . . ,Hk if

(i) Hi �G for all 1 ≤ i ≤ k;

(ii) H1H2 . . . Hk = G; and

(iii) Hi ∩H2 . . . Hi−1Hi+1 . . . Hk = {1} for all 1 ≤ i ≤ k.

The comments made before the definition show that the external direct product H1 × · · · ×Hk

is the internal direct product of the subgroups H1, . . . ,Hk. We now prove a kind of converse.
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Theorem 6.2. Suppose that G is the internal direct product of the subgroups H1, H2, . . . Hk. Then

G ∼= H1 ×H2 × · · · ×Hk.

Proof. Define a function φ : H1 × H2 × · · · × Hk → G by φ((h1, h2, . . . , hk)) = h1h2 . . . hk. Since

H1H2 . . . Hk = G by property (ii), the function φ is surjective.

Property (iii) implies in particular that Hi ∩Hj = {1} for any i 6= j. Now for hi ∈ Hi, hj ∈ Hj ,

we have (h−1
j h−1

i hj)hi = h−1
j (h−1

i hjhi) ∈ Hi ∩Hj = {1}, and so hihj = hjhi. Using this, we get

φ((g1, . . . , gk)(h1, . . . , hk)) = φ((g1h1, . . . , gkhk)) = g1h1g2h2 . . . gkhk = g1g2 . . . gkh1h2 . . . hk

= φ((g1, . . . , gk))φ((h1, . . . hk))

because higj = gjhi whenever i 6= j. Thus φ is a homomorphism of groups. Finally, suppose

that (h1, . . . , hk) ∈ kerφ, so h1h2 . . . hk = 1. Since hi commutes with hj for all i 6= j, we have

hih1h2 . . . hi−1hi+1 . . . hk = 1 and thus by property (iii),

h−1
i = h1h2 . . . hi−1hi+1 . . . hk ∈ Hi ∩H2 . . . Hi−1Hi+1 . . . Hk = {1}.

This implies hi = 1. Since i was arbitrary, hi = 1 for all i and so (h1, h2, . . . , hk) = 1. Hence φ is

injective and φ is the desired isomorphism of groups. �

From now on, when we have an external direct product H1 × · · · × Hk of groups, we identify

Hi with the subgroup Hi defined earlier, and so we can think of H1 × · · · × Hk as the internal

direct product of the subgroups Hi. Conversely, we just showed that an internal direct product is

isomorphic to an external direct product in a canonical way. This shows that the difference between

internal and external direct products is mostly a point of view, and mathematicians tend not to

distinguish carefully between them.

Let us give some applications.

Proposition 6.3. Let G be a finite group with normal subgroups H1, . . . ,Hk such that |G| =

|H1||H2| . . . |Hk| and gcd(|Hi|, |Hj) = 1 for all i 6= j. Then G is an internal direct product of the

subgroups H1, . . . ,Hk and so G ∼= H1 ×H2 × · · · ×Hk.

Proof. We have Hi � G by assumption. We know that if H and K are normal subgroups of

G, then HK is a subgroup of G with |HK| = |H||K|/|(H ∩ K)|. In particular |HK| divides

|H||K|. This result extends by induction to any finite number of normal subgroups, so we get

|H1H2 . . . Hi−1Hi+1 . . . Hk| divides |H1||H2| . . . |Hi−1||Hi+1| . . . |Hk| for any i. Now since |Hi| and

|Hj | are relatively prime for all j 6= i, we get that |Hi| is also relatively prime to the product
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|H1||H2| . . . |Hi−1||Hi+1| . . . |Hk|. It follows that the order |Hi ∩H1H2 . . . Hi−1Hi+1 . . . Hk| divides

gcd(|Hi|, |H1||H2| . . . |Hi−1||Hi+1| . . . |Hk|) = 1, so Hi ∩H1H2 . . . Hi−1Hi+1 . . . Hk = {1}.

Now let K = H1H2 . . . Hk. Since Hi �K for all i, we have checked all of the conditions needed

to conclude that K is an internal direct product of H1, H2, . . . ,Hk. In particular, we have K ∼=

H1 ×H2 × · · · ×Hk. But this means that |K| = |H1||H2| . . . |Hk| = |G|, so necessarily K = G. �

Corollary 6.4. Let G be a finite group of order pe11 . . . pekk for some distinct primes pi and ei ≥ 1.

Suppose that for each i, G has a normal Sylow p-subgroup Pi. Then G is the internal direct product

of P1, . . . , Pk, and so G ∼= P1 × · · · × Pk.

Proof. This is immediate from the proposition, using that |Pi| = peii and that gcd(peii , p
ej
j ) = 1 for

i 6= j. �

Example 6.5. Let n = pe11 . . . pekk for distinct primes pi and integers ei ≥ 1. Consider G = Zn under

addition, a which is cyclic of order n, and write a = a + nZ ∈ G. For each i define qi = n/(peii ).

Then Hi = 〈qi〉 is the unique subgroup of Zn with order peii . We know that Hi is also cyclic, so

Hi
∼= Zpeii . By Proposition 6.3 (or Corollary 6.4), G is the internal direct product of the Hi and so

G = Zn ∼= H1 × · · · ×Hk
∼= Zpe11 × · · · × Zpekk .

Example 6.6. Suppose that |G| = pq for distinct primes p and q with p < q Let P be a sylow

p-subgroup and Q a Sylow q-subgroup. We saw earlier that Q�G. If P �G also (which is always

the case if p does not divide q − 1), then by Corollary 6.4 and Example 6.5, we immediately get

G ∼= P ×Q ∼= Zp × Zq ∼= Zpq is cyclic, receovering the claims in Example 4.9.

There is also no particular reason to restrict the definition of a direct product to finitely many

groups; we focused on that case above because our main interest in this course in finite groups.

Here is the general definition.

Definition 6.7. Let {Hα}α∈I be any indexed collection of groups. The direct product of these

groups is defined to be the cartesian product of sets,∏
α∈I

Hα = {(hα)|hα ∈ Hα},

with the coordinatewise operation (gα)(hα) = (gαhα).

Of course the direct product. Note that an element of Πα∈IHα is an I-tuple: a list of elements

indexed by α ∈ I, where the element in the α-coordinate belongs to Hα. We usually just write an

I-tuple as (hα), though (hα)α∈I would be more formally correct.
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We can use infinite direct products to construct some interesting examples.

Example 6.8. Let Hi be a cyclic group of order ni for all i ≥ 1. Consider the direct product

G =
∏
i≥1

Hi. Clearly G is an infinite group.

If ni = m for some fixed m and all i ≥ 1, then G is an infinite group such that every g ∈ G has

finite order dividing m.

If ni = i for all i ≥ 1, then G is an infinite group with elements of all possible finite orders. If

Hi = 〈ai〉 then (a1, a2, a3, . . . ) ∈ G has infinite order, so G has infinite order elements as well.

There is another way to join a collection of groups together which is different when the collection

is infinite.

Definition 6.9. Let {Hα}α∈I be any indexed collection of groups. The restricted product of these

groups is the subset of the direct product
∏
α∈I Hα consisting of those elements which are the

identity element in all but finitely many coordinates:

restr∏
α∈I

Hα = {(hα)|hα ∈ Hα, hα = 1 for all α ∈ I −X, for some finite subset X.}

We have chosen an ad-hoc notation, as there does not seem to be any standard notation for the

restricted product in this generality. It is easy to check that
restr∏
α∈I

Hα �
∏
α∈I

Hα.

Example 6.10. Again let Hi be cyclic of order ni for i ≥ 1. Let G =

restr∏
i≥1

Hi.

Let p be prime and let ni = pi for all i. Then for each i ≥ 0, G has an element of order pi.

Moreover, G is an infinite group which is a p-group, i.e. every element of G has finite order equal

to a power of p.

If ni = i for all i ≥ 1, then G is an infinite group with elements of all possible finite orders.

Unlike the case of the full direct product, however, in this case all elements of G have finite order.

The restricted product comes up primarily in the context of abelian groups. If {Hα}α∈I is a

collection of abelian groups, the restricted product of the Hα is usually called the direct sum and

is notated
⊕

α∈I Hα. This is a special case of the notion of a direct sum of modules which we will

define later.

6.2. Semidirect products. Suppose we have a group G with normal subgroups H and K. In this

case G is an internal direct product of H and K if and only if HK = G and H ∩K = {1}. Thus
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under these conditions we get G ∼= H ×K by Theorem 6.2. As part of the proof of that theorem,

we showed (using that H and K are normal and H ∩K = {1}) that hk = kh for all h ∈ H, k ∈ K.

It is much more common for a group to have a pair of subgroups intersecting trivially in which

only one of them is normal. In this section we aim to analyze how we can understand the structure

of the group in that case. We will see that we will be able to show that G is isomorphic to a kind

of “twisted” version of a direct product.

So we now consider the setup where H � G, K ≤ G, HK = G, and H ∩ K = {1}. We think

about the proof of Theorem 6.2 and what goes wrong with the proof in this case. We can still

define a function ψ : H × K → HK by the formula ψ((h, k)) = hk. Because HK = G, ψ is

still surjective as a function. However, ψ will no longer be a homomorphism of groups in general,

because H and K will not necessarily commute with each other. Injectivity, though, is fine: if

ψ((h1, k1)) = ψ((h2, k2)), then h1k1 = h2k2 and so h−1
2 h1 = k2k

−1
1 ∈ H ∩K = {1}, so that h1 = h2

and k1 = k2. (Note that since we don’t know that ψ is a homomorphism, we couldn’t check

injectivity just by looking at which elements map to 1.)

We can understand the failure of elements of H and K to commute, and the failure of ψ to be

a homomorphism, quite specifically. Let h ∈ H and k ∈ K. Since H is normal, kh = khk−1 ∈ H.

This means if we have the product kh, we can “move the k to the right of the h” at the expense of

applying a conjugation to h:

kh = khk−1k = (kh)k.

In this process k stays the same, but we think of it acting on h (by conjugation) as it moves past

to the right. Then if we have (h1, k1) ∈ H ×K and (h2, k2) ∈ H ×K,

(6.11) ψ((h1, k1))ψ((h2, k2)) = (h1k1)(h2k2) = h1(k1h2)k2 = h1(k1h2k1)k2

= (h1(k1h2))(k1k2) = ψ((h1(k1h2), k1k2)).

This shows how we could fix things so that ψ is a homomorphism of groups. We put a new product

∗ on the cartesian product of sets H ×K, where (h1, k1) ∗ (h2, k2) = (h1(k1h2), k1k2). Then (6.11)

shows that ψ satifies the homomorphism property from (H ×K, ∗) to G. One can now check that

(H ×K) is a group under the operation ∗, and that ψ gives an isomorphism between this group

and G. We don’t check this here because it will follow from the next results.

We now abstract what we saw in the previous example to define an “external” version of this

construction, which takes two groups and joins them together in a new way with a product defined

by one acting on the other.
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Definition 6.12. Let H and K be two groups and let φ : K → Aut(H) be a homomorphism

of groups. Write k · h = φ(k)(h), for k ∈ K and h ∈ H. The semidirect product H oφ K is

defined to be the cartesian product H×K as a set, with operation ∗ defined by (h1, k1)∗ (h2, k2) =

(h1(k1 · h2), k1k2).

We will check momentarily that the semidirect product is a group under ∗, but let us first explain

the meaning of the extra piece of data we use to construct it, the homomorphism φ : K → Aut(H),

and the notation k · h. First of all, Aut(H) is a subgroup of Sym(H), so we can think of φ as a

homomorphism K → Sym(H). We know that such homomorphisms correspond to actions of K on

H. Specifically, setting k · h = φ(k)(h) as we have done, then this is the corresponding action of K

on H. However, the fact that φ lands in Aut(H) gives us additional information—this means that

φ(k)(h1h2) = φ(k)(h1)φ(k)(h2), or equivalently k ·(h1h2) = (k ·h1)(k ·h2), for all k ∈ K, h1, h2 ∈ H.

We say that K acts on H by automorphisms. Note that since acting by k is an automorphism of

H, it must preserve the identity element, and so k · 1 = 1 for all k ∈ K.

Proposition 6.13. Let H and K be groups and let φ : K → Aut(H) be a homomorphism. Then

the semidirect product H oφ K is a group.

Proof. This is a straightforward proof, but it is useful to go through the details to get a better feel

for the construction. The associativity of the multiplication ∗ is not at all obvious, since it treats

the two coordinates asymmetrically. First we calculate

((h1, k1) ∗ (h2, k2)) ∗ (h3, k3) = (h1(k1 · h2), k1k2) ∗ (h3, k3) = (h1(k1 · h2)((k1k2) · h3), k1k2k3)

and

(h1, k1) ∗ ((h2, k2) ∗ (h3, k3)) = (h1, k1) ∗ (h2(k2 · h3), k2k3) = (h1k1 · (h2(k2 · h3)), k1k2k3).

From this we see there is no issue in the second coordinate, which is simply the multiplication in

K. Now using that K is acting on H by automorphisms, we have

k1 · (h2(k2 · h3)) = (k1 · h2)(k1 · (k2 · h3)) = (k1 · h2)((k1k2) · h3)

which shows that the first coordinates of the expressions are also the same. This verifies associativity

of ∗.

We claim that (1, 1) is an identity element for H oφ K under ∗. For this we check that (1, 1) ∗

(h, k) = (1(1 · h), 1k) = (1h, 1k) = (h, k) and (h, k) ∗ (1, 1) = (h(k · 1), k1) = (h1, k1) = (h, k),

verifying the claim.
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Finally, given (h, k) ∈ H oφ K, we claim that (k−1 · h−1, k−1) is an inverse of (h, k) under ∗.

First,

(h, k) ∗ (k−1 · h−1, k−1) = (h(k · (k−1 · h−1)), kk−1) = (h(1 · h−1), kk−1) = (hh−1, kk−1) = (1, 1).

On the other side we calculate

(k−1 · h−1, k−1) ∗ (h, k) = ((k−1 · h−1)(k−1 · h), k−1k) = (k−1 · (h−1h), k−1k) = (k−1 · 1, 1) = (1, 1).

This verifies that every element has an inverse, and so H oφ K is a group under ∗. �

Now that we have defined the semidirect product, we can complete the analysis of groups which

are a product of two subgroups intersecting trivially, with only one of them required to be normal.

Theorem 6.14. Let G be a group with subgroups H, K such that H �G, HK = G, and H ∩K =

{1}. Then G ∼= H oφ K for the homomorphism φ : K → Aut(H) defined by φ(k) = ρk, where ρk

is the automorphism ρk(h) = kh = khk−1 of H.

Proof. For each k ∈ G we have the inner automorphism θk of G defined by θk(g) = kgk−1 for

g ∈ G. Since H is normal, its restriction ρk = θk|H : H → H is an automorphism of H (note

that ρk need not be an inner automorphism of H, though). We have the formula θk ◦ θl = θkl

for inner automorphisms. Restricting to H we get ρk ◦ ρl = ρkl and thus φ : K → Aut(H) is a

homomorphism of groups. So the the semidirect product H oφ K is a well-defined group.

Now define a map ψ : H oφ K → G by ψ((h, k)) = hk. In the analysis at the beginning of this

section we showed that ψ is a bijection of sets, and (6.11) showed that ψ is a homomorphism of

groups. So ψ is an isomorphism of groups. �

We could call any group G with two subgroups H, K with H �G, HK = G and H ∩K = {1}

an “internal semidirect product”. Theorem 6.14 then shows that the group is isomorphic to an

“external semidirect product” of H and K, meaning a group defined by definition 6.12. The needed

extra data φ comes from the internal relationship between H and K (the action of K on H by

conjugation) that exists because they are two subgroups of a larger group G.

On the other hand we can show that an “external semidirect product” can always be thought

of as an “internal semidirect product” of two of its subgroups. This is the content of the next

proposition. (We are referring informally to internal and external semidirect products only to

make an analogy with direct products. This is not standard terminology, which is why we have put

the terms in quotes and will not use them from now on.)
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Proposition 6.15. Let H and K be groups, and let φ : K → Aut(H) be a homomorphism. Write

k · h = φ(k)(h) for all k ∈ K,h ∈ H. Let G = H oφ K.

(1) K = {(1, k)|k ∈ K} is a subgroup of G isomorphic to K.

(2) H = {(h, 1)|h ∈ H} is a normal subgroup of G isomorphic to H.

(3) HK = G and H ∩K = {1}.

(4) (1, k)(h, 1)(1, k)−1 = (k · h, 1) for k ∈ K, h ∈ H.

Proof. (1) Since (1, k1) ∗ (1, k2) = (1(k1 · 1), k1k2) = (1, k1k2) for k1, k2 ∈ K, it is immediate that

K is a subgroup and that ψ : K → K defined by ψ(k) = (1, k) is an isomorphism. In particular,

(1, k)−1 = (1, k−1).

(2) Note that (h1, 1) ∗ (h2, 1) = (h1(1 · h2), 1) = (h1h2, 1). Thus it is also immediate that H is

a subgroup of G and that ψ : H → H defined by ψ(h) = (h, 1) is an isomorphism. We will prove

that H is normal below.

(3) It is obvious that H ∩K = {1} by definition. Also, note that (h, 1) ∗ (1, k) = (h(1 · 1), 1k) =

(h, k) for any h ∈ H, k ∈ K. This shows that HK = G.

(4) We calculate

(1, k)(h, 1)(1, k)−1 = (1, k)(h, 1)(1, k−1) = (1, k)(h, k−1) = (k · h, kk−1) = (k · h, 1).

We can now finish the proof of (2). Obviously H ⊆ NG(H) since any subgroup normalizes itself.

The formula in (4) shows that K ⊆ NG(H). Thus G = HK ⊆ NG(H) and hence H �G. �

The proposition shows that any semidirect product G = H oφ K has coordinate subgroups H

and K such that HK = G, H ∩ K = {1}, and H � G. Just as the case for direct products, we

tend to identify H with H and K with K and think of H and K as subgroups of G. Moreover,

although the homomorphism φ : K → Aut(H) starts out as “external data” which is needed to

join H and K together into a semidirect product, once G is constructed the corresponding action

of K on H can be recovered “internally” from the conjugation action of K on H inside G. This is

exactly what Proposition 6.15(4) says.

We summarize the results so far as follows. Given any groups H and K and an action of K on

H by automorphisms, we can use that action to construct a new group G = HoK, which contains

copies of H and K as subgroups such that HK = G, H ∩ K = 1, H is normal, and where the

conjugation action of K on H inside G is equal to the original given action. Conversely, if G is a

group with subgroups H and K such that H is normal, HK = G, and H ∩K = 1, then using the

conjugation action of K on H to define a semidirect product H o K, that semidirect product is

isomorphic to G.
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It is worth noting that semidirect products of two groups contain direct products as a special

case.

Lemma 6.16. Let H and K be two groups, and let φ : K → Aut(H) be a homomorphism. Let

G = HoφK and identify H and K with the coordinate subgroups of G. The following are equivalent:

(1) φ is the trivial homomorphism, that is φ(k) = 1H for all k.

(2) K �G.

(3) G is the internal direct product of H and K.

Proof. We know that the subgroups H and K of the semidirect product always satisfy HK = G,

H ∩K = {1}, and H �G. Thus by definition G is the internal direct product of H and K if and

only if K �G also, so (2) and (3) are equivalent.

Now one calculates (h, 1) ∗ (1, k) ∗ (h, 1)−1 = (h, k)(h−1, 1) = (h(k · h−1), k). Thus K �G if and

only if h(k · h−1) = 1 for all h ∈ H, k ∈ K. But this is equivalent to k · h−1 = h−1, which clearly

holds for all h ∈ H and k ∈ K if and only if φ is trivial. So (1) and (2) are equivalent as well. �

The lemma above says that H ×φ K cannot be an internal direct product of the two special

coordinate subgroups H and K unless φ is trivial. One warning: it is does not say that H × K

and H ×φ K cannot be isomorphic as groups without φ being trivial. It is possible that H ×φ K

could be an internal direct product of two different subgroups H ′ and K ′ which satisfy H ′ ∼= H

and K ′ ∼= K.

6.3. Some automorphism groups. Since a semidirect product depends on a homomorphism

φ : K → Aut(H), to analyze the possibilities for specific K and H first requires one to understand

the automorphism group of H, and then the possible homomorphisms from K to that group.

Two examples that we will want to understand in detail are when H is cyclic and when H is an

elementary abelian p-group for a prime p.

The automorphism group of a cyclic group Zn can be calculated quite exactly.

Lemma 6.17. Let Zn be the additive group of integers modulo n. Let Z×n = {i| gcd(i, n) = 1} be

the group of units modulo n under multiplication. (This group was called Un earlier in the notes.)

In other words, Z×n is the set of invertible elements in the monoid Zn of congruence classes modulo

n under multiplication.

There is an isomorphism θ : Z×n → Aut(Zn), where θ(i) = σi, with σi(j) = i j = ij.

We omit the proof of this lemma, leaving it as an exercise. In words, the automorphisms σi can

be described as the maps “take the ith multiple”, for any i which is relatively prime to n.
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The structure of Z×n is also understood. Note that this is a group of order ϕ(n), where ϕ is the

Euler ϕ-function, since Z×n consists of those congruence classes modulo n that are relatively prime

to n. We state the following theorem without proof at the moment.

Theorem 6.18. Let n ≥ 1 have prime factorization n = pe11 . . . pekk , where the pi are distinct primes

and ei ≥ 1.

(1) Z×n ∼= Z×
p
e1
1

× · · · × Z×
p
ek
k

.

(2) if p is an odd prime and e ≥ 1 then Z×pe ∼= Zpe−pe−1 is cyclic of order pe−pe−1 = pe−1(p−1).

(3) Z×2 is trivial and Z×4 ∼= Z2 is cyclic. For e ≥ 3, Z×2e ∼= (Z2 × Z2e−2), which is not cyclic.

Part (1) of this theorem will be easily proved later when we study rings. We will also prove using

ring theory the special case of part (2) where e = 1, namely that the group Z×p is cyclic for any

prime p. We will not prove the more general statement in part (2), or part (3); the proofs are not

particularly difficult, though, and can be found in a text on number theory.

While it is straightforward to show abstractly that the group Z×n decomposes as a certain product

of cyclic groups, as described in the theorem above, actually finding an explicit isomorphism between

Z×n and that product of cyclic groups is another matter. For example, part (2) in the case e = 1 says

that Z×p is a cyclic group of order p− 1 under multiplication. A number i such that i is a generator

of Z×p is called a primitive root (modulo p). From the structure of cyclic groups, one can see that a

cyclic group of order d has ϕ(d) generators. Thus ϕ(p− 1) is the number of primitive roots. There

is no formula that will produce primitive roots, and finding a primitive root for a large prime p is a

computationally difficult task that depends on being able to find the prime factorization of p− 1.

We will only consider small primes in our examples, where it is easy to find a primitive root by

trial and error.

Example 6.19. Let G = Z17. We know by Theorem 6.18 that Z×17 is a cyclic group of order

ϕ(17) = 16, since 17 is prime. Now the number of generators of a cyclic group of order 16 is

ϕ(16) = 8. So half of the classes in Z×17 are primitive roots modulo 17, that is, have order 16 in

this group. We first try 2. We calculate 2
4

= 16 = −1, so 2
8

= −1
2

= 1. Thus 2 has order 8 and is

not a primitive root. So we try 3. 3
2

= 9, 3
4

= 9
2

= 81 = −4, so 3
8

= −4
2

= 16 = −1 6= 1. Since

all elements in this group must have order dividing 16, the only possibility is |3| = 16 and so 3 is a

primitive root. This allows us to find an explicit isomorphism θ : Z16 → Z×17, by putting θ(i) = 3
i
.

Recalling that by Lemma 6.17 we have Z×17
∼= Aut(Z17), we also see that Aut(Z17) is cyclic of

order 16, and that we can take σ3 : i 7→ 3i as a generator of this automorphism group.
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Now we consider another example where we can calculate the automorphism group. Fix a prime

p. An elementary abelian p-group is a group of the form G =
∏m
i=1 Zp = Zp × Zp × · · · × Zp

for some m ≥ 1. The order of such a G is pm so it is a p-group; moreover, it is easy to see

that every non-identity element of G has order p. We know that Zp also has a multiplication

operation on congruence classes. Together with its addition operation, Zp is a ring. In fact Zp is a

field which means that every nonidentity element of Zp is invertible under multiplication, because

Z×p = Zp − {0}. When thinking of Zp as a field we write it as Fp.

We can define a vector space over any field F : this is an abelian group V together with an action

of F on V (scalar multiplication) satisfying the usual axioms. We can identify G with the set of

column vectors

Fmp =

{(
a1
a2
...
am

)∣∣∣∣ai ∈ Fp
}
,

and then define a scalar multiplication of Fp on elements of Fmp in the obvious way. Then G = Fmp
becomes a vector space over the field Fp. Write (ai) for the vector with coordinates a1, a2, . . . , am.

Now consider the group Aut(G). Since G is additive, an automorphism of G is a map σ : G→ G

which satisfies σ(v + w) = σ(v) + σ(w) for all v, w ∈ G, that is, a map preserving vector addition.

If λ ∈ Fp, say λ = j for some 0 ≤ j < p, we have

σ(λ(ai)) = σ((jai)) = σ(

j︷ ︸︸ ︷
(ai) + (ai) + · · ·+ (ai)) =

j︷ ︸︸ ︷
σ((ai)) + σ((ai)) + · · ·+ σ((ai)) = λσ((ai))

for any (ai) ∈ G. In other words, because σ preserves addition, it automatically preserves scalar

multiplication. Thus σ is a linear transformation of the vector space G = Fmp . As such, it cor-

responds to an m × m matrix A with Fp-coefficients, such that for v ∈ Fmp , σ(v) is the same

as the matrix product Av. Because σ is bijective, it is an invertible linear transformation and

so A ∈ GLm(Fp), the group of invertible m × m matrices with coefficients in Fp. Conversely, if

A ∈ GLm(Fp), then left multiplication by A defines an invertible linear transformation of Fmp and

hence an automorphism of G as a group.

Proposition 6.20. Let p be a prime and let G =

m︷ ︸︸ ︷
Zp × Zp × · · · × Zp be an elementary abelian

p-group.

(1) Aut(G) ∼= GLm(Fp) as groups.

(2) |Aut(G)| = (pm − 1)(pm − p) . . . (pm − pm−1).

Proof. (1) It was shown in the discussion above that there is a natural bijection Aut(G)→ GLm(Fp),

where σ ∈ Aut(G) corresponds to the invertible matrix A ∈ GLm(Fp) such that σ(v) = Av for
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all v ∈ G = Fmp . This is an isomorphism of groups because, as shown in a linear algebra course,

composition of linear transformations corresponds to multiplication of matrices.

(2) By (1), it suffices to calculate the size of |GLm(Fp)|. An m × m matrix is invertible if

and only if it has rank m, or in other words, its m columns form a basis of Fmp . So to count

the number of invertible matrices we count the number of ordered bases {v1, . . . , vm} of Fmp . Any

nonzero vector v1 can be the start of a basis, so there are (pm − 1) choices for v1. Once v1 is

chosen, v2 can be any vector outside the span Fpv1 of v1, which has p vectors, so there are pm − p

choices for v2. Similarly, the span of v1, v2 has p2 elements and so there are pm − p2 choices for v3.

Continuning inductively, there are ultimately pm − pm−1 choices for vm. This leads to the formula

(pm − 1)(pm − p) . . . (pm − pm−1) for the number of ordered bases of Fmp , and hence this is the size

of |GLm(Fp)|. �

Example 6.21. Consider G = Aut(Z2 × Z2). We know that G ∼= GL2(Z2), and also |G| = 6 from

Proposition 6.20 above. Since Z2×Z2 has 4 elements, 1 identity element and 3 elements of order 2,

any automorphism of this group is determined by its permutation of the 3 non-identity elements.

Since there are |S3| = 6 such permutations, they all occur, and so we also have G ∼= S3 in this case.

6.4. Examples and applications of semidirect products. We can now return to groups of

order pq and fully analyze them.

Example 6.22. Let G be a group with |G| = pq where p < q and p and q are primes. Let P

and Q be a Sylow p-subgroup and a Sylow q-subgroup, respectively. We have seen that Q � G,

PQ = G, and P ∩Q = {1} in Example 4.9. This is exactly the information we need to conclude that

G ∼= QoφP is a semidirect product, where φ : P → Aut(Q) is a homomorphism, by Theorem 6.14.

We know that all groups of order p are cyclic, and so P ∼= Zp. Similarly, Q ∼= Zq. Additive

notation can be confusing when used for the groups in a semidirect product HoφK, particularly if

one of H and K is written additively and the other is not. We often also want to find a presentation

for our semidirect product, and free groups and presentations are written multiplicatively. So we

prefer here to choose a generator a of P , so P = 〈a〉 = {1, a, a2, . . . , ap−1}, with ap = 1, and we

use multiplicative notation for P . In order words, we are thinking of P as the presented group

F (a)/(ap). Similarly, we write Q = 〈b〉 = {1, b, b2, . . . , bq−1}, with bq = 1.

To describe the possible semidirect products G = QoφP we need to understand homomorphisms

of groups φ : P → Aut(Q). Since Q is cyclic, by Lemma 6.17 there is an isomorphism θ : Z×q →

Aut(Q). Transferring the isomorphism exhibited in that lemma to the multiplicative notation we
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are using for Q, we see that θ(i) = σi, where σi(b
j) = bij = (bj)i is the ith power map. Since q is

prime, Z×q = Zq − {0} is a cyclic group of order q − 1, by Theorem 6.18.

Suppose that p does not divide q− 1. Then any homomorphism φ : P → Aut(Q) is trivial, since

the domain and target have relatively prime orders. In this case Qoφ P ∼= Q×P ∼= Zq×Zp ∼= Zpq,

and P must be normal in G as well. We already saw this in Example 4.9, where the fact that p

does not divide q − 1 was used to prove that P �G using the Sylow theorems instead, and hence

G can be recognized as an internal direct product of P and Q.

If instead p does divide q−1, then since Aut(Q) is cyclic of order q−1, it has a unique subgroup

of order p. If σ ∈ Aut(Q) is any element of order p, then there is a unique homomorphism

φ : P → Aut(Q) such that φ(a) = σ. This determines a semidirect product G = Qoφ P for which

P is not a normal subgroup, according to Lemma 6.16. In particular, G is not abelian.

The subgroup of order p in Aut(Q) has p− 1 possible generators, i.e. every nonidentity element

in this group. So there are actually p−1 different possible homomorphisms φ we could have chosen

above, depending on which order p element the generator a of P gets sent to. Each one gives a

nonabelian semidirect product Q oφ P . However, there is nothing that really distinguishes one

generator of a cyclic group from another, and so it turns out that all of these semidirect products

are isomorphic. We leave the details to Exercise 6.23(b).

Of course when p divides q − 1 there is still also the possibility of taking φ : P → Aut(Q) to be

the trivial homomorphism, and so G ∼= Q×P , which is abelian. Thus up to isomorphism there are

two possible groups of order pq when p divides q− 1: Q× P ∼= Zq ×Zp ∼= Zpq, and Qoφ P for any

homomorphism φ : P → Aut(Q) mapping the generator of P to an element of order p.

The following exercise gives two common situations in which semidirect products H oφ1 K and

H ×φ2 K for different homomorphisms φ1, φ2 : K → Aut(H) can be proved to be isomorphic as

groups.

Exercise 6.23. Let H and K be groups. Let φ : K → Aut(H) be a homomorphism of groups.

(a) Suppose that σ ∈ Aut(H) and let θσ : Aut(H) → Aut(H) be the inner automorphism of

Aut(H) given by ρ 7→ σ ◦ρ◦σ−1. Let φ2 = θσ ◦φ : K → Aut(H). Prove that HoφK and Hoφ2 K

are isomorphic groups.

(b) Suppose that ρ : K → K is an automorphism of K and define φ2 = φ ◦ ρ : K → Aut(H).

Prove that H oφ K and H oφ2 K are isomorphic groups.

Let us demonstrate how one would find presentations for the groups of order pq. Rather than

giving a general statement, let us just do this for a specific example.
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Example 6.24. Consider groups of order 39 = (3)(13). Here p = 3 < q = 13, so we have p divides

q − 1. We want to find an explicit primitive root modulo 13, in other words a generator of the

order 12 group Z×13. Trying 2, we have 2
4

= 16 = 3 and 2
6

= 64 = −1. Since every proper divisor

of 12 divides 4 or 6, we must have |2| = 12 and so 2 is a primitive root. Let Q = {1, b, b2, . . . , b12}

be a cyclic group of order 13, where b13 = 1. Because 2 is a generator for Z×13, σ ∈ Aut(Q) given

by “taking to the power 2”, σ(bi) = b2i, generates the cyclic group Aut(Q), i.e. |σ| = 12. Then

H = {1, σ4, σ8} is the unique order 3 subgroup of Aut(Q). If P = {1, a, a2} is cyclic of order 3, we

can define a homomorphism φ : P → Aut(Q) by sending a to any element of H. So we have three

possible semidirect products Qoφi P , where φi(a) = σ4i, for i ∈ {0, 1, 2}.

Consider any of these groups G = Q oφi P . Since (bi, aj) = (bi, 1)(1, aj) = (b, 1)i(1, a)j in G,

clearly G is generated by the two elements (b, 1) and (1, a). Moreover, (b, 1)13 = (b13, 1) = (1, 1)

and (1, a)3 = (1, a3) = (1, 1). The key relation comes from looking at conjugation in G by the

generator (1, a): using Proposition 6.15(4), we have

(1, a)(b, 1)(1, a)−1 = (φi(a)(b), 1) = (σ4i(b), 1) = (b2
4i
, 1).

Note that 2
4i

= 16
i

= 3
i

in Z×13, so b2
4i

= b3
i
.

We claim now that F (x, y)/(x3 = 1, y13 = 1, xy = y3ix) is a presentation of G; the argument for

this is similar to other examples we saw in the study of presentations earlier. There is clearly a

homomorphism θ : F (x, y)/(x3 = 1, y13 = 1, xy = y3ix)→ G sending x 7→ (1, b), y 7→ (a, 1), which

is surjective since (1, b) and (a, 1) generate G. From the form of the relations we easily deduce that

any element in F (x, y)/(x3 = 1, y13 = 1, xy = y3ix) is equal modulo relations to a word of the form

{yixj |0 ≤ i ≤ 12, 0 ≤ j ≤ 2}. From this the presented group has order at most 13, and since it

surjects onto a group of order 13, it must have exactly 13 elements and θ must be an isomorphism.

When i = 0, the presentation we get is F (x, y)/(x3 = 1, y13 = 1, xy = yx). This is the case

where φ is trivial, and we know the group we get is Q× P .

When i = 1 we get F (x, y)/(x3 = 1, y13 = 1, xy = y3x) and when i = 2 we have F (x, y)/(x3 =

1, y13 = 1, xy = y9x). It is claimed in Example 6.22 above that these two groups are isomorphic.

Here one can easily demonstrate the isomorphism explicitly, by checking that there is an isomor-

phism F (x, y)/(x13 = 1, y3 = 1, yx = x3y)→ F (x, y)/(x13 = 1, y3 = 1, yx = x9y) defined by x 7→ x

and y 7→ y2.

Example 6.25. Consider groups G of order 2q for an odd prime q. This is a special case of the

classification of groups of order pq. We have noted that there is one abelian such group and one
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nonabelian group up to isomorphism. Since we know one nonabelian group of order 2q already,

namely D2q, the two possible groups must be Z2q and D2q.

To be more explicit, if P = 〈b〉 is cyclic of order 2 and Q = 〈a〉 is cyclic of order q, then there

is a unique nontrivial homomorphism φ : P → Aut(Q), which maps b to the unique element σ of

order 2 in the cyclic group Aut(Q). That element must be the “inversion map” σ : Q→ Q given by

ak 7→ a−k for all k, which obviously has order 2. Finding the corresponding presentation, similarly

as in Example 6.24, leads to F (a, b)/(aq = 1, b2 = 1, ba = a−1b), the standard presentation for D2q.

Next, let us consider an example where the structure of the automorphism group of an elementary

abelian group comes into play.

Example 6.26. Consider a group G with |G| = 18 = 2 · 32. The number n3 of Sylow 3-subgroups

divides 2 and is congruent to 1 modulo 3, so n3 = 1 and a Sylow 3-subgroup Q is normal. Let P

be a Sylow 2-subgroup. Then clearly P ∩Q = {1}, so |PQ| = 18 and PQ = G. We conclude that

G ∼= Q oφ P for some homomorphism φ : P → Aut(Q). Since |Q| = 32, from our classification of

groups of order p2, either Q ∼= Z9 or else Q ∼= Z3 × Z3.

Let us first consider the case Q ∼= Z9. Then Aut(Q) ∼= Z×9 , which is cyclic of order ϕ(9) = 6,

by Theorem 6.18. It could be that φ : P → Aut(Q) is trivial. In this case we get G ∼= P × Q ∼=

Z2 × Z9
∼= Z18, so G is cyclic. Since Aut(Q) is cyclic, it has a unique element of order 2. Thus

the there is a unique nontrivial homomorphism φ : P → Aut(Q) which sends the generator of P

to that element σ ∈ Aut(Q) with |σ| = 2. Similarly as in Example 6.25, this element σ must be

the inversion map ai 7→ a−i, where a is a generator of Q, and Q oφ P will be isomorphic to the

dihedral group D18.

Otherwise, we have Q ∼= Z3 × Z3. In this case, we know that Aut(Q) ∼= GL2(F3), by Propo-

sition 6.20. Also, |GL2(F3)| = (9 − 1)(9 − 6) = 48. A map φ : P → GL2(F3) is determined by

sending the generator of P to an element A ∈ GL2(F3) of order dividing 2. if A = I is the identity

matrix, then φ is trivial and so Q ×φ P ∼= Q × P ∼= Z3 × Z3 × Z2
∼= Z3 × Z6. This is a non-cyclic

abelian group.

We are left with the case where |A| = 2. Here, A is an invertible 2× 2 matrix with entries in the

field F3 with three elements. Suppose thatBAB−1 is a conjugate of A in GL2(F3). Then |BAB−1| =

2 also, and if φ′ : P → GL2(F3) sends a generator to BAB−1 instead, then QoφP ∼= Qoφ′P follows

from Exercise 6.23(a), since conjugation by B is an inner automorphism of GL2(F3) ∼= Aut(Q).

Because of this we only need to consider one matrix A from each conjugacy class in GL2(F3)

consisting of elements of order 2.
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We will study conjugacy classes of matrices over fields in detail later when we develop the theory

of canonical forms. Here we just state the end result; it will easily be justified by the reader later

using canonical forms, or can be proved through brute force here. It turns out that every matrix

A of order 2 is conjugate to one of the following matrices:

A1 =

1 0

0 −1

 or A2 =

−1 0

0 −1

 .

If φ1 : P → GL2(F3) sends the generator to A1, note that A1 is the automorphism of Z3 ×Z3 such

that (i, j) 7→ (i,−j). In order to more easily find presentations, let us think of Q as the presented

group Q = F (a, b)/(a3 = b3 = 1, ba = ab). So the elements in Q are {aibj |0 ≤ i ≤ 2, 0 ≤ j ≤ 2}.

Then in multiplicative notation, the matrix A1 corresponds to the automorphism σ of Q with

σ(aibj) = aib−j . Now consider G = Qoφ1 P and identify P and Q with subgroups of G; this will

make for simpler notation than we used when finding presentations in Example 6.24. If we write

P = 〈c〉, then in G we will have a relation c(aibj)c−1 = σ(aibj) = aib−j , by Proposition 6.15(4). A

presentation of this group is given by F (a, b, c)/(a3 = b3 = 1, ba = ab, c2 = 1, ca = ac, cb = b−1c),

as the reader may easily check. This group is also isomorphic to Z3 ×D6.

Finally, if φ2 : P → GL2(F3) sends the generator to A2, this corresponds to the automorphism σ

ofQ with σ(aibj) = a−ib−j . In other words, σ is the inversion map which is an order 2 automorphism

of any abelian group. In this case F (a, b, c)/(a3 = b3 = 1, ba = ab, c2 = 1, ca = a−1c, cb = b−1c) is a

presentation of the group Qoφ2 P . We call this group D′18 because it is a bit similar to the dihedral

group, in that the generator of P is acting by the inversion automorphism on on the abelian group

Q.

The analysis we have done shows that every group of order 18 is isomorphic to one of the following

groups: Z18, Z3 ×Z3 ×Z2, D18, Z3 ×D6, or D′18. To complete the classification of groups of order

18, we ought to show that no two of these 5 groups are isomorphic. The first two are the only

abelian ones, and they are not isomorphic since Z3×Z3×Z2 is not cyclic—all of its elements have

order at most 6. Among the three remaining groups, D18 is the only one whose Sylow 3-subgroup

is cyclic. Finally, Z3×D6 and D′18 are not isomorphic because you can check that D′18 has a trivial

center, while Z3 ×D6 has center Z3 × {1}.

6.5. Groups of low order. We now have enough techniques to fully classify groups of order less

than or equal to 15 up to isomorphism.

First, groups of prime orders p = 2, 3, 5, 7, 11, or 13 are cyclic and isomorphic to Zp. Groups of of

order a square of a prime, p2 = 22 = 4, 32 = 9 are isomorphic to Zp2 or Zp×Zp. Groups of order pq
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for primes p < q are now classified by Example 6.22; there are two such groups when p divides q−1,

and one group otherwise. In particular, groups of order n = 6 = (2)(3), 10 = (2)(5) or 14 = (2)(7)

are either the cyclic group Zn or the dihedral group Dn; and groups of order 15 = (3)(5) are cyclic.

Note that |S3| = 6, so as an nonabelian group of order 6 we must have S3
∼= D6 (which is also easy

to check directly). The only orders left which do not fall under any of our general classification

results are 8 and 12, and so we will classify those next.

We should first mention here the classification of finite abelian groups. We will prove it later in

these notes in the context of module theory, so have chosen not to emphasize it here.

Theorem 6.27. Let G be a finite abelian group of order n. Then G ∼= Zpe11 ×Zpe22 · · ·×Zpemm , where

each pi is prime and ei ≥ 1 (the pi need not be distinct). The list of prime powers pe11 , . . . , p
em
m is

uniquely determined by G up to reaarrangement, and two abelian groups of order n are isomorphic

if and only if they have the same list of prime powers up to rearrangement.

The theorem makes finding the abelian groups of a given order a triviality.

Example 6.28. Consider abelian groups of order 54. Each one corresponds to a sequence of prime

powers whose product is 54 = (2)(33). Clearly then 2 is one of the prime powers, and for the others

the possibilities are 33; 32 and 3; or 3, 3, and 3. So up to isomorphism, the abelian groups of order

54 are

Z2 × Z27; Z2 × Z3 × Z9; and Z2 × Z3 × Z3 × Z3.

Theorem 6.27 also implies that these three groups are distinct up to isomorphism.

Now let us classify groups of order 8. Actually, groups of order p3 for a prime p can be fully

classified without too much work; but the case p = 2 behaves differently and has to be separately

handled anyway.

Theorem 6.29. There are precisely 5 distinct groups of order 8 up to isomorphism. The abelian

ones are Z2×Z2×Z2, Z2×Z4, and Z8. The nonabelian ones are D8 and the quaternion group Q8.

Proof. The abelian part of the classification follows immediately from Theorem 6.27. So now let

us assume that G is a nonabelian group of order 8, and show that either G ∼= D8 or G ∼= Q8.

If G has an element of order 8, then G is cyclic and we are back to the abelian case Z8. Similarly,

if all nonidentity elements of G have order 2, then by an easy exercise, G again has to be abelian

and in fact isomorphic to Z2 × Z2 × Z2. So G has an element of order 4.

Let a ∈ G have order 4, and let H = 〈a〉 = {1, a, a2, a3}. Suppose that there is b 6∈ H with

|b| = 2. Then K = 〈b〉 = {1, b} satisfies H ∩K = {1}, and this clearly forces |HK| = 8 and thus
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HK = G. Moreover, H � G because |G : H| = 2. We now recognize that G is isomorphic to a

semidirect product H oφ K for some homomorphism φ : K 7→ Aut(H). Since we are assuming G

is not abelian, φ should be nontrivial. The only nontrivial automorphism of a cyclic group of order

4 such as H is the inversion map σ : a 7→ a−1, so we must have φ(b) = σ. This means that a and b

are related by bab−1 = a−1. Thus in this case G ∼= D8, similarly as in Example 6.25.

Otherwise, every element outside of H has order 4. Since |a| = |a3| = 4, a2 is the only element

of order 2 in the group. Let us name the element a2 as −1. If x is another element of order 4 in

G, then |x2| = 2 and again x2 = −1. Thus −1 commutes with x. Hence −1 commutes with all

elements of the group and −1 ∈ Z(G). For any x ∈ G, write a2x = xa2 as −x. Then this minus

sign satisfies the obvious rules: −(−x) = x, and −(x)(y) = (−x)(y) = x(−y). Also, if x has order

4, then x(−x) = −x2 = (−1)(−1) = 1, so −x = x−1.

Now choose b 6∈ H, so |b| = 4. Let K = 〈b〉. Let c = ab. Note that c 6∈ H and c 6∈ K,

as otherwise we would get the contradiction H = K. Since |c| = 4, c2 = −1 as well. Now

c−1 = (ab)−1 = b−1a−1 = (−b)(−a) = −(−ba) = ba, so ba = −ab = −c. Multiplying c = ab by a

on the left gives ac = a2b = −b, and multiplying c = ab by b on the right gives cb = ab2 = −a.

Also, ca = aba = a(−ab) = −a2b = −(−b) = b and bc = bab = (−ab)b = −a(b2) = −(−a) = a.

We now have elements a, b, c,−1 in G satisfying the relations a2 = b2 = c2 = −1, ab = c = −ba;

bc = a = −cb, and ca = b = −ac. It also easy to see that the 8 distinct elements of G are

{±1,±a,±b,±c}. Thus G has exactly the multiplication table of Q8. �

Next we attack groups of order 12.

Theorem 6.30. There are precisely 5 groups of order 12 up to isomorphism. The abelian ones are

Z4 × Z3
∼= Z12 and Z2 × Z2 × Z3. The nonabelian ones are A4, D12, and a group T = Z3 oφ Z4,

where φ : Z4 → Aut(Z3) is the unique nontrivial homomorphism.

Proof. The classification of the abelian groups is immediate from Theorem 6.27. So let G be

nonabelian of order 12. Let P be a Sylow 2-subgroup and Q a Sylow 3-subgroup of G. Consider

the number n3 of Sylow 3-subgroups. Since n3 ≡ 1( mod 3) and n3|4, the possibilities are n3 = 1

or n3 = 4. If n3 = 4, counting elements gives (4)(3 − 1) = 8 elements of order 3 in G. Thus the

remaining 4 elements are forced to form a Sylow 2-subgroup, and necessarily P �G. It is easy to

see that P ∩Q = {1} and thus PQ = G. In this case we can proceed by noting that G ∼= P oφ Q

and classifying the possible maps φ : Q → Aut(P ). If P ∼= Z4, then Aut(P ) ∼= Z2 and there are

no maps φ. So P ∼= Z2 × Z2 and φ : Q → Aut(Z2 × Z), where Aut(Z2 × Z2) ∼= GL2(F2). We saw

in Example 6.21 that GL2(F2) ∼= S3. There is in fact a homomorphism φ : Q → S3 (two of them,
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depending on which element of order 3 a generator of Q maps to, but these lead to isomorphic

semidirect products using Exercise 6.23). This leads to a unique nonabelian group Z3 oφ (Z2×Z2)

which has 4 Sylow 3-subgroups.

Actually, there is an easier way to see that there is a unique group up to isomorphism in the case

there are 4 Sylow 3-subgroups, which shows that this semidirect product is something more familiar.

If we have G act on Sylow 3-subgroups by conjugation, it gives a homomorphism ψ : G→ S4. The

kernel of ψ is {g ∈ G|gQg−1 = Q for all Sylow 3-subgroups Q}. Since n3 = 4, NG(Q) = Q for

any Sylow 3-subgroup, so the kernel is contained in the intersection of all the Sylow 3-subgroups,

which is clearly trivial. So ψ is injective, and hence G ∼= ψ(G). Now ψ(G) is a subgroup of S4 of

order 12. We claim that if H ≤ S4 with |S4 : H| = 2 then H = A4. Because |S4 : H| = 2, H � S4.

Then if σ ∈ S4, (σH)2 = 1H in S4/H since this group has order 2. This says σ2 ∈ H. However,

any 3-cycle is a square in S4, since (123) = (132)2. So H contains all 3-cycles. Now the 3-cycles

generate A4, so A4 = H, proving the claim. Thus we see that any group of order 12 with 4 Sylow

3-subgroups is isomorphic to A4. It follows that the nonabelian semidirect product Z3 oφ (Z2×Z2)

found above is isomorphic to A4. This is not hard to see directly.

The other case is where n3 = 1 and hence a Sylow 3-subgroup Q is normal. In this case we get

G ∼= Qoφ P for a homomorphism φ : P → Aut(Q), where Aut(Q) is cyclic of order 2. If P ∼= Z4,

then there is a unique nontrivial homomorphism φ, sending a generator of P to the generator of

Aut(Q). This leads to the group T described in the proposition.

If instead P ∼= Z2 × Z2, then there are multiple nontrivial homomorphisms φ : Z2 × Z2 →

Aut(Q) ∼= Z2, but one can see that they all differ by an automorphism ρ of Z2×Z2 and hence lead

to isomorphic semidirect products by Exercise 6.23. Such a semidirect product Z3 oφ (Z2 × Z2) is

easily shown to be isomorphic to D12. This group is also isomorphic to Z2 ×D6.

We leave the argument that D12, T , and A4 are all different up to isomorphism to the reader. �

7. Series in groups

7.1. Commutators and the commutator subgroup.

Definition 7.1. Let G be a group. For x, y ∈ G, we define the commutator of x and y to be

[x, y] = x−1y−1xy. If X and Y are subsets of G, we define [X,Y ] to be the subgroup of G

generated by all commutators [x, y] with x ∈ X and y ∈ Y .

It is easy to see that [x, y] = 1 if and only if xy = yx. Clearly, [X,Y ] = 1 if and only if

xy = yx for all x ∈ X, y ∈ Y . Thus commutators give a way of expressing when every element
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of one subset commutes with every element of another. We most often use this when X and Y

are subgroups of G. It is important to note, however, that even if H and K are subgroups of G,

then S = {[h, k]|h ∈ H, k ∈ k} might not be a subgroup of G. We will give various constructions

below in which it is crucial that [H,K] be a subgroup, so one must take [H,K] to be the subgroup

generated by the set of commutators S, and not S itself.

Definition 7.2. Let G be a group. The commutator subgroup or derived subgroup of G is G′ =

[G,G].

Since G′ is the subgroup generated by all commutators, more explicitly it can be described as the

set of all finite products of commutators of elements in G and the inverses of these commutators.

Note that [x, y]−1 = (x−1y−1xy)−1 = y−1x−1yx = [y, x]. Thus in this case we can describe G′ more

compactly as the set of all finite products of commutators of elements in G.

Commutators interact with homomorphisms in the expected way.

Lemma 7.3. Let φ : G→ H be a homomorphism of groups.

(1) Let K,L be subgroups of G. Then φ([K,L]) = [φ(K), φ(L)].

(2) φ(G′) ⊆ H ′, with equality if φ is surjective.

Proof. (1) Let S = {[x, y]|x ∈ K, y ∈ L} and T = {[w, z]|w ∈ φ(K), z ∈ φ(L)}. Note that if

[x, y] ∈ S then φ([x, y]) = φ(x−1y−1xy) = φ(x)−1φ(y)−1φ(x)φ(y) = [φ(x), φ(y)] ∈ T . Similarly,

if [w, z] ∈ T then choosing x ∈ K and y ∈ L such that φ(x) = w and φ(y) = z, we have

φ([x, y]) = [w, z]. Thus φ(S) = T . Now taking the groups these generate we get

φ([K,L]) = φ(〈S〉) = 〈φ(S)〉 = 〈T 〉 = [φ(K), φ(L)].

(2) Take K = L = G in (1). �

We now give an important alternative characterization of the commutator subgroup.

Proposition 7.4. Let G be a group, and G′ its commutator subgroup.

(1) G′ charG.

(2) If H �G, then G/H is abelian if and only if G′ ⊆ H.

Proof. (1) This is immediate from applying Lemma 7.3(2) to an automorphism θ : G→ G.

(2) We have that G/H is abelian if and only if xHyH = yHxH for all x, y ∈ G, in other words

if xyH = yxH or x−1y−1xy = [x, y] ∈ H for all x, y ∈ G. Since H is a subgroup this occurs if and

only if G′ ⊆ H. �
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Note that since G′ is normal in G (even characteristic), the proposition says that G′ is the unique

smallest normal subgroup H of G for which G/H is abelian. Equivalently, we can say that G/G′

is the uniquely largest abelian factor group of G. This interpretation is the key to the applications

of the commutator subgroup.

Example 7.5. Let G = Sn for n ≥ 5. Since An is a simple group, it is straightforward to see that

{1}, An and Sn are the only normal subgroups of Sn. We cannot have G′ = 1, since G/G′ = Sn is

not abelian. On the other hand Sn/An has order 2 and is certainly abelian, so G′ ⊆ An. It follows

that G′ = An. We could continue and ask what the commutator subgroup of An is. Again we

cannot have (An)′ = 1. Since An is simple, we must have (An)′ = An.

For n = 4 the situation is different. We know that S4 has proper normal subgroups A4 and

V = {1, (12)(34), (13)(24), (14)(23)}. S4/V is not abelian, but rather isomorphic to S3. On the

other hand, (S4)′ ⊆ A4 just as above. It follows that (S4)′ = A4. One can also check that (A4)′ = V ,

and of course V ′ = 1, as V is abelian.

7.2. Solvable groups.

Definition 7.6. Let G be a group. A subnormal series in G is a chain of subgroups

1 = H0 �H1 �H2 � . . .�Hn−1 �Hn = G

where, as indicated, each Hi is normal in Hi+1. It is a normal series if each Hi �G.

The n groups H1/H0
∼= H1, H2/H1, . . . , Hn/Hn−1 are called the factors of the series.

Unfortunately there is not a consensus in the literature about the terminology for series. Some

authors call what we have called a subnormal series a normal series. Some authors avoid giving

names to these concepts at all, presumably because the existing terminology is confusing.

Definition 7.7. A group G is solvable if it has a subnormal series whose factors are abelian.

Example 7.8. Consider again G = Sn for n ≥ 5. Then the only possible subnormal series for G

are 1 �An � Sn or 1 � Sn, which do not have abelian factors. So Sn is not solvable.

On the other hand, S4 is solvable: the subnormal series 1 � V � A4 � S4 has abelian factors

V ∼= Z2 × Z2, A4/V ∼= Z3, and S4/A4
∼= Z2, respectively.

The term solvable arises from Galois theory, where finite solvable groups are the ones that

correspond to polynomial equations whose roots are solvable by radicals. We will see the connection

when we study the theory of fields. While the original motivation came from Galois theory, solvable
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groups are now an important object of study in group theory itself, and the definition is interesting

for infinite groups as well as finite ones.

Definition 7.9. For any group G, let G(0) = G, G(1) = G′, and define inductively G(n+1) = (G(n))′

for all n ≥ 1. Then G ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) ≥ . . . is called the derived series of G.

Note that we have G(n+1) charG(n) for all n, by Proposition 7.4. Then G(n) charG for all n by

Proposition 1.60.

The derived series gives us a useful test for solvability of a group.

Theorem 7.10. A group G is solvable if and only if G(n) = {1} for some n ≥ 0.

Proof. First let G be solvable, where {1} = H0 �H1 � . . .�Hn−1 �Hn = G is a subnormal series

whose factors Hi+1/Hi are all abelian. It is actually more convenient to index in the other direction

here, so let Ki = Hn−i. Then {1} = Kn �Kn−1 � . . . �K1 �K0 = G, with the factors Ki/Ki+1

abelian.

Now we claim that G(i) ≤ Ki for all i ≥ 0. This is trivial when i = 0. Assume that G(i) ≤ Ki.

Now Ki+1 �Ki and Ki/Ki+1 is abelian. By Proposition 7.4, this means that (Ki)
′ ⊆ Ki+1. But

also G(i) ≤ Ki clearly implies that (G(i))′ ≤ (Ki)
′, either by definition or by applying Lemma 7.3

to the inclusion map. Thus Gi+1 = (G(i))′ ≤ (Ki)
′ ≤ Ki+1, completing the induction step. Thus

G(i) ≤ Ki holds for all i ≥ 0 as claimed. In particular we have G(n) ≤ Kn = {1}.

Conversely, if G(n) = {1} for some n, then {1} = G(n) � G(n−1) � . . . � G(1) � G(0) = G is a

subnormal series. The factors G(i)/G(i+1) = G(i)/(G(i))′ are abelian by Lemma 7.3. Thus G is

solvable. �

Suppose that G is solvable. The theorem shows that the derived series reaches the bottom of

the group G in a finite number of steps, but we have actually shown a bit more. The proof shows

that given any subnormal series for G with abelian factors, then the terms of the derived series are

descending from the top at least as fast. Thus the derived series descends fastest among subnormal

series whose factors are abelian. Another conclusion from the result is that if G is solvable, then it

has a normal series in which the factors are abelian, namely the derived series.

The next result could be proved directly from the definition of solvability by working with an

arbitrary subnormal series with abelian factors. But our criterion for solvability using the derived

series allows for a more elegant proof.

Proposition 7.11. Let G be a group.

(1) If G is solvable, then any subgroup H of G is solvable.
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(2) If G is solvable and H �G, then G/H is solvable.

(3) If H �G and both H and G/H are solvable, then G is solvable.

Proof. (1) We have G(n) = 1 for some n, by Theorem 7.10. But applying Lemma 7.3 and induction,

we have H(i) ⊆ G(i) for all i. Thus H(n) = 1 and H is solvable by Theorem 7.10 again.

(2) Again G(n) = 1 for some n. Now apply Lemma 7.3 to the natural surjection π : G→ G/H to

obtain π(G′) = (G/H)′. In particular, π restricts to a surjection from G′ to (G/H)′. By induction

we obtain π(G(i)) = (G/H)(i) for all i ≥ 0. Thus (G/H)(n) = π(G(n)) = π({1}) = {1} and so G/H

is solvable by Theorem 7.10.

(3) As we just saw, π(G(m)) = (G/H)(m), where π : G → G/H is the natural surjection. Since

G/H is solvable, we have (G/H)(m) = {1} for some m ≥ 0, by Theorem 7.10, and so π(G(m)) = {1}.

Hence G(m) ⊆ kerπ = H. Now since H is solvable, we have H(p) = {1} for some p ≥ 0. Then

(G(m))(p) ⊆ H(p) = {1}. But clearly (G(m))(p) = Gm+p. So G(m+p) = {1} and G is solvable by

Theorem 7.10. �

Let us make some additional comments about the theorem. Given a solvable group G, its derived

length is the smallest integer n ≥ 0, if any, such that G(n) = {1}. The derived length is a rough

measure of how far a solvable group is from being abelian, since a nontrivial abelian group has

derived length 1. Note that the proposition above implies relationships among the derived lengths.

Namely, we actually proved that if G has derived length n, then the derived length of any subgroup

H ≤ G or any factor group G/H is at most n. Also, if H � G where G/H has derived length m

and H has derived length p, then G has derived length at most m+ p.

Suppose that H � G, and let K = G/H. In some sense G is “built up” out of the subgroup

H and the factor group K. In this setting we say that G is an extension of K by H. Calling G

an extension of H by K might seem more natural, because we are enlarging H to the group G,

and K = G/H is what is “added on”. However, the given terminology is standard for historical

reasons.

If one starts with groups H and K, one can ask what the ways are that one can put them

together to form a group G which is an extension of K by H. This is called the extension problem,

which is closely related to the theory of cohomology of groups. The reader can see Chapter 7 of

Rotman’s book “An introduction to the theory of groups” for an introduction to this theory. In

this language, Proposition 7.11(3) says that any group which is an extension of a solvable group

by another solvable one is itself solvable. We can express this by saying that the property of being

solvable is “closed under extensions”.
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Of course, all abelian groups are solvable. We saw above that S4 is solvable, while Sn is not for

n ≥ 5. It is easy to see that finite p-groups are solvable, as will become clear in the next section.

More generally, Burnside proved that if |G| = piqj for primes p and q, then G is solvable. The proof

is considerably more difficult and requires the methods of representation theory. One of the biggest

acheivements in this direction is a famous theorem of Feit and Thompson. They proved that if G

is finite of odd order, then G is solvable. Their theorem was a major stepping stone toward the

classification of finite simple groups, since it ruled out the possibility of nonabelian simple groups

of odd order.

7.3. Nilpotent groups. Nilpotent groups are a class of groups more special than solvable groups.

We will see that finite nilpotent groups can be characterized in a nice way in terms of their Sylow

subgroups. The reader is more likely to encounter the notion of nilpotence in the case of infinite

groups, for example in the theory of Lie groups.

Definition 7.12. A group G is nilpotent if it has a normal series

{1} = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = G

(so Hi �G for all i) such that Hi+1/Hi ⊆ Z(G/Hi) for all 0 ≤ i ≤ n − 1. Such a normal series is

called a central series for G.

Recall that by definition in a normal series each termHi is normal inG, as opposed to a subnormal

series where each Hi is only required to be normal in the next term Hi+1. This is necessary since

the definition refers to the factor group G/Hi. Of course this implies that Hi � Hi+1 for all i as

well, but we avoided writing that in the notation for the series so as to not suggest that the series

is only subnormal.

The condition that each factor Hi+1/Hi be inside the center of the factor group G/Hi takes some

time to process. We will see a number of examples shortly. Actually, it is convenient to recast this

condition using the notation of commutators, which allows one to avoid the explicit use of cosets.

Lemma 7.13. Let H ≤ K ≤ G where H �G. Then K/H ⊆ Z(G/H) if and only if [G,K] ⊆ H.

Proof. An arbitrary element of K/H is xH with x ∈ K, and an arbitrary element of G/H is gH

with g ∈ G. For K/H to be contained in the center of G/H means that xHgH = gHxH for

all x ∈ K and all g ∈ G. This is equivalent to xgH = gxH or [g, x] = g−1x−1gx ∈ H for all

g ∈ G, x ∈ K. Since H is a subgroup, this is equiavlent to [G,K] ⊆ H. �
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Using the lemma, we see that a normal series {1} = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = G is a

central series if and only if [G,Hi+1] ⊆ Hi for all 0 ≤ i ≤ n − 1. We can think of [G,−] as an

operation on subgroups of G, and a central series is one where hitting each term of the series by

this operation pushes you down into the next lowest term.

Example 7.14. Any nilpotent group is solvable. If G has a central series {1} = H0 ≤ H1 ≤ · · · ≤

Hn−1 ≤ Hn = G, then it is also a subnormal series, and since each Hi+1/Hi is in the center of a

group G/Hi, in particular Hi+1/Hi is abelian.

Obviously any abelian group is nilpotent. We will show in a bit that any finite p-group for a

prime p is nilpotent.

Example 7.15. Any nontrivial nilpotent group has a nontrivial center. If G has a central series

{1} = H0 ≤ H1 ≤ · · · ≤ Hn−1 ≤ Hn = G, we can certainly assume that Hi ( Hi+1 for all i,

otherwise some of the terms of the series can just be removed to get a shorter central series. Then

since G is nontrivial, H1 is a nontrivial subgroup of G, and by definition H1/H0 is in the center of

G/H0, i.e. {1} 6= H1 ⊆ Z(G).

For example, S3 is not nilpotent, since Z(S3) = {1}. This is the smallest example of a non-

nilpotent group. On the other hand, S3 is solvable.

Above, we defined one particularly special series of subgroups, the derived series, which can be

investigated to tell if a group is solvable: namely, G is solvable if its derived series reaches the

identity subgroup in finitely many steps. We can define a special series of subgroups which serves

the same purpose for detecting whether a group is nilpotent. But actually in this case there are

two different choices, both of which can be useful.

Definition 7.16. Let G be a group. The upper central series of G is defined as follows. Put

Z0 = {1} and Z1 = Z(G). Then Z1 � G, so we can consider the factor group G/Z1. The center

Z(G/Z1) of G/Z1 has the form Z(G/Z1) = Z2/Z1 for some subgroup Z2 with Z1 ≤ Z2 ≤ G,

and since Z(G/Z1) � G/Z1 we have Z2 � G. Continuing in this way, we construct a sequence of

subgroups Z0 ≤ Z1 ≤ Z2 . . . of G which we call the upper central series.

Proposition 7.17. Let G be a group and let Z0 ≤ Z1 ≤ Z2 ≤ . . . be the upper central series of G.

(1) Zi charG for all i ≥ 0.

(2) G is nilpotent if and only if Zn = G for some n ≥ 0.
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Proof. (1) Z0 charG is obvious. Assume that Zi charG for some i. If σ ∈ Aut(G), then σ(Zi) = Zi

and it follows that there is an induced automorphism σ : G/Zi → G/Zi given by σ(gZi) = σ(g)Zi.

Since the center of a group is characteristic, σ(Z(G/Zi)) = Z(G/Zi). But since Z(G/Zi) = Zi+1/Zi

this is equivalent to σ(Zi+1) = Zi+1. So Zi+1 charG and the result is proved by induction.

(2) Suppose first that Zn = G. Then Z0 ≤ Z1 ≤ Z2 ≤ · · · ≤ Zn = G is a normal series for G, by

(1). By definition, for all i we have Zi+1/Zi ⊆ Z(G/Zi) (in fact this is an equality) and so we have

a central series for G, and G is nilpotent.

Conversely, if G is nilpotent, let H0 = {1} ≤ H1 ≤ · · · ≤ Hn = G be some central series of G.

Then we claim that Hi ⊆ Zi for all i. This is trivial when i = 0. Assume that Hi ⊆ Zi. Since

Hi+1/Hi ⊆ Z(G/Hi), this means that [G,Hi+1] ⊆ Hi ⊆ Zi. This translates back to (Hi+1Zi)/Zi ≤

Z(G/Zi) = Zi+1/Zi, which implies Hi+1 ≤ Zi+1. The claim that Hi ⊆ Zi for all i now holds by

induction.

In particular, Hn = G ⊆ Zn and so Zn = G. �

This proof showed that the terms Zi of the upper central series are “above” the terms Hi of

an arbitary central series. This is why it is called the upper central series; it is the central series

ascending most quickly from the bottom of the group.

Example 7.18. Let G be a finite p-group for a prime p. Then we claim that G is nilpotent.

This is easiest to prove using the upper central series. We may assume that G is nontrivial. Let

Z0 = {1} and Z1 = Z(G). We know that nontrivial p-groups have a non-trivial center, so Z0 ( Z1.

If Z1 = G, we are done. Otherwise the group G/Z1 is again a nontrivial p-group, so it has a

nontrivial center, which is by definition Z2/Z1. So Z1 ( Z2. In this way we prove that as long as

Zi < G, that Zi ( Zi+1. Since G is finite this process must terminate with Zn = G for some n.

Hence by Proposition 7.17, G is nilpotent as claimed.

We briefly discuss the other canonical series of groups that can be used to check nilpotence.

Definition 7.19. Let G a group. We define the lower central series of G as follows. Let G1 = G.

For each n ≥ 1, define by induction Gi+1 = [G,Gi]. The lower central series for G is G1 = G ≥

G2 ≥ G3 ≥ . . .

Note that G2 = [G,G1] = [G,G] = G′ is the same as the derived subgroup of G. But G3 = [G,G2]

is in general bigger than the next term in the derived series, which is G′′ = [G′, G′]. Also, notice

that the lower central series is traditionally indexed differently, starting at the top with G1 rather

than G0.
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Similarly as for the derived series, we can check if a group is nilpotent by seeing if the lower

central series reaches the identity subgroup in finitely many steps.

Proposition 7.20. Let G be a group.

(1) Gi charG for all i ≥ 1.

(2) G is nilpotent if and only if Gn = {1} for some n ≥ 1.

Proof. (1) This is proved by induction on i. Assuming Gi charG, by Lemma 7.3 if σ ∈ Aut(G) then

σ([G,Gi]) = [σ(G), σ(Gi)] = [G,Gi], so [G,Gi] = Gi+1 charG as well, completing the induction

step.

(2) Suppose that Gn = {1}. Consider the series {1} = Gn ≤ Gn−1 ≤ · · · ≤ G1 = G, which is a

normal series by (1). By definition, [G,Gi] = Gi+1 for all i ≥ 1. We saw in Lemma 7.13 that this

implies Gi/Gi+1 ≤ Z(G/Gi+1) for all i ≥ 1. So we have a central series and G is nilpotent.

Conversely, suppose {1} = Hn ≤ Hn−1 ≤ · · · ≤ H2 ≤ H1 = G is some central series for G (we

choose an indexing that is most convenient for comparison to the lower central series). We claim

that Gi ≤ Hi for all i ≥ 1. This is trivial when i = 1. Assume now that Gi ≤ Hi for some i.

Then since the Hi form a central series, [G,Hi] ⊆ Hi+1, using Lemma 7.13. So Gi+1 = [G,Gi] ⊆

[G,Hi] ⊆ Hi+1, proving the induction step and the claim. In particular, Gn ≤ Hn = {1}. �

The proof of the proposition actually shows that the terms of the lower central series Gn are

contained in the terms Hn of an arbitrary central series. That is, the central series Gn is the

“lowest” possible central series, the one that descends most quickly from the top.

Corollary 7.21. Let G be nilpotent.

(1) If H ≤ G, then H is nilpotent.

(2) If H �G, then G/H is nilpotent.

(3) If G and K are nilpotent groups, then G×K is nilpotent.

Proof. (1) It is easy to prove by induction that H i ≤ Gi for all i. Since G is nilpotent, Gn = {1}

for some n ≥ 1 by Proposition 7.20. Then Hn = {1} and so H is also nilpotent by Proposition 7.20

again.

(2) Let π : G → G/H be the natural quotient homomorphism. We claim that π(Gi) = (G/H)i

for all i ≥ 1. This is trivial when i = 1. If it is true for some i, then π(Gi+1) = π([G,Gi]) =

[π(G), π(Gi)] = [G/H, (G/H)i] = (G/H)i+1 by Lemma 7.3, proving the induction step and the

claim. Now Since Gn = {1} for some n, we also have (G/H)n = {1} and so G/H is nilpotent by

Proposition 7.20.
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(3) It is easy to prove by induction that (H ×K)i = H i ×Ki. Since Hm = {1} and Kp = {1}

for some m and p, then (H ×K)n = {(1, 1)} for n = max(m, p). �

Note that Corollary 7.21(3) is weaker than the corresponding property of solvable groups; only

products of nilpotent groups are nilpotent, not arbitrary extensions of nilpotent groups. We have

already seen that S3 is not nilpotent since it has a trivial center; on the other hand S3 is certainly

an extension of two nilpotent groups, since it has a normal subgroup H = {(123)} such that

S3/H ∼= Z2 and H ∼= Z3.

Example 7.22. If G = P1 × P2 × . . . Pn, where each Pi is a pi-group for some prime pi, then G is

nilpotent. This follows since each Pi is nilpotent, by Example 7.18, and nilpotent groups are closed

under taking products, by Corollary 7.21.

We will see later that all finite nilpotent groups look like the ones in Example 7.22.

7.4. The Frattini argument and more on nilpotent groups. We have seen examples of groups

G with subgroups H that are “self-normalizing”, that is NG(H) = H. For example, if P is a Sylow

p-subgroup and np = |G : P | is as large as possible, then since np = |G : NG(P )| by the Sylow

theorems, we must have P = NG(P ). For a more specific example, this happens if |G| = pq with p

dividing q − 1, where the nonabelian such example has q Sylow p-subgroups, so P = NG(P ) for a

Sylow p-subgroup P .

We see next that, in contrast, a nilpotent group cannot have any proper self-normalizing sub-

groups. One summarizes this by saying that “normalizers grow in nilpotent groups”.

Proposition 7.23. Let G be a nilpotent group. If H is a proper subgroup of G, then H ( NG(H).

Proof. Consider any central series for G, say {1} = G0 ≤ G1 ≤ · · · ≤ Gn−1 ≤ Gn = G. Let H be a

proper subgroup of G. Note that G0 = {1} ⊆ H. Let i ≥ 0 be maximum such that Gi ⊆ H. Since

H is proper, i < n, so Gi ⊆ H and Gi+1 * H.

Now by the definition of a central series and Lemma 7.13, [G,Gi+1] ⊆ Gi. In particular,

[H,Gi+1] ⊆ Gi. If g ∈ H and x ∈ Gi+1 this says that [g, x] = g−1(x−1gx) ∈ Gi. Thus

x−1gx ∈ gGi ⊆ H since g ∈ H and Gi ⊆ H. This shows that x−1Hx ⊆ H, so x−1Hx = H since H

is finite. This implies that Gi+1 ⊆ NG(H). But since Gi+1 * H, we obtain H ( NG(H). �

There is a nice technique called “Frattini’s argument” that sometimes comes in handy in the

analysis of normalizers.
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Lemma 7.24 (Frattini’s argument). Let G be a group with N � G. Suppose that N is finite and

P is a Sylow p-subgroup of N for some prime p. Then NG(P )N = G.

The statement of the result is not very intuitive, as it suggests the normalizers of Sylow p-

subgroups should be “big”, i.e. big enough to generate G along with N . After all, we gave

examples above of Sylow p-subgroups that are self-normalizing. But one must remember that P

is a Sylow p-subgroup of N , not of G, so its normalizer may well be bigger than that of a Sylow

p-subgroup of G. And the fact that N is itself normal plays a key role in ensuring that NG(P ) is

large. This may be an example of a theorem that only makes sense once one sees the rather simple

and elegant proof.

Proof. Let x ∈ G. Note that xPx−1 ⊆ xNx−1 = N , since N � G. Since xPx−1 is a conjugate of

P , |xPx−1| = |P | and so xPx−1 must be another Sylow p-subgroup of N . Now we use the Sylow

conjugacy theorem in the group N : all Sylow p-subgroups of N are conjugate in N , that is, by an

element of N . So there is y ∈ N with y(xPx−1)y−1 = P . Now (yx)P (yx)−1 = P , which means

that yx ∈ NG(P ). Setting z = yx ∈ NG(P ), we have x = y−1z ∈ NNG(P ). Since x ∈ G was

arbitrary, G = NNG(P ) = NG(P )N (since N �G). �

We now have all of the ingredients for some very nice characterizations of finite nilpotent groups.

Theorem 7.25. Let G be a finite group. The following are equivalent:

(1) G is nilpotent.

(2) All maximal subgroups of G are normal in G.

(3) All Sylow p-subgroups of G are normal in G.

(4) G is a finite direct product of groups of prime power order.

Proof. (1) =⇒ (2): Let G be nilpotent and let M ( G be a maximal subgroup of G. By definition,

there is no subgroup H with M ( H ( G. However, we know that normalizers grow in nilpotent

groups, so M ( NG(M), by Proposition 7.23. This forces NG(M) = G, so M �G.

(2) =⇒ (3): Let P be a Sylow p-subgroup of G for some prime p. Suppose that P is not normal

in G, so NG(P ) ( G. Since G is finite and NG(P ) is proper, we can choose some maximal subgroup

M of G with NG(P ) ⊆M ( G. Now by assumption (2), M is normal. Apply Frattini’s argument

to M , noting that because P is a Sylow p-subgroup of G, it must also be a Sylow p-subgroup of

M . Lemma 7.24 gives G = MNG(P ). But NG(P ) ⊆ M so MNG(P ) = M ( G, a contradiction.

So P is normal in G after all.
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(3) =⇒ (4): Let p1, . . . , pk be the distinct prime factors of |G| and let Pi be a Sylow pi-

subgroup for each i. We saw earlier that when Pi�G for all i, that G is an internal direct product

of P1, P2, . . . , Pk and so G ∼= P1 × P2 × · · · × Pk (Corollary 6.4).

(4) =⇒ (1): this is the content of Example 7.22. �

The theorem shows that finite nilpotent groups are just the groups in which all of their Sylow

p-subgroups are normal. They are also just mild generalizations of finite p-groups (finite products

of p-groups). Given that, the reader might wonder we we bother with the rather more complicated

definition of nilpotent group. The point is that this concept is also important in the theory of

infinite groups, where nilpotent groups don’t admit such a simple alternative description.

7.5. Composition series. In this optional section, we review some of the basic properties of

composition series, another type of series that is useful in describing finite groups.

Definition 7.26. A composition series for a group G is a subnormal series

1 = H0 �H1 � . . .�Hn−1 �Hn = G

such that every factor Hi+1/Hi is a simple group. The factors of the composition series are called

composition factors. The length of the composition series is the number n of simple factors; A

group G has finite length if it has a composition series. In this case the length of G, written `(G),

is the smallest n ≥ 0 such that G has a composition series of length n. By convention, the trivial

group G = {1} is considered to have the composition series {1} = H0 = G of length 0 with no

factors.

Notice that a composition series is a subnormal series with nontrivial factors which is maximal

in the sense that we cannot insert any more terms. If, say in between Hi and Hi+1 we tried to

add another subgroup K with Hi � K � Hi+1, then by subgroup correspondence we would have

K/Hi �Hi+1/Hi. Since Hi+1/Hi is simple, that would force K = Hi or K = Hi+1, so inserting K

would lead to a subnormal series with a trivial factor. (Recall that by convention the trivial group

is not simple.)

We claim that every finite group G has a composition series. If G is trivial, we agree by the above

convention that G has a composition series with no factors. If G is nontrivial, first note that among

the proper normal subgroups of G, since G is finite we can choose one, say H1, which is maximal

in the sense that there are no normal subgroups K of G with H1 ( K ( G. Then G/H1 must

be a simple group by subgroup correspondence. Now in a similar way we can choose a maximal

proper normal subgroup H2 of H1, and so on. Because each time we choose a proper subgroup, this
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process must end at some point with Hn = {1}, and then {1} = Hn �Hn−1 � . . .�H1 �H0 = G

is a composition series for G.

Thus all finite groups have finite length. An infinite group might or might not have finite length.

Example 7.27. Given a cylic group of order n, say G = 〈a〉, then choosing any sequence of (not

necessarily distinct) prime numbers p1, p2, . . . pk whose product is n, we get a sequence of subgroups

H0 = {1}�H1 = 〈ap2p3...pk〉�H2 = 〈ap3...pk〉� · · ·�Hk−1 = 〈apk〉�Hk = G = 〈a〉

where Hi+1/Hi has prime order pi for each i, and hence Hi+1/Hi
∼= Zp is simple. So this is a

composition series for G.

We see from the previous example that a group may have many different composition series; in

that example one can take the primes whose product is n and put them in any desired order. For

example, if n = p1p2 . . . pk happened to be a product of distinct primes p1, p2, . . . , pk then there

would be k! choices.

Since a given group might have many different composition series, an obvious question is how

different they can actually be. The Jordan-Hölder Theorem, which we prove next, shows that for

most purposes the differences are not substantial. Namely, the number of terms in a composition

series of a group is always the same, and the same list of simple composition factors must occur

up to isomorphism after rearranging the lists. The result is important to know, but the proof is

rather technical and the reader may safely skip the proof on a first reading.

Theorem 7.28 (Jordan-Hölder). Let G be a group of finite length n = `(G) < ∞. Choose a

composition series G0 = {1}�G1 � · · ·�Gn−1 �Gn = G that achieves this minimal length, with

simple factors Ti = Gi/Gi−1 for 1 ≤ i ≤ n. Let H0 = {1} �H1 · · · �Hm−1 �Hm = G be another

composition series for G, with simple factors Ui = Hi/Hi−1 for 1 ≤ i ≤ m.

Then m = n and there is a permutation π of {1, . . . , n} such that Ui ∼= Tπ(i) for all i.

Proof. We induct on the length of G. We say finite lists of groups T1, . . . , Tm and U1, . . . , Un are

equivalent if m = n and there is a permutation π of {1, . . . , n} such that Ui ∼= Tπ(i) for all 1 ≤ i ≤ n.

In other words, the goal is precisely to prove that the lists of simple factors associated to the two

given composition series are equivalent.

If `(G) = 0 then G is trivial and there is nothing to show. So assume that `(G) = n ≥ 1 and

that the theorem holds for all groups H with `(H) < n.

Suppose first that Hm−1 = Gn−1, i.e. that both given composition series of G have the same

next to last term. Both {1}�G1 � · · ·�Gn−2 �Gn−1 and {1}�H1 · · ·�Hm−2 �Hm−1 = Gn−1 are
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composition series of Gn−1, with n−1 and m−1 factors, respectively. In particular, `(Gn−1) ≤ n−1

and so the induction hypothesis applies, giving m − 1 = n − 1 and hence m = n. Moreover, the

lists T1, . . . , Tn−1 and U1, . . . , Un−1 are equivalent. Then since Tn = G/Gn−1 = G/Hn−1 = Un also,

we see that T1, . . . , Tn and U1, . . . , Un are equivalent lists as well, as desired.

The other case is where K = Hm−1 6= L = Gn−1. Since K � G and L � G, KL � G. Because

G/L is simple and L ≤ KL � G, by subgroup correspondence either KL = L or KL = G. But

if KL = L then K ⊆ L. Since G/K is simple and L/K is a proper normal subgroup, this gives

L = K, a contradiction. Thus KL = G. By the second isomorphism theorem, Tn = G/L =

KL/L ∼= K/(K ∩ L) and Um = G/K = LK/K ∼= L/(K ∩ L).

Choose any composition series of K ∩ L, say {1} = N0 � N1 � N2 � · · · � Np = K ∩ L, with

simple factors Vi = Ni/Ni−1 for 1 ≤ i ≤ p. Then {1} = N0 �N1 �N2 � · · ·�Np = K ∩ L� L is a

composition series of L with p+1 simple factors, V1, V2, . . . , Vp, L/(K∩L) ∼= Um. As in the previous

step, L = Gn−1 also has a composition series {1}�G1� · · ·�Gn−2�Gn−1, so `(Gn−1) ≤ n−1, and

the induction hypothesis applies. So p+ 1 = n− 1 and p = n− 2. Moreover, V1, V2, . . . , Vn−2, Um

is equivalent to T1, . . . , Tn−1. Similarly, {1} = N0 � N1 � N2 � · · · � Nn−2 = K ∩ L � K is a

composition series of K with the n − 1 factors V1, . . . , Vn−2, Tn. This shows that `(K) ≤ n − 1

and so the induction hypothesis applies to K. Since {1} � H1 · · · � Hm−2 � Hm−1 = K is also

a composition series of K, m − 1 = n − 1 and m = n. Moreover, U1, . . . , Un−1 is equivalent to

V1, V2, . . . Vn−2, Tn.

Finally, since T1, . . . , Tn−1 is equivalent to V1, V2, . . . , Vn−2, Un, then T1, . . . , Tn−1, Tn is equivalent

to V1, V2, . . . , Vn−2, Un, Tn. Similarly, since U1, . . . , Un−1 is equivalent to V1, V2, . . . Vn−2, Tn, we

have U1, . . . , Un is equivalent to V1, V2, . . . , Vn−2, Tn, Un. But obviously V1, V2, . . . , Vn−2, Un, Tn is

equivalent to V1, V2, . . . , Vn−2, Tn, Un. So T1, . . . , Tn and U1, . . . , Un are equivalent as required. �

Example 7.29. In Example 7.27, we saw that Zn has many different composition series. As the

Jordan-Hölder Theorem predicts, the composition factors are always the groups Zp1 ,Zp2 , . . . ,Zpk
in some order, where p1, p2, . . . , pk are primes whose product is n. In turn this can be used to show

that any composition series of Zn must be of the form given in Example 7.27, since a cyclic group

has a unique subgroup of each order dividing the order of the group.

Example 7.30. A composition series for S4 is 1� 〈(12)(34)〉�V �A4 �S4. The group 〈(12)(34)〉

can be replaced by any of the other order 2 subgroups of V , obtaining a different composition series,

but one with the same composition factors Z2,Z2,Z3,Z2 (in fact they always occur in this order in

this case).
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A composition series for a finite group G exhibits the simple groups which are “building blocks”

for G. If G has a composition series of length two, for example, then {1} � G1 � G where G1 is

simple and G/G1 is simple. If we could understand all simple finite groups and also understand all

extensions of one by another, then we could classify all such groups. Then a group with composition

series length 3 is an extension of a simple group by a group of composition series length 2, so if we

understand such extensions we could classify such groups as well. In this way via composition series

the classification of finite groups reduces to the classification of simple groups and the extension

problem.

In fact, as has already been mentioned in these notes, the classification of finite simple groups

has been completed, with several well-understood infinite families of examples and a number of

“sporadic” simple groups which do not naturally occur in families. The extension problem is still

very difficult, and one should not expect to be able to completely classify all groups with a given

set of composition factors up to isomorphism, except in special cases. But there are many problems

about groups that reduce to showing something holds for the composition factors of a group. Since

we know now what the finite simple groups are, this has allowed for new results to be proved about

finite groups by checking each of the simple groups in the classification.

Let us also discuss the relationship between composition series and solvable groups. Composition

series are subnormal series where the factors are simple, and a solvable group has a subnormal series

where the factors are abelian. What if a subnormal series has both properties, i.e. the factors are

simple and abelian? In fact simple abelian groups are very special.

Lemma 7.31. The following are equivalent:

(1) G is solvable and simple.

(2) G is abelian and simple.

(3) G is finite of prime order p.

Proof. (1) =⇒ (2): Recall that simple groups are nontrivial. If G′ = G, then G(i) = G for all i

by induction. But by Theorem 7.10, since G is solvable we have G(n) = {1} for some n. So G is

trivial, a contradiction. Thus G′ must be a proper subgroup of G, and we know G′ is normal in G.

Since G is simple, G′ = {1}. This means that G = G/G′, which is abelian by Proposition 7.4.

(2) =⇒ (3): Since G is abelian, all of its subgroups are normal. Since G is simple, its only

normal subgroups are the trivial subgroup and G. So G has only two subgroups, {1} and G. Given

g ∈ G, either g = 1 or else G = 〈g〉. So G is cyclic, and every nonidentity element of G is a
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generator. Since the trivial group is not simple by definition, this is true only when G is finite

cyclic of prime order.

(3) =⇒ (1): A group of prime order p is isomorphic to Zp, which is obviously solvable and

simple. �

This leads to another useful characterization of finite solvable groups.

Theorem 7.32. If G is a group of finite length, then G is solvable if and only if all composition

factors of G have prime order.

Proof. Note that by the Jordan-Hölder Theorem, whether the composition factors of G have prime

order is independent of the choice of composition series.

Suppose that G is solvable. Let 1 = H0 �H1 � . . .�Hn−1 �Hn = G be a composition series for

G. By Proposition 7.11, solvability passes to subgroups and factor groups, so each subgroup Hi is

solvable, and then each factor group Hi+1/Hi is solvable, as well as simple. Hence each factor is

finite of prime order p, by Lemma 7.31.

Conversely, if G has a composition series 1 = H0 �H1 � . . .�Hn−1 �Hn = G where each factor

Hi+1/Hi has prime order, then each factor is cyclic and so abelian. Thus this subnormal series

shows that G is solvable. �

In particular, the theorem applies to all finite groups, and characterizes which are solvable in terms

of their composition factors: only the abelian simple groups Zp can occur, no non-abelian simple

groups. Also, the theorem implies that a solvable group of finite length must actually be finite.

Example 7.33. In Example 7.30, we see that a composition series for S4 has factors of prime orders

2, 2, 3, 2, confirming that this group is solvable. On the other hand, the only possible composition

series of Sn for n ≥ 5 is {1}�An�Sn, which has a factor An which is not of prime order, confirming

that Sn is not solvable.

Example 7.34. Let G be a finite nontrivial p-group for a prime p, so |G| = pn for some n ≥ 1.

In any composition series for G, the simple factors must be p-groups also. We saw earlier that any

p-group has a nontrivial center, so a simple p-group must be abelian and therefore isomorphic to

Zp. Thus every composition factor of G is isomorphic to Zp and so G is solvable by Theorem 7.32.

In fact we showed earlier that a p-group is even nilpotent, which is stronger than solvable.

Example 7.35. Using the techniques coming from the Sylow theorems, it is straightforward to

show that there are no nonabelian simple groups G with |G| < 60. In other words, A5 is the
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smallest nonabelian simple group. But then if |G| < 60, every simple factor in a composition series

for G must be an abelian simple group, so G is solvable. Thus A5 is also the smallest nonsolvable

group.

8. Crash course on rings

In these notes, we also assume the reader has some familiarity with rings from an undergraduate

course, so as with groups we review the basic facts quickly. Also, some concepts, such as the

isomorphism theorems for rings, are very similar to their group-theoretic counterparts and are

easier to digest the second time you see them.

A ring is an object that captures the properties familiar to us from common systems of numbers,

such as the integers and real numbers. In particular, a ring has both an addition and multiplication

operation which satisfy some basic compatibilities. As we will see, however, this definition is general

enough to apply to systems of “numbers” far removed from the original examples.

8.1. Basic definitions and examples.

Definition 8.1. A ring is a set R with two binary operations + and · (called addition and multi-

plication, respectively) with the following properties:

(1) R is an abelian group under +. The identity element is called 0 and the additive inverse of

a is written −a.

(2) R is a monoid under ·; that is, · is an associative operation with identity element called 1,

where a · 1 = a = 1 · a for all a ∈ R. The element 1 is also called the unit of the ring.

(3) The addition and multiplication are related by the two distributive laws:

(a) a · (b+ c) = a · b+ a · c for all a, b, c ∈ R

(b) (b+ c) · a = b · a+ c · a for all a, b, c ∈ R.

If a · b = b · a for all a, b ∈ R, the ring R is called commutative; otherwise it is noncommutative.

Usually when the context is clear one simply writes the product a · b as ab. Historically, rings

were often defined without the assumption of an identity element 1 for multiplication, that is, R

with its operation · was only assumed to be a semigroup. However, the more modern convention is

to include the existence of 1 as part of the main definition, as we have done. An object that satisfies

all of the axioms except for the existence of 1 is called a ring without identity or ring without unit.

(Nathan Jacobson introduced the amusing term “rng” for a ring without identity in his well-known

algebra text, but it didn’t catch on.) Occasionally it is useful to work with a ring without unit but

we will seldom encounter such rings in this course.
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Because of the distributive laws, the identity element 0 for addition also has special properties

with regard to multiplication. If a ∈ R for a ring R, then 0a = (0 + 0)a = 0a + 0a. Since 0a has

an additive inverse −(0a), adding it to both sides gives 0 = 0a. Similarly, 0 = a0. Other easy

consequences of the definition are in the following exercise.

Exercise 8.2. Show the following for any a, b in a ring R:

(1) (-a) b = -(ab) = a(-b).

(2) a(-1) = -a = (-1) a.

(3) (-a)(-b) = ab.

Some simple examples of rings are given as follows. We generally will leave the routine verifica-

tions of the ring axioms to the reader.

Example 8.3. The familiar number systems of Z,Q,R, and C are all rings under the usual oper-

ations. Note that the natural numbers N = {0, 1, 2, . . . } do not form a ring, as additive inverses do

not exist for the positive numbers in N.

Example 8.4. The subset 2Z of even integers in Z, under the usual addition and multiplication,

is a ring without identity.

Example 8.5. The one-element set R = {0}, with the only possible operations 0 + 0 = 0 and

00 = 0, is a ring, called the trivial or zero ring. Obviously 0 must serve as both the additive and

multiplicative identity, so 0 = 1.

Conversely, suppose that R is a ring whose multiplicative and additive identities coincide. Then

for any r ∈ R we have r = 1r = 0r = 0, so that R = {0} is the zero ring.

The zero ring is obviously uninteresting. It sometimes needs to be excluded from theorem

statements to make them strictly true, but hopefully the reader will forgive the author if he forgets

to do that.

Example 8.6. For any integer n ≥ 1, the set Zn of congruence classes modulo n, with the usual

addition and multiplication of congruence classes, is a ring. Usually we take n ≥ 2, since when

n = 1 we obtain the zero ring. We can think of Zn as the factor group Z/nZ under addition, and

we write the coset a+ nZ as a. Then of course a+ b = a+ b, and the multiplication in Zn is given

by a b = ab.

All of the examples so far are commutative rings. One learns in a first course in linear algebra

that matrix multiplication is not commutative, and in fact rings of matrices are among the simplest

examples of noncommutative rings.
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Example 8.7. Let R be a ring, for example any of the familiar number systems in Example 8.3,

and let n ≥ 1. We form a new ring S = Mn(R) whose elements are formal n × n matrices with

entries in the ring R. Write an element of S as (rij) where rij ∈ R is in the (i, j)-position of the

matrix (that is, row i and column j). We define an addition and multiplication on S in the usual

way for matrices. More specifically, addition is done coordinatewise, so (rij) + (sij) = (rij + sij),

and the product (rij)(sij) is the matrix (tij) with tij =
∑n

k=1 rikskj . The identity matrix with 1’s

along the main diagonal and 0’s elsewhere is a unit element for S. Since R is a ring, it is routine

to see that S is again a ring.

As long as n ≥ 2, it is easy to find matrices A,B ∈ Mn(R) such that AB 6= BA, so Mn(R) is a

noncommutative ring. (Here you must exclude the case where R is the zero ring, for which Mn(R)

is also the zero ring. We will not keep mentioning it.)

There are various other constructions which, like matrix rings, produce new rings from a given

ring or rings. Here are some further examples.

Example 8.8. Let {Rα|α ∈ A} be an indexed collection of rings. The direct product is the ring∏
α∈ARα, that is, the Cartesian product of these sets, is a ring with coordinatewise operations.

In other words, if we write an element of this ring as (rα), where rα ∈ Rα is the element in

the α-coordinate, then (rα) + (sα) = (rα + sα) and (rα)(sα) = (rαsα). Note that as groups

under +, this is just the direct product of the abelian groups (Rα,+). If Rα has additive identity

0α and multiplicative identity 1α, then the elements (0α) and (1α) are the additive identity and

multiplicative identity of the product.

Example 8.9. Let R be any ring. We define the ring of power series R[[x]] in an indeterminate x to

be the set of all formal sums {a0 +a1x+a2x
2 + · · ·+amx

m+ . . . | ai ∈ R}. Note that no convergence

is expected or implied, and we don’t try to think of these as functions in the variable x; an element

of R[[x]] is simply determined by the countable sequence of coefficients (a0, a1, a2, a3, . . . ), and the

powers of x can be viewed as placeholders to help explain the multiplication rule. Formally as an

abelian group we can identify R with
∏∞
i=0R, the product of a countable number of copies of R.

We write an element of R[[x]] as
∑∞

n=0 anx
n. The addition and multiplication are as expected

for power series; namely, (
∑
anx

n) + (
∑
bnx

n) =
∑

(an + bn)xn, and

(
∑

anx
n)(
∑

bnx
n) =

∞∑
n=0

[
n∑
i=0

aibn−i]x
n

(note that only finite sums of elements in R are needed to define each coefficient of the product).
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Example 8.10. Actually more important for us than the ring of power series is the polynomial

ring R[x], which is the subset of R[[x]] consisting of elements
∑
anx

n such that an = 0 for all

n > m, some m. Thus a typical element is a formal polynomial a0 + a1x+ a2x
2 + · · ·+ amx

m with

ai ∈ R. As an abelian group, we can identify R[x] with the direct sum
⊕∞

n=0R of a countable

number of copies of R. (the direct sum of a set of abelian groups was also called the restricted

product earlier). R[x] is is a ring under the same operations as for the power series ring restricted

to this subset, in other words R[x] is a subring of R[[x]] in the sense to be defined soon.

The next example gives an interesting link between group theory and ring theory.

Example 8.11. Let G be a group and let R be a ring. The group ring RG consists of finite formal

sums of elements in G with coefficients in R. We can write any such formal sum as
∑

g∈G rg g,

where rg ∈ R and rg = 0 for all but finitely many g; in other words RG ∼=
⊕

g∈GR as Abelian

groups.

The addition operation simply adds like coefficients:
∑
rg g +

∑
sg g =

∑
(rg + sg) g. The

multiplication operation is defined on elements with one term using the group structure of G, so

(rg)(sh) = (rs)(gh), where rs is the product in R and gh is the product in G. This is then extended

linearly to define a product on finite sums, so

(
∑

rg g)(
∑

sg g) =
∑
g∈G

[
∑
h∈G

rhsh−1g] g.

The identity element of RG is 1R1G.

For a finite group G, studying the group ring FG over a field F gives a surprisingly powerful

tool for understanding better the properties of G; in particular, the structure of this group ring

is directly related to the representation theory of the group G over F . For simplicity consider the

case of group rings over C. If G is a finite group, then it turns out the CG is isomorphic as a ring

to a direct product of finitely many matrix rings over C (we will review isomorphism of rings in

the next section). More specifically, CG ∼= Mn1(C)× · · · ×Mns(C), where the number of factors s

is equal to the number of conjugacy classes of G, and the numbers n1, . . . , ns are the dimensions

of the distinct irreducible representations of G. You can find more information in Chapter 18 of

Dummit and Foote.

8.2. Zero-divisors and units. The standard rings of numbers such as Q,R,C which one uses in

calculus have some special properties which are not satisfied by arbitrary rings. First, in a general

ring one can have ab = 0 even if a and b are not 0.
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Definition 8.12. Let R be a ring. If a, b ∈ R are elements with a 6= 0 and b 6= 0 but ab = 0,

then a and b are called zero-divisors. Notice that by definition a zero-divisor is nonzero. A ring R

with no zero-divisors is called a domain. A commutative domain is often called an integral domain

for historical reasons, since among the rings studied extensively were certain (commutative) rings

important in number theory which are so-called “rings of integers” in a number field.

Note that the rings of numbers in Example 8.3 are all integral domains. We can ask what the

zero-divisors are in some of our other examples so far.

Example 8.13. The ring Zn of integers mod n is an integral domain if and only if n is prime. For

if n is not prime, then n = mk with 1 < m < n and 1 < k < n; thus m 6= 0 and k 6= 0; however

mk = n = 0.

Conversely, if n is a prime p, then if ab = 0 we get that p divides ab, and so either p divides a or

p divides b by Euclid’s Lemma. Thus a = 0 or b = 0.

The other special property that number systems like Q,R,C have is the ability to divide a

number by any other nonzero number. Formally, this is the property that all nonzero numbers

have multiplicative inverses, as in the following definition.

Definition 8.14. Let R be a ring. An element a ∈ R is a unit if there is b ∈ R such that

ab = 1 = ba; there is clearly a unique such b if it exists. The element b is called the inverse of a

and one writes b = a−1.

Note that a unit in a ring cannot be a zero-divisor; for if ac = 0 and also a is a unit, then

c = a−1ac = a−10 = 0; similarly, ca = 0 forces c = 0. The set R× of all units in a ring is easily seen

to be a group under the multiplication operation of the ring. (This is a special case of Lemma 1.5,

which showed that the set of invertible elements in any monoid is a group.) R× is called the units

group of R. Another common notation for this group is U(R).

Definition 8.15. A ring R is a division ring if R× = R− {0}, that is, every nonzero element is a

unit. A commutative division ring is called a field. (An older term for division ring is skew field.)

By convention the zero ring is not considered a field.

Example 8.16. Z× = {−1, 1}, while Q,R,C are fields.

Example 8.17. Let F be any field, so we can apply results in linear algebra to the matrix ring

Mn(F ). It is easy to see that a nonzero matrix A is a zero-divisor if and only if it is singular, i.e.
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has a nonzero nullspace. (If Av = 0 for some nonzero column vector v, let B be any nonzero matrix

whose columns are all multiples of v; then AB = 0.) By theorems in linear algebra, A is singular

if and only if detA = 0.

Example 8.18. The units in Zn are Z×n = {a| gcd(a, n) = 1}. This was shown earlier in Exam-

ple 1.8.

In particular, when n = p is a prime number, then Zp is a field, since Z×p = Zp − {0}. This field

is also written as Fp.

Division rings which are not fields exist in abundance, but it is less obvious how to construct

examples. The ring of quaternions H, discovered by William Rowan Hamilton in 1843, was the first

such example.

Example 8.19. Let H be a 4-dimensional vector space over R with basis 1, i, j, k. We define a

product on these 4 symbols, where 1x = x = x1 for x ∈ {i, j, k}; ij = k = −ji; jk = i = −kj,

ki = j = −ik, and i2 = j2 = k2 = −1. This product is extended R-linearly to give a product on

all of H; an easy calculation shows that the product is associative on the basis {1, i, j, k}, which

implies that the product is associative on all of H. We leave the verification that H is a division

ring to Exercise 8.31.

Note that H contains the subset {±1,±i,±j,±k} which is isomorphic to the quaternion group

Q8 under multiplication; this is how the quaternion group got its name.

Example 8.20. If F is a field, then the units in Mn(F ) are exactly the invertible matrices by

definition. In other words, the units group (Mn(F ))× is the general linear group GLn(F ). By

results in linear algebra one knows that any matrix is either invertible A (if detA 6= 0) or singular

(if detA = 0). Since we noted above that the singular nonzero matrices are zero-divisors, every

nonzero element in Mn(F ) is either a zero-divisor or a unit.

Figuring out which elements are zero-divisors, and which are units, can be surprisingly compli-

cated even for rings which are easy to define. Let us give some more examples.

Example 8.21. Let S =
∏
αRα. The units in S are the (rα) such that rα is a unit in Rα for all

α. An element (rα) of S is a zero-divisor if and only if at least one of the coordinates rα is either

0 or a zero-divisor in Rα, but not all of the coordinates are 0. Thus as long as S is a product of at

least 2 nonzero rings, then S is not a domain.

An element r ∈ R of a ring is nilpotent if there exists n ≥ 1 such that rn = 0.
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Example 8.22. Let R be a commutative ring and let S = R[x]. An element
∑m

i=0 aix
i is a unit in

S if and only if a0 is a unit in R and a1, . . . , am are nilpotent in R. This is most easily proved after

we have seen a bit more theory (see Exercise 9.10). McCoy’s Theorem states that
∑m

i=0 aix
i is a

zero-divisor in R if and only if there is b 6= 0 in R such that aib = 0 for 0 ≤ i ≤ m (Exercise 8.30).

Example 8.23. Let R be a commutative ring and let S = R[[x]] be a power series ring over R. An

element
∑∞

i=0 aix
i is a unit in S if and only if a0 is a unit in R (see Exercise 8.27). The classification

of zero-divisors is apparently not known in complete generality, though if R is a Noetherian ring (as

we will define later), the analog of McCoy’s Theorem holds here (i.e. if
∑∞

i=0 aix
i is a zerodivisor,

then there exists b 6= 0 in R such that aib = 0 for all i ≥ 0.)

Example 8.24. As mentioned earlier, if G is a finite group, then there is an isomorphism φ :

CG → Mn1(C) × . . .Mns(C) for some integers n1, . . . , ns. If one finds this isomorphism explicitly,

one could then determine the units and zerodivisors of CG explicitly because this problem is solved

in the ring Mn1(C) × . . .Mns(C). Namely, if (A1, . . . , As) is an element of the latter ring, it is a

unit if and only if each Ai is an invertible matrix in Mni(C), and it is a zerodivisor if at least one

Ai is singular (but not all Ai are 0). Exercise 8.59 shows how to find the isomorphism φ explicitly

when G is finite cyclic.

On the other hand, for an arbitrary group G and an arbitrary ring R, the structure of the units

and zerodivisors of the group ring RG is a very complicated subject about which there are still

many open questions. This is true even if F is a field. For example, Kaplansky’s unit conjecture

asks if F is a field and G is a (necessarily infinite) group in which all nonidentity elements have

infinite order, is every unit of FG of the form ag for some 0 6= a ∈ F and g ∈ G? A counterexample

to this long-standing conjecture was apparently found by Giles Gardam and announced just in

2021.

One thing that is elementary to see here is the fact that if R is a domain, so are R[x] and R[[x]].

Thus the formation of polynomial or power series rings does not “create” zero-divisors. Let us

concentrate on R[x]; we leave the case of R[[x]] as an exercise. For any 0 6= f ∈ R[x], we can write

f as a0 + a1x+ · · ·+ amx
m, where am 6= 0; thus xm is the largest power of x to occur with nonzero

coefficient. Then we call m the degree of f and write deg(f) = m. This definition doesn’t make

sense for the zero-polynomial (where ai = 0 for all i) and by convention we set deg(0) = −∞.

Lemma 8.25. Let R be a domain.

(1) If f, g ∈ R[x] then deg(fg) = deg(f) + deg(g).
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(2) R[x] is a domain.

Proof. (1) Suppose first that f and g are both nonzero. If f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i with

am 6= 0, bn 6= 0, then by the definition of multiplication we have fg =
∑m+n

i=0 (
∑i

j=0 ajbi−j)x
i which

clearly has degree at most m + n; the coefficient of xn+m is ambn, which is nonzero since R is a

domain. Thus deg(fg) = deg(f) + deg(g). If either f or g is 0, then fg = 0, and in this case the

result holds with the conventions that −∞+ n = −∞ for any number n, and −∞+−∞ = −∞.

(2) If f, g ∈ R[x] with f 6= 0, g 6= 0, and therefore deg(f) ≥ 0 and deg(g) ≥ 0, by (1) we have

deg(fg) ≥ 0. In particular deg(fg) 6= −∞ and so fg 6= 0. �

8.2.1. Exercises.

Exercise 8.26. Let R be a commutative ring, and consider the ring R[[x]] of formal power series

in one variable. Prove that if R is a domain then R[[x]] is a domain.

Exercise 8.27. Let R be a commutative ring. Prove that
∑∞

n=0 anx
n is a unit in the ring R[[x]]

if and only if a0 is a unit in R.

Exercise 8.28. Recall that the center of a ring R is

Z(R) = {r ∈ R|rs = sr for all s ∈ R}.

Now let R be any commutative ring, and G any finite group. Consider the group ring RG.

(a). Suppose that K = {k1, . . . , km} is a conjugacy class in the group G. Prove that the element

K = k1 + k2 + · · ·+ km ∈ RG is an element of Z(RG).

(b). Let K1, . . . ,Kr be the distinct conjugacy classes in G and for each i let Ki be the sum of the

elements in Ki, as in part (a). Prove that Z(RG) = {a1K1 + · · ·+ arKr|ai ∈ R for all 1 ≤ i ≤ r}.

In other words, the center consists of all R-linear combinations of the Ki.

Exercise 8.29. Let R be a commutative ring. Suppose that x is nilpotent and u is a unit in R.

Show that u− x is a unit in R.

(Hint: reduce to the case that u = 1. Note that (1− x)(1 + x+ x2 + · · ·+ xm−1) = 1− xm.)

Exercise 8.30. Prove McCoy’s Theorem: If f = a0 + a1x+ · · ·+ amx
m ∈ R[x] for a commutative

ring R and f is a zero-divisor in R[x], then there exists 0 6= b ∈ R such that bai = 0 for all

0 ≤ i ≤ m. (Hint: assume that am 6= 0 and let 0 6= g ∈ R[x] be of minimal degree such that fg = 0.

Write g = b0 + b1x + · · · + bnx
n with bn 6= 0. Suppose that aig = 0 for all i; then aibj = 0 for all

i, j and so bnf = 0 and we are done. Thus some aig 6= 0 and we can take j maximal such that

ajg 6= 0. Then f(ajg) = 0 but deg(ajg) < deg g.)
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Exercise 8.31. Let H be the ring of Hamilton’s quaternions as in Example 8.19.

(a). Define the conjugate of x = a+ bi+ cj + dk to be x = a− bi− cj − dk. Define N(x) = xx.

Show that N(x) = a2 + b2 + c2 + d2 ∈ R.

(b). Use part (a) to show that any nonzero element of H is a unit; thus H is a division ring.

(c). Show that for x, y ∈ H we have xy = y x. Using this, show that N(xy) = N(x)N(y).

(d). An element of the form x = bi + cj + dk is called a pure quaternion. Show that such an x

satisfies x2 = −1 if and only if N(x) = 1. Conclude that −1 has uncountably many square roots

in H.

8.3. Subrings, ideals, factor rings, and homomorphisms. Similarly as in group theory (and

as for many other algebraic structures) we have notions of homomorphisms of rings, subrings, factor

rings, isomorphism theorems, and so on. We now review the definitions of these basic concepts.

Definition 8.32. Let S be a ring. A subset R of S is a subring if R is itself a ring under the same

operations as S, and with the same unit element. Explicitly, this is the same as requiring that R

is closed under subtraction and multiplication in S, and 1S ∈ R.

Example 8.33. Z is a subring of Q; similarly, Q is a subring of R and R is a subring of C.

Example 8.34. If R is a ring and G is a group, then for any subgroup H of G the group ring

RH is a subring of the group ring RG. If R is a subring of a ring S, then the group ring RG is a

subring of the group ring SG.

Example 8.35. In the polynomial ring R[x], the set of constant polynomials is a subring. A similar

comment holds for the power series ring R[[x]]. In each case we can identify this subring with R

and think of R ⊆ R[x] and R ⊆ R[[x]].

Example 8.36. In Mn(R), the subsets of diagonal matrices, upper triangular matrices, and lower

triangular matrices are all subrings of Mn(R).

It is possible to have a subset R of a ring S such that R is a ring under the same operations as

S, but with a different unit element. In this case we say that R is a non-unital subring of S.

Example 8.37. Let S = M2(R) be the ring of 2 by 2 matrices over a ring R. The subset

T = {( r 0
0 0 )|r ∈ R} is closed under subtraction and multiplication in S, and has a unit element

( 1 0
0 0 ) different from the unit element ( 1 0

0 1 ) of S (the identity matrix).

Non-unital subrings are occasionally useful, but it is good to point it out whenever one is allowing

this weaker definition of subring.
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Definition 8.38. If R and S are rings, a function φ : R→ S is a homomomorphism (of rings) if

(1) φ is a homomorphism of additive groups; that is, φ(a+ b) = φ(a) + φ(b) for all a, b ∈ R;

(2) φ(ab) = φ(a)φ(b) for all a, b ∈ R; and

(3) φ(1R) = 1S .

As usual, a bijective homomorphism is called an isomorphism, and an isomorphism from a ring R

to itself is called an automorphism. If there exists an isomorphism from R to S we write R ∼= S

and say that R and S are isomorphic.

Note that a homomorphism of groups always sends the identity to the identity, and this does not

have to be made part of the definition—thus, for example, φ(0R) = 0S holds for a homomorphism of

rings as above, without being specified. On the other hand, a ring is not a group under multiplica-

tion, so preserving the product, as in condition (2), does not imply condition (3). A function which

satisfies conditions (1) and (2) but not necessarily (3) is called a non-unital homomorphism. The

inclusion map of a non-unital subring R into a ring S is an example of a non-unital homomorphism.

Similarly as for non-unital surbrings, the modern consensus seems to be that it is easiest to include

unitality in the definition of homomorphism, and explicitly point out whenever a homomorphism

is non-unital.

Example 8.39. The natural inclusion φ : Z → Q is a ring homomorphism; similarly for the

inclusions Q→ R and R→ C.

Example 8.40. If R is a ring and G is a group, there is a surjective homomorphism ρ : RG→ R

given by ρ(
∑

g∈G agg) =
∑

g∈G ag.

Example 8.41. Let R be a commutative ring which is a subring of a commutative ring S. For

any s ∈ S, there is a homomorphism φ : R[x] → S defined by evaluation at s: φ(
∑m

i=0 aix
m) =∑m

i=0 ais
m. To see why we might want to evaluate at an element in a bigger ring than R, we might,

for example, want to evaluate a polynomial with real coefficients at a complex number.

Example 8.42. If R and S are rings, let T = R × S be the direct product. There are two

surjective ring homomorphisms π1 : R × S → R with π1(r, s) = r and π2 : R × S → S with

π2(r, s) = s, called the projection maps. We also have the obvious inclusion maps i1 : R → R × S

with i1(r) = (r, 0) and i2 : S → R × S with i2(s) = (0, s). Note, however, that i1 and i2 are only

non-unital ring homomorphisms, as the identity of R×S is (1, 1), which is not equal to i1(1) = (1, 0)

or i2(1) = (0, 1).
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Example 8.43. Consider a cyclic group G = {1, a} of order 2. We claim that CG ∼= C⊗ C, that

is, that we have a direct product of two 1× 1 matrix rings. This is a (very) special case of the fact

mentioned earlier, that CG is isomorphic to a direct product of matrix rings over C for any finite

group G.

Note that the ring C⊗C has two special elements e1 = (1, 0) and e2 = (0, 1) which are idempotent

in the sense that e2
1 = e1 and e2

2 = e2. They are the unit elements of the non-unital subrings which

are the images of the maps i1 and i2 as in the previous example. Moreover e1 + e2 = (1, 1), the

multiplicative identity element. Thus if we seek a ring isomorphism φ : C⊗ C → CG, Then φ(e1)

and φ(e2) should be idempotents in CG whose sum is 1. A short calculation shows that f1 = 1
2(1+a)

and f2 = 1
2(1−a) are the only idempotents in CG besides 0 and 1. It is easy to check that defining

φ on a C-basis by φ(ei) = fi for i = 1, 2 and extending linearly gives an isomorphism of rings.

The definitions of kernel, image, and factor ring, are built on the definitions for the underlying

abelian groups.

Definition 8.44. Let φ : R → S be a homomorphism of rings. The image of φ is φ(R), and the

kernel of φ is kerφ = {r ∈ R|φ(r) = 0}.

Definition 8.45. If R is a ring, a left ideal of R is a subset I ⊆ R such that

(1) I is a subgroup of R under +.

(2) For all r ∈ R, x ∈ I, rx ∈ I.

A right ideal of R is defined similarly, replacing condition (2) by the condition that for all r ∈ R

and x ∈ I, xr ∈ I. Finally I, is an ideal of R if it is both a left and right ideal, or equivalently if

for all r, s ∈ R and x ∈ I, rxs ∈ I.

Condition (2) in the definition of left ideal does not look similar to anything we saw in group

theory; the reason is that R is only a monoid under multiplication, not a group. Note that in a

commutative ring, there is no distinction between left ideals, right ideals, and ideals, so one only

refers to ideals.

Example 8.46. Let R be a ring and let S = M2(R). The subset J = {( r s0 0 )|r, s ∈ R} is a right

ideal of S, but not a left ideal. Similarly, K = {( r 0
s 0 )|r, s ∈ R} is a left but not right ideal.

Example 8.47. If I and J are ideals of a ring R, then so is I + J = {x+ y|x ∈ I, y ∈ J}. It is the

smallest ideal containing I and J . Similarly, for any set of ideals {Iα|α ∈ A} we can define its sum
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as ∑
α∈A

Iα = {
∑
α

xα|xα ∈ Iα and only finitely many of the xα are nonzero},

which is also an ideal. Note here that while only finite sums are defined in a ring, the convention is

often used that an infinite sum of elements may be written if all but finitely many of the elements

are 0; the sum is defined to be the sum of the finitely many nonzero elements.

The intersection I ∩ J is also an ideal, and is the largest ideal contained in I and J . Similarly,

the intersection of any set of ideals in R is again an ideal.

Example 8.48. In any ring R, {0} is an ideal, called the zero ideal for obvious reasons. We usually

just write it as 0. Similarly, R itself is an ideal, often called the unit ideal because any ideal I

which contains a unit is equal to R. (check!)

Example 8.49. We have seen that the additive subgroups of Z are all of the form mZ for m ≥ 0;

in fact these are ideals of Z as a ring, also. Since any ideal must be an additive subgroup, these

are all of the ideals of the ring Z.

Ideals of a ring can be seen as analogous to normal subgroups of a group, in the sense that they

are exactly the structures we can mod out by to get a factor ring. We will see why left and right

ideals are useful when we study module theory later.

Lemma 8.50. Let R be a ring with ideal I. Let R/I be the factor group of (R,+) by its subgroup

(I,+). Thus R/I = {r + I|r ∈ R} is the set of additive cosets of I, with addition operation

(r+ I) + (s+ I) = (r+ s) + I. Then R/I is also a ring, with multiplication (r+ I)(s+ I) = rs+ I

and unit element 1 + I. The surjective map φ : R→ R/I given by φ(r) = r+ I is a homomorphism

of rings.

Proof. The main issue is to make sure the claimed multiplication rule is well defined. Let r + I =

r′ + I and s + I = s′ + I, so r − r′ ∈ I and s − s′ ∈ I. Then rs − r′s′ = r(s − s′) + (r − r′)s′ ∈ I

(note that we use that I is closed under both left and right multiplication by elements in R) and so

rs+ I = r′s′ + I. Having shown the multiplication is well defined, the ring axioms for R/I follow

immediately from the axioms for R, and the fact that φ is a homomorphism follows directly from

the definition. �

Example 8.51. For any m ≥ 1, the factor ring Z/mZ can be identified with the ring Zm of

congruence classes modulo m, with the usual addition and multiplication.
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The isomorphism theorems for rings are very similar to their group-theoretic counterparts. Here

is the 1st isomorphism theorem.

Theorem 8.52. Let φ : R→ S be a homomorphism of rings. Then I = kerφ is an ideal of R, φ(R)

is a subring of S, and there is an isomorphism of rings φ : R/I → φ(S) defined by φ(r+ I) = φ(r).

Proof. Since φ is a homomorphism of additive groups, the 1st isomorphism theorem for groups

gives that I is a subgroup of R under +, φ(R) is a subgroup of S under +, and φ is a well-defined

isomorphism of additive groups. To check that I is an ideal, simply note that for r, s ∈ R, x ∈ I,

we have φ(rxs) = φ(r)φ(x)φ(s) = φ(r)0φ(s) = 0, so rxs ∈ I. It is trivial to see that φ(R) is closed

under multiplication in S and contains 1S , and that φ is a homomorphism of rings. �

Example 8.53. If I is an ideal of R, there is a homomorphism φ : Mn(R) → Mn(R/I) given by

φ((rij)) = (rij + I). It is easy to see that the kernel is Mn(I) = {(rij)|rij ∈ I for all i, j} and that

φ is surjective, so that the first isomorphism theorem gives Mn(R)/Mn(I) ∼= Mn(R/I).

Example 8.54. Let R be a ring with ideal I. Similarly as in the previous example, I[x] =

{a0 + a1x+ · · ·+ amx
m|ai ∈ I for all i} is an ideal of R[x], and R[x]/I[x] ∼= (R/I)[x].

Example 8.55. Let R be commutative and let φ : R[x] → R be evaluation at 0, so that we have

φ(a0 + a1x + · · · + amx
m) = a0. Then I = kerφ consists of all polynomials with 0 constant term,

and this is an ideal of R[x]. It is easy to see that φ is surjective, so that R[x]/I ∼= R. Note

that the polynomials with 0 constant term are exactly those that can have an x factored out, so

I = {xf(x)|f(x) ∈ R[x]}, which we also write as xR[x].

Recall that since a ring R is an abelian group under addition, using additive notation we write

nr =

n︷ ︸︸ ︷
r + r + · · ·+ r for the sum of n copies of r in R, when n ≥ 1; we also set 0r = 0, and let

(−n)r = −nr for n ≥ 1, so nr is defined for all n ∈ Z. These multiples of r are the additive versions

of the powers of an element, and instead of rules for exponents we have the rules for multiples:

m(nr) = (mn)r, (m+ n)r = mr + nr, for m,n ∈ Z and r ∈ R.

Let R be a ring. Let φ : Z → R be defined by φ(n) = n(1), i.e. the nth multiple of the unit

1 ∈ R. It is easy to check that φ is a homomorphism of rings using the rules for multiples. Let

I = kerφ; since this is an ideal of Z, it has the form I = mZ for a unique m ≥ 0. We call m the

characteristic of the ring R and write charR = m. Thus if m > 0, then m is the least positive

integer such that m(1) = 0, in other words the additive order of 1 in the group (R,+). Note that

the case m = 1 occurs if and only if R is the zero ring. When m = 0, then I = 0 and this is the only
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case in which φ is injective. The 1st isomorphism theorem implies that Z/mZ ∼= φ(Z). Thus when

m ≥ 1 then R contains a canonical copy of Zm as a subring, where m = charR. When m = 0, R

contains a copy of Z.

The characteristic of a ring is an important notion. In general, rings with positive characteristic

may behave in quite different ways than rings with characteristic 0—we will see this especially

when we study fields later on. Note that all of the traditional rings of numbers such as Z,Q,R,C

have characteristic 0. Here is another basic fact about the characteristic.

Lemma 8.56. Let R be a nonzero domain. Then charR = 0 or charR = p is a prime number.

Proof. Supose that p = charR > 0. Then R contains a subring isomorphic to Zp, namely the

additive subgroup generated by 1, by the above discussion. Since R is a domain, so is Zp. We have

seen this forces p to be prime in Example 8.13. �

Remark 8.57. There is sometimes confusion between ideals and subrings of a ring. In group

theory, subgroups are the substructures that are themselves groups, while the substructures that

one can factor out by are the normal subgroups— subgroups with an additional property. In ring

theory, subrings are the substructures that are themselves rings, while the substructures that one

can factor out by are the ideals. Ideals are usually not subrings as we have defined them, because

they will generally not contain 1, but one can think of an ideal as a subring without identity. Then

ideals are subrings (without 1) which satisfy an additional property (closure by multiplication by

arbitrary elements of the ring on either side). In this sense the analogy with group theory is not

far off.

There is also a important version for rings of the 3rd and 4th isomorphism theorems; we leave

the proof to the reader.

Theorem 8.58. Let R be a ring with ideal I. There is a bijective correspondence

Φ : {ideals J with I ⊆ J ⊆ R} −→ {ideals of R/I}

given by Φ(J) = J/I. Moreover, for any such J as on the left hand side, we have (R/I)/(J/I) ∼=

R/J as rings.

The ring-theoretic version of the 2nd isomorphism theorem exists, though it is not used very

often, so we omit it here.
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8.3.1. Exercises.

Exercise 8.59. This problem generalizes Example 8.43. Consider a cyclic group G of order n and

let R be the group ring CG. Let ζ = e2πi/n be a primitive nth root of 1, so the order of ζ in C× is

n. let G = 〈a〉 = {1, a, a2, . . . , an−1}. For each 0 ≤ j ≤ n− 1 define ej = 1
n

∑n−1
i=0 ζ

ijai.

(a) Show that e0, e1, . . . , en−1 is a C-basis of CG using formula for the determinant of a Vander-

monde matrix.

(b) Prove that eiej = 0 if i 6= j, while ejej = ej for all j.

(c). Show that the map C×n → CG given by (a0, . . . , an−1) 7→ a0e0 + · · · + an−1en−1 is an

isomorphism of rings. So the group algebra CG is just isomorphic to a direct product of n copies

of C, as rings.

Exercise 8.60. Check the claims in Example 8.54 using the 1st isomorphism theorem.

Exercise 8.61. Recall that an element x in a ring R is nilpotent if xn = 0 for some n ≥ 1.

(a) Show that for x, y ∈ R, where R is commutative, the binomial theorem

(x+ y)n =
n∑
i=0

(
n

i

)
xiyn−1

holds.

(b) Show that if x and y are nilpotent elements of a commutative ring, then x+ y is nilpotent.

(c) Give an example of a noncommutative ring R and nilpotent elements x, y ∈ R, such that

x+ y is not nilpotent.

Exercise 8.62. Recall that a division ring is a ring such that every nonzero element of the ring is

a unit. Show that D is a division ring if and only if the only left ideals of D are 0 and D.

Exercise 8.63. Let R be a ring, and consider the matrix ring Mn(R) for some n ≥ 1. Given an

ideal I of R, let Mn(I) be the set of matrices (aij) such that aij ∈ I for all i, j.

Show that every ideal of Mn(R) is of the form Mn(I) for some ideal I of R. Conclude that if R

is a division ring, then Mn(R) is a simple ring, that is, that {0} and Mn(R) are the only ideals of

Mn(R). Show, however, that Mn(R) is not itself a division ring when n ≥ 2.

8.4. Prime and Maximal Ideals. We begin this section with some important notational concepts

for ideals. In this section, all rings R will be assumed commutative unless stated otherwise. Some

comments about how the results generalize to noncommutative rings will be given in a remark.
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Let R be a commutative ring. If X is a subset, we let (X) be the ideal generated by X, that is,

the intersection of all ideals of R which contain X. An arbitrary intersection of ideals is an ideal.

Thus (X) is the unique smallest ideal of R containing X. We can describe (X) explicitly as

(X) = {r1x1 + · · ·+ rnxn|xi ∈ X, ri ∈ R for all i, n ≥ 1}.

To see this, first note that any ideal containing X contains all expressions in the set on the right

hand side. Then check that the right hand side is an ideal, which is clear from its definition. We

can think of (X) as consisting of the R-linear combinations of X, analogous to the span of a set of

elements in a vector space. We say that an ideal I of a commutative ring is principal if I = ({x})

is generated by a set with one element. In this case we remove the brackets for simplicity and write

I = (x) = {rx|r ∈ R}. This ideal is also written as Rx (or xR). Similarly, we can write (x1, . . . xn)

as Rx1 + · · ·+Rxn. An ideal I is called finitely generated if it equals (x1, . . . , xn) for some xi ∈ I;

otherwise it is called infinitely generated. The zero ideal {0} is equal to (0) and we also sometimes

just write it as 0.

Next, we review the notion of products of ideals. For arbitrary subsets X,Y of a ring R, one

defines XY to be the set of all sums of the form {x1y1 + · · · + xnyn|xi ∈ X, yi ∈ Y, n ≥ 1}. For

example, RX = (X) is the ideal generated by X. This is a different use of the product notation

than we saw in groups; closure under sums is necessary because we want a product of ideals to be

an ideal. The reader may check that if I and J are ideals of a ring R, then the product IJ is a

again an ideal.

We call an ideal I of a ring R proper if I 6= R.

Definition 8.64. Let R be a commutative ring with proper ideal I. The ideal I is prime if

whenever x, y ∈ R such that xy ∈ I, then either x ∈ I or y ∈ I. The ideal I is maximal if there

does not exist any ideal J such that I ( J ( R.

It is important to note the convention that R is not considered a prime ideal of itself.

Lemma 8.65. Let R be a commutative ring. Then R is a field if and only if 0 and R are the only

ideals of R, in other words 0 is a maximal ideal of R.

Proof. Suppose that R is a field. If I is a nonzero ideal of R, we can choose some 0 6= x ∈ I. Then

x is a unit in R, and so 1 = x−1x ∈ I, and thus r1 = r ∈ I for all r ∈ R. So I = R. Conversely,

suppose that every nonzero ideal of R is equal to R. If 0 6= x ∈ R, then the principal ideal Rx is

nonzero and so we must have Rx = R. In particular, 1 ∈ Rx, so there is y ∈ R with yx = 1, and x

is a unit. Thus all nonzero elements are units and so R is a field. �
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Both prime and maximal ideals have interesting reinterpretations in terms of the properties of

the factor rings they determine.

Proposition 8.66. Let R be a ring with proper ideal I.

(1) I is maximal if and only if R/I is a field.

(2) I is prime if and only if R/I is a domain.

Proof. (1) By the correspondence of ideals in Theorem 8.58, ideals J of R with I ( J ( R are in

one-to-one correspondence with ideals of R/I which are not equal to 0 or R/I. Thus I is maximal

if and only if R/I has only 0 and R/I as ideals, if and only if R/I is a field by Lemma 8.65.

(2) Suppose that I is prime. If (x+ I)(y+ I) = 0 + I in R/I, then xy+ I = 0 + I and so xy ∈ I.

Then by definition x ∈ I or y ∈ I, so x + I = 0 + I or y + I = 0 + I. This shows that R/I is a

domain. The converse is similar. �

Corollary 8.67. Any maximal ideal of a ring is prime.

Proof. Note that any field is a domain, because a unit is always a non-zero-divisor. Thus this result

follows immediately from the proposition. �

Example 8.68. Let R = Z. Note that the zero ideal 0 is prime but not maximal, since R/0 ∼= R

and R is a domain but not a field. If p is a prime number, then Z/pZ ∼= Zp is a field, as we have

seen; so pZ is a maximal (and hence also prime) ideal of Z. If m = 1 then mZ = Z which is neither

prime nor maximal by definition. If m > 1 is not prime then Z/mZ ∼= Zm is not a domain, so

mZ is not a prime ideal of Z in this case. In conclusion, the non-zero prime ideals of Z are are all

maximal ideals, and they are in one-to-one correspondence with the positive prime numbers.

Example 8.69. Let F be a field and let I = (x) = xF [x] ⊆ F [x]. We saw in Example 8.55 that I

is the kernel of the homomorphism φ : F [x]→ F which evaluates x at 0, and thus F [x]/I ∼= F by

the first isomorphism theorem. Since F is a field, the ideal I must be a maximal ideal of F [x].

Example 8.70. Consider the ring R = Z[x]. Similarly as in previous example, Z[x]/(x) ∼= Z; since

Z is a domain but not a field, (x) is prime but not maximal in this case. Given any prime p ∈ Z, we

know that pZ is maximal as an ideal of Z; then by the ideal correspondence in Theorem 8.58, the

corresponding ideal (x, p) = xZ[x] + pZ[x] of Z[x] is maximal in Z[x], and moreover Z[x]/(x, p) ∼=

Z/pZ = Zp. Since the primes (p) give all maximal ideals of Z, the ideals (x, p) give all maximal

ideals of Z[x] which contain (x).
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It is sometimes useful to think of prime ideals in the following alternative way, which works with

ideals rather than elements.

Lemma 8.71. Let P be an ideal of a commutative ring R. The following are equivalent:

(i) Whenever I and J are ideals with IJ ⊆ P , then I ⊆ P or J ⊆ P .

(ii) Whenever I and J are ideals with P ⊆ I, P ⊆ J , and IJ ⊆ P , then P = I or P = J .

(iii) P is prime.

Proof. It is obvious that (i) =⇒ (ii). Suppose (ii) holds and that xy ∈ P . Let I = P + (x) and

J = P + (y). Then P ⊆ I and P ⊆ J , and moreover IJ = (P + (x))(P + (y)) ⊆ P + (x)(y) =

P + xyR = P . Thus either I = P or J = P , and thus either x ∈ P or y ∈ P , implying (iii).

Finally, if (iii) holds, let I and J be ideals with IJ ⊆ P . If neither I ⊆ P or J ⊆ P holds, then we

can choose x ∈ I − P and y ∈ J − P . Thus xy ∈ IJ ⊆ P and so x ∈ P or y ∈ P , a contradiction.

Thus in fact I ⊆ P or J ⊆ P and we have (i). �

Remark 8.72. We have focused on commutative rings here. One may develop a theory of maximal

and prime ideals in noncommutative rings as well, but they satisfy weaker results. Let R be an

arbitrary (not necessarily commutative) ring. If X and Y are subsets of R, the notation XY =

{x1y1 + · · · + xnyn|xi ∈ X, yi ∈ Y, n ≥ 1} is defined in the same way as in the commutative case.

A proper ideal P of R is called prime if it satisfies the condition in Lemma 8.71(i): If IJ ⊆ P for

ideals I, J , then I ⊆ P or J ⊆ P . An ideal P such that xy ∈ P implies x ∈ P or y ∈ P is called

completely prime; this is a stronger condition than prime and is much more rarely satisfied. An

ideal is said to be maximal just as before, if it is maximal under inclusion among proper ideals.

Again, maximal ideals must be prime (but need not be completely prime).

A ring is called prime if 0 is a prime ideal; similarly as in Proposition 8.66, an ideal P is prime

if and only if R/P is a prime ring. However, a prime ring is not necessarily a domain (rather, R/P

is a domain if and only if P is completely prime). A ring R is called simple if 0 and R are its only

ideals; by ideal correspondence, an ideal I of R is maximal if and only if R/I is simple. A simple

ring need not be a division ring, however, or even a domain, though it is a prime ring.

The ring of matrices Mn(D) over a division ring D, with n ≥ 2, is an example of a simple ring

which is not a domain (Exercise 8.63).

8.4.1. Exercises.

Exercise 8.73. A commutative ring R is called local if has a unique maximal ideal M . Show that

the following are equivalent for a commutative ring R:
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(i) R is local.

(ii) The set of non-units in R is an ideal of R.

Exercise 8.74. Let F be a field and let R = F [[x]] be the ring of formal power series.

(a). Show that every proper nonzero ideal of R is of the form (xn) for some n ≥ 1.

(b). Show that the only prime ideals of R are 0 and (x), and so (x) is the only maximal ideal

and R is a local ring.

Exercise 8.75. Let F be a field. Define the polynomial ring R = F [x, y] in two variables over F

by F [x, y] = (F [x])[y].

Show that 0, (x) and (y) are prime but not maximal ideals of R, and that (x, y) is a maximal

ideal.

9. Further fundamental techniques in ring theory

9.1. Zorn’s Lemma and applications. We continue to assume that R is a commutative ring in

this section for convenience, although most of the results extend easily to noncommutative rings.

Given a ring R, must it have any maximal ideals at all? Throw away the irritating zero ring. Then

a ring R has at least one proper ideal, namely 0, so the set of proper ideals is nonempty. But why

must there exist a proper ideal which is maximal under inclusion?

The key to proving this is Zorn’s Lemma, a basic result in set theory which has many applications

in algebra. We begin with a review of some basic concepts of orderings on sets.

Definition 9.1. A partially ordered set or poset is a set P with a binary relation ≤ such that

(1) (reflexivity) x ≤ x for all x ∈ P.

(2) (transitivity) If x ≤ y and y ≤ z, then x ≤ z, for all x, y, z ∈ P.

(3) (antisymmetry) If x ≤ y and y ≤ x, then x = y for all x, y ∈ P.

We sometimes write x < y to mean x ≤ y and x 6= y. We might also write y ≥ x as a synonym for

x ≤ y.

Example 9.2. Let S be a set and let P(S) be the power set of S, i.e. the set of all subsets of S.

Then P(S) is a poset where we define X ≤ Y to mean X ⊆ Y for subsets X,Y of S. The axioms

of a poset are immediate.

Note that in a general poset we may well have elements x, y such that neither x ≤ y nor y ≤ x

holds. This is already clear in the example above; take S = {1, 2, 3} for example, and X = {1, 2}

and Y = {2, 3}; neither set contains the other. A poset P is called totally or linearly ordered if for
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all x, y ∈ P, either x ≤ y or y ≤ x holds. Totally ordered sets, even of the same cardinality, can

have very different kinds of orders. For example, we have the natural numbers N with their usual

order, where given a, b ∈ N there are finitely many c ∈ N with a ≤ c ≤ b. On the other hand, one

has the rational numbers Q with their usual order, where for any a < b in Q there are infinitely

many c ∈ Q with a ≤ c ≤ b.

Definition 9.3. If P is a poset, and B ⊆ P, an upper bound for B is an x ∈ P such that b ≤ x

for all b ∈ B (note that x might or might not be contained in B itself). A maximal element of P

is an element y ∈ P such that there does not exist any x ∈ P with y < x. Equivalently, y ∈ P is

maximal if y ≤ x implies x = y.

Note that a poset might have many distinct maximal elements. A totally ordered poset, on the

other hand, either has a single maximal element or no maximal elements at all.

Example 9.4. Let R be a (non-zero) ring and let P be the set of all proper ideals of R. Then P is

a poset under inclusion, where I ≤ J means I ⊆ J . Since we have excluded R itself from P, note

that a maximal ideal of R is the same thing as a maximal element of the poset P.

Given a poset P, any subset S ⊆ P is also a poset under the inherited order, where x ≤ y for

x, y ∈ S if and only if x ≤ y in P. A subset S of P is called a chain if S is totally ordered under

its inherited order. We are now ready to state Zorn’s Lemma.

Lemma 9.5. Let P be a nonempty poset. Suppose that every chain B in P has an upper bound in

P. Then P has a maximal element.

Zorn’s Lemma is actually equivalent to the axiom of choice in set theory; each can be proved

from the other. So we also just assume Zorn’s Lemma as an axiom.

The intuition behind Zorn’s lemma is not hard to understand. If we are looking for a maximal

element in P, we can start by picking any x1 ∈ P; if it is not maximal, pick x1 < x2; continuing in

this way, if no maximal element is acheived, we get a set S = {xi|i ∈ N} which is a chain in P. If

every chain has an upper bound, then there is y1 ∈ P which is an upper bound for S; in this case

it means that xi < y1 for all i. Now if y1 is not maximal we can start the process all over again.

The hypothesis of Zorn’s lemma that chains have upper bounds allows us to never be “stuck”—

if we do not have any maximal element yet in our chain, we can make the chain bigger. Thus at

some point this (infinitary) process will stop with a maximal element having been found.

Let us now give our first application of Zorn’s lemma.
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Proposition 9.6. Let R be a nonzero commutative ring. Then any proper ideal H of R is contained

in a maximal ideal.

Proof. We consider the poset P of all proper ideals of R which contain H, which is nonempty

because H ∈ P. The order is the inclusion, as in Example 9.4. Our goal is to show that P must

have a maximal element. This is the conclusion of Zorn’s lemma, so we just need to verify the

hypothesis. Consider an arbitrary chain in P, which is a collection of ideals of R containing H, say

B = {Iα|α ∈ A} for some index set A, such that for any α, β ∈ A, either Iα ⊆ Iβ or Iβ ⊆ Iα. We

need to find an upper bound for the chain, in other words a proper ideal J of R such that Iα ⊆ J

for all α ∈ A. We simply take J =
⋃
α∈A Iα to be the union of all of the ideals in the chain B.

Then certainly Iα ⊆ J for all α ∈ A, so if J ∈ P then it is an upper bound for B. For any x, y ∈ J ,

we have x ∈ Iα for some α and y ∈ Iβ for some β. Since B is a chain, either Iα ⊆ Iβ or Iβ ⊆ Iα.

In the former case, both x and y are in the ideal Iβ and thus x− y ∈ Iβ; so x− y ∈ J . Similarly, if

Iβ ⊆ Iα then x− y ∈ Iα ⊆ J . For any r ∈ R and x ∈ J , again we have x ∈ Iα for some α, and so

rx ∈ Iα ⊆ J . We see that J is again an ideal.

Suppose that J = R. Then 1 ∈ J , and so 1 ∈ Iα for some α. But then Iα = R is the unit ideal,

contradicting that Iα belongs to the poset P of proper ideals of R. This shows that J 6= R and

so J is a proper ideal of R. Thus J is in the poset P. Now J is the required upper bound of the

chain B, and the hypothesis of Zorn’s Lemma has been verified. Thus P has a maximal element,

in other words, R has a maximal ideal containing H. �

There are a couple of pitfalls in the use of Zorn’s Lemma that are worth mentioning now. First,

the requirement that the poset be nonempty is serious. It is easy to define a poset by some condition

that seems reasonable at first, and then use Zorn’s lemma to prove a patently absurd statement, if

the poset you defined was actually empty. Another common mistake in checking the hypothesis of

Zorn’s Lemma is to take a chain that is too special. It is not enough, in general, to check that for

chains of the form I1 ⊆ I2 ⊆ I3 ⊆ . . . In ⊆ . . . , that this chain has an upper bound. Technically,

one needs to take arbitrary (potentially uncountable, for example) index sets for the chains, and

not make any assumption as to what kind of order the chain has.

Let us now give another, slightly trickier, application of Zorn’s Lemma. If R is a ring, recall that

an element x ∈ R is nilpotent if xn = 0 for some n ≥ 1. If R is commutative, then the set N of all

nilpotent elements of R is an ideal; this easily follows from Exercise 8.61. The ideal N is called the

nilradical of R, and it has the following interesting alternative characterization.
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Proposition 9.7. Let R be a nonzero commutative ring. The nilradical N of R is equal to the

intersection of all prime ideals of R.

Proof. Let J be the intersection of all prime ideals in the ring. Note that since every nonzero ring

has a maximal ideal, R does have at least one prime ideal, so J is proper. Suppose that x ∈ N .

Since xn = 0 for some n ≥ 1, for any ideal I we have xn ∈ I. Now if I is prime, by the defining

property of a prime ideal (and induction) we see that xn ∈ I implies x ∈ I. Thus x is in every

prime ideal, and so N ⊆ J .

Conversely, suppose that x 6∈ N , so x is not nilpotent. Let S = {1, x, x2, x3, . . . } be the set of

powers of x; by assumption S does not contain 0. Consider the set P of all proper ideals I of R

such that I ∩ S = ∅. The ideal 0 is one such ideal, so P is nonempty. Consider P as a poset under

inclusion of ideals, as usual.

We claim that the hypothesis of Zorn’s Lemma is satisfied. For, given a chain {Iα|α ∈ A} of

ideals in P, the union J of the chain is again a proper ideal of R, by exactly the same argument as

in Proposition 9.6. Moreover, J is still in P, for otherwise J ∩ S is nonempty, which means that

Iα ∩ S is nonempty for some α, a contradiction. Thus every chain in P has an upper bound, and

so P has a maximal element, say M .

Next, we claim thatM is a prime ideal. We use the characterization of prime ideal in Lemma 8.71(2).

Let M ⊆ I and M ⊆ J for ideals I and J such that IJ ⊆ M . Suppose that M 6= I and M 6= J .

By maximality of M in P, I and J do not belong to P, so we can find xi ∈ I ∩ S and xj ∈ J ∩ S.

Then xi+j ∈ IJ ⊆ M , contradicting M ∩ S = ∅. Thus M = I or M = J and M is prime. Since

x 6∈M , we have found a prime ideal not containing x.

We have shown that if x 6∈ N , then x 6∈ M for some prime ideal M , and so x 6∈ J . This shows

that J ⊆ N . Since we already showed that N ⊆ J , we conclude that N = J . �

The intersection of all of the prime ideals of a ring is also called the prime radical. The result

we have just proved shows that for any commutative ring R, its prime radical and its nilradical are

the same thing.

Example 9.8. Let R = Z/nZ for some n ≥ 1, and factorize n as n = pe11 p
e2
2 . . . pemm , where the

pi are distinct primes and ei ≥ 1 for all i. We claim that the nilradical (and prime radical) of R

is rZ/nZ, where r = p1p2 . . . pm is the product of the primes to the first power. To demonstrate

Proposition 9.7 we calculate this in two different ways.

First, if e = max(e1, . . . , em) then re is a multiple of n, so re ∈ nZ and hence (rz)e = reze ∈ nZ

for any z; so rz + nZ is nilpotent in R for all z ∈ Z. Conversely, if s is not divisible by pi for some
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i, then sj is never divisible by pi for all j ≥ 1, and so sj 6∈ nZ and hence s+ nZ is not nilpotent in

R. It follows that if s+ nZ is nilpotent if and only if s is a multiple of r, and so N = rZ/nZ is the

nilradical as claimed.

We can also see that N is the intersection of the prime ideals of R. The prime ideals of Z are 0

and the ideals pZ for primes p. By ideal correspondence, the prime ideals of R are pZ/nZ for all

primes p such that pZ contains nZ, in other words such that p divides n. Thus the prime ideals of

R are exactly the piZ/nZ for 1 ≤ i ≤ m, and the intersection of these primes is equal to rZ/nZ

where r = p1p2 . . . pm, as we found before.

Since our study of groups focused heavily on finite groups, we did not ask earlier the question of

whether any nontrivial group must have a maximal subgroup. One could attempt to use the same

idea as in Proposition 9.6 to prove this, but it doesn’t work. It is true that the union of a chain

of subgroups is always a subgroup, but if all of the subgroups in the chain are proper, the union

need not be. The key to the proof for ideals was that properness of an ideal is equivalent to not

containing 1, and this is stable under taking unions. In fact, the corresponding result for groups is

false; there do exist groups without any maximal subgroup. See Exercise 9.9.

9.1.1. Exercises.

Exercise 9.9. Show that G = (Q,+) has no maximal subgroups. (Hint: Suppose that M is a

maximal proper subgroup of Q. Since Q is abelian, M is normal and we can consider Q/M . Since

M is maximal, Q/M is a simple abelian group, which must be isomorphic to Zp for some prime p.

Thus pQ ⊆M . But show that pQ = Q).

Exercise 9.10. Let R be a commutative ring and let S = R[x]. Show that f = a0+a1x+· · ·+amxm

is a unit in S if and only if a0 is a unit in R and a1, . . . , am are all nilpotent in R. (Hint: If the

conditions on the ai hold, consider Exercise 8.29. Conversely, if f is a unit, then the image of f in

the factor ring R[x]/P [x] ∼= R/P [x] is a unit for all prime ideals P of R. Use this to show that the

ai for 2 ≤ i ≤ m belong to every prime ideal of R.

Exercise 9.11. Given a poset P , one can define the opposite poset P op whose elements are the

same as in P , but where x ≤ y in P op if and only if y ≤ x in P .

(a) Show that P op is again a poset.

(b) A lower bound for a subset X ⊆ P is an element z ∈ P such that z ≤ x for all x ∈ X. A

minimal element of P is y ∈ P such that there does not exist z ∈ P with z < y. Prove that if every

chain in P has a lower bound, then P has a minimal element.
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Exercise 9.12. A minimal prime in a commutative ring R is a prime ideal I of R such that there

does not exist any prime ideal J with J ( I. In other words, I is a minimal prime if it is a minimal

element of the poset of prime ideals of R under inclusion.

Prove that any commutative ring R has a minimal prime. (Hint: apply Exercise 9.11. Check

the hypothesis by proving that the intersection of all of the elements in a chain of prime ideals is

again a prime ideal.)

Exercise 9.13. Let R be a commutative ring, and let I = (r1, . . . , rn) be a nonzero finitely

generated ideal of R. Prove that there is an ideal J of R which is maximal among ideals which do

not contain I.

Exercise 9.14. Let R be a commutative ring. Prove that if every prime ideal of R is finitely

generated, then all ideals of R are finitely generated, in the following steps:

(a). Suppose that R has an ideal which is not finitely generated. Show that there is an ideal P

which is maximal under inclusion among the set of non-finitely generated ideals.

(b). Prove that P is prime: Suppose that xy ∈ P , but x 6∈ P and y 6∈ P . Define I = P + (x)

and note that I is finitely generated, say I = (p1 + xq1, . . . , pn + xqn), where pi ∈ P, qi ∈ R. Let

K = (p1, . . . pn) and let J = {r ∈ R|rx ∈ P}; note that J is also finitely generated. Show that

Jx+K = P , and that therefore P is finitely generated, a contradiction.

9.2. The Chinese Remainder Theorem. The Chinese Remainder Theorem gives a way of de-

composing a factor ring of a commutative ring as a direct product of simpler factor rings in some

cases. It may be thought of as roughly analogous to recognizing a group as an internal direct

product in group theory.

Definition 9.15. Let R be a ring. Two ideals I and J of R are said to be comaximal if I+J = R.

Note that if I and J are distinct maximal ideals of R, then I + J is also an ideal which contains

both I and J and thus must be R. So a pair of distinct maximal ideals are comaximal. The ideals

in a comaximal pair do not have to be maximal ideals, however.

Theorem 9.16. Let I1, I2, . . . , In be ideals of a commutative ring R and assume that the Ij are

pairwise comaximal, i.e. that Ii and Ij are comaximal for every i 6= j. Then

(1) I1I2 . . . In = I1 ∩ I2 ∩ · · · ∩ In.

(2) R/(I1 ∩ I2 ∩ · · · ∩ In) ∼= R/I1 ×R/I2 × · · · ×R/In as rings.

Proof. The statement is vacuous when n = 1, so assume that n ≥ 2.
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We first prove the theorem for two ideals I and J . Note that IJ ⊆ I ∩ J holds for any pair

of ideals I and J . Now if I and J are comaximal, since I + J = R we can write 1 = x + y

for some x ∈ I, y ∈ J . Then if r ∈ I ∩ J , r = r1 = r(x + y) = rx + ry. Since r ∈ J ,

rx ∈ JI = IJ and since r ∈ I, ry ∈ IJ . Thus r ∈ IJ and so I ∩J = IJ . Now consider the function

φ : R→ R/I ×R/J defined by φ(r) = (r + I, r + J). This is easily seen to be a homomorphism of

rings. The kernel of φ is clearly kerφ = I ∩ J . Thus by the 1st isomorphism theorem, we have an

isomorphism of rings R/(I ∩ J) ∼= φ(R). However, we can see that φ is surjective as follows. Given

(r+ I, s+J) ∈ R/I ×R/J , let t = ry+ sx. Then t− r = ry+ sx− r = r(y− 1) + sx = −rx+ sx =

(s − r)x ∈ I and t − s = ry + sx − s = ry + s(x − 1) = ry − sy = (r − s)y ∈ J . It follows that

φ(t) = (t+ I, t+ J) = (r+ I, s+ J) and φ is surjective. Thus R/(I ∩ J) ∼= R/I ×R/J and the case

of two ideals is proved.

Now consider the general case. We claim that I1 and I2I3 . . . In are comaximal. Suppose not;

then I1 + I2I3 . . . In is a proper ideal of R, and so it must be contained in a maximal ideal M , by

Proposition 9.6. Since M is maximal, it is a prime ideal. Now I2I3 . . . In ⊆ M in particular. By

the characterization of prime ideals given in Lemma 8.71, this implies that Ij ⊆M for some j. But

now I1 + Ij ⊆M , contradicting that I1 and Ij are comaximal. This proves the claim.

Applying the theorem in the case of 2 ideals, we get that I1(I2I3 . . . In) = I1∩ (I2I3 . . . In). Since

I2I3 . . . In is a product of a smaller number of pairwise comaximal ideals, we see that I1I2 . . . In =

I1 ∩ (I2 ∩ · · · ∩ In) by induction on the number of ideals. This proves (1) in general.

Again applying the two ideal case, we have R/(I1 ∩ I2 ∩ · · · ∩ In) = R/(I1 ∩ (I2I3 . . . In)) ∼=

R/I1×R/(I2 . . . In). Again by induction on the number of ideals, R/(I2 . . . In) ∼= R/I2×· · ·×R/In
and (2) is proved. �

Corollary 9.17. Let n be a positive integer with prime factorization n = pe11 p
e2
2 . . . pemm , where the

pi are distinct primes. Then

(1) Zn ∼= Zpe11 × · · · × Zpemm as rings.

(2) If Z×n is the units group of the ring Zn, we also get Z×n ∼= Z×
p
e1
1

× · · · × Z×
pemm

as groups.

Proof. For any nonzero integers a, b ∈ Z, the reader can check that aZ + bZ = gcd(a, b)Z and

aZ ∩ bZ = lcm(a, b)Z. Thus when gcd(a, b) = 1 then aZ and bZ are comaximal. In particular,

setting Ii = Zpeii we see that I1, . . . , Im are pairwise comaximal, and so (1) follows from the Chinese

remainder theorem.

The units group of a direct product of rings is the direct product of the units groups of the

factors. Thus part (2) follows from part (1). �
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Note that the corollary proves Theorem 6.18(1), which was stated earlier without proof.

Example 9.18. Let m and n be positive integers with gcd(m,n) = 1. The problem of determining

a solution x to the simultaneous congruences x ≡ a mod m and x ≡ b mod n goes back at least

to the writing of Chinese mathematician Sun-tzu in the 3rd Century A.D. (though not stated in

the language of congruence, which is more modern). This motivating problem is what gives the

Chinese remainder theorem its name.

We can solve the problem in our ring-theoretic framework as follows. Let R = Z, let I = mZ

and J = nZ. Since gcd(m,n) = 1, there are s, t ∈ Z such that sm+ tn = 1, and so I + J = R and

I and J are comaximal. By Theorem 9.16, there is an isomorphism φ : R/(I ∩ J) → R/I × R/J .

In this case I ∩J consists of integers which are multiples of m and n, and hence I ∩J = mnZ since

lcm(m,n) = mn. We seek an element x such that φ(x+mnZ) = (x+mZ, x+nZ) = (a+mZ, b+nZ).

This equation shows that the element x we seek is unique only up to multiples of mn.

The proof of Theorem 9.16 shows how to choose x. The key is to find s and t explicitly (which

can be done by inspection for small m and n, or using the Euclidean algorithm for large ones). We

then have u+ v = 1, where u = sm ∈ I and v = tn ∈ J . Then x = bv + au is a solution.

For example, to solve the simultaneous congruences x ≡ 4 mod 21 and x ≡ 7 mod 11, one first

notes that (−1)(21)+(2)(11) = 1; then x = (22)(4)+(−21)(7) = −59 is a solution. Of course, there

is a unique positive solution for x with 1 ≤ x ≤ (21)(11), which in this case is x = −59+231 = 172.

A similar method can be used to solve simultaneous congruences with moduli m1,m2, . . . ,mk

that are pairwise relatively prime.

While the original motivation behind the Chinese remainder theorem comes from its application

to the integers, we will see that it has useful applications in many other rings, such as the polynomial

ring F [x] and other principal ideal domains (which we will define soon).

9.2.1. Exercises.

Exercise 9.19. Let R be a commutative ring.

(a). Show that an ideal I is equal to an intersection of finitely many maximal ideals of R if and

only if R/I is isomorphic to a direct product of finitely many fields.

(b). Show that if I is an intersection of finitely many distinct maximal ideals of R, say I =

M1 ∩ · · · ∩Mn, then the ideals Mi are uniquely determined (up to rearrangement).

(c). Give an example showing that the same property as in (b) does not hold in groups. In other

words, find a group G and a subgroup H such that H can be written as an intersection of maximal

subgroups of G in multiple different ways.
119



Exercise 9.20. Find a solution to the system of congruences

x ≡ 1 mod 7, x ≡ 2 mod 11, x ≡ 3 mod 13

by using the method of Example 9.18. (Hint: one way is to find x′ satisfying the first two congru-

ences, then solve the pair of congruences x ≡ x′ mod 77, x ≡ 3 mod 13.)

9.3. Localization. The familiar set of rational numbers Q consists of fractions a/b where a, b ∈ Z

and b is nonzero. Thus a rational fraction just amounts to a choice of two integers, one nonzero.

However, the same fraction can be written in many different ways, so 1/2 = 50/100 = (−3)/(−6)

for example. A careful construction of Q from Z must take this into account and check that the

set of fractions is a number system with well-defined operations.

Of course Q has the advantage that one can divide by any nonzero element, unlike in Z. We often

face the same issue in a general ring R. There are certain elements that are not units, which it would

be helpful to have inverses for, as it would give us a larger space in which to work. Localization is

the formal process of adding inverses to elements in a given ring. Its name arises from the fact that

for rings of functions in geometry (especially algebraic geometry), taking a localization is a way

of producing a ring of functions which may be defined only locally on a neighborhood of a point

rather than globally.

Let R be a commutative ring in this section. (There is a version of localization for a noncommu-

tative ring, but it is considerably more complicated and only works in more limited circumstances.)

A multiplicative system X ⊆ R is a subset such that 1 ∈ X and if x, y ∈ X, then xy ∈ X. If one

would like to add elements to a ring R so that certain elements become units, note that 1 is already

a unit, and if x and y are units, then xy is also a unit. For this reason we might as well focus on

adding inverses to all of the elements in a multiplicative system X.

Example 9.21. Let us first review precisely how Q is constructed from Z. The goal is to embed Z

in a field. Let S = {(a, b)|a, b ∈ Z, b 6= 0} be the set of ordered pairs of integers, where the second

coordinate is nonzero. We write (a, b) using the suggestive notation a/b. We define an equivalence

relation ∼ on S where a/b ∼ c/d means ad = bc. It is an easy exercise to check that ∼ is an

equivalence relation.

Formally we let Q be the set of equivalence classes of S under ∼. Let [a/b] represent the

equivalence class of a/b. We define an addition and multiplication on equivalence classes by [a/b] +

[c/d] = [(ad+ bc)/bd] and [(a/b)(c/d)] = [ac/bd].

A number of things need to be checked. First, one must verify that addition and multiplication

are well-defined, i.e. that the formulas do not depend on the choice of representatives for the
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equivalence classes. Then one should check that Q satisfies the ring axioms under this + and ·,

where the additive identity is [0/1] and the multiplicative identity is [1/1]. Then one shows that Q

is a field. Finally, one notes that Q contains the original ring Z we started with as a subring, once

a ∈ Z is identified with [a/1] ∈ Q. All steps are straightforward.

Now we state the general problem we would like to solve. If R is any ring with a multiplicative

system X, we would like to embed R in a larger ring S where the elements in X become units in

S. In the example above, we accomplished this when R = Z and X = Z − {0}. Moreover, one

wants to find the most efficient choice of S. After all, one can also embed Z in the field R of real

numbers, where all nonzero integers have become units, but one has added a lot of extra elements

(irrational numbers) that one didn’t need to make that happen. The ring Q is the most efficient

choice in the sense that every element of Q is of the form ab−1 with a ∈ R and b ∈ X.

It turns out to be useful to allow X to be an arbitrary multiplicative system, which creates

the following problem. If x ∈ X is a zero divisor in R, say rx = 0 with r 6= 0, x 6= 0, and

S is a ring containing R as a subring in which x becomes a unit in S, say xy = 1 in S, then

0 = 0y = rxy = r1 = r, which is a contradiction. To finesse this problem, instead of looking

for a ring S containing R in which the elements of X become units, we need to settle for a ring

homomorphism φ : R→ S (possibly with nonzero kernel) in which φ(x) is a unit in S for all x ∈ X.

We are now ready to state the main result, which shows that a ring of fractions with the desired

properties exists and has a universal property.

Theorem 9.22. Let R be a commutative ring with multiplicative system X. There exists a ring

RX−1, called the localization of R along X, and a ring homomorphism φ : R→ RX−1, such that:

(1) φ(x) is a unit in RX−1 for all x ∈ X, and every element of RX−1 is of the form ab−1

where a ∈ φ(R) and b ∈ φ(X).

(2) φ satisfies the following universal property: for every ring homomorphism ψ : R → D,

where D is another commutative ring and where ψ(x) is a unit in D for all x ∈ X, there

exists a unique ring homomorphism θ : RX−1 → D such that θ ◦ φ = ψ.

(3) kerφ = {r ∈ R|rx = 0 for some x ∈ X}.

Proof. The proof is a straightforward generalization of the method of constructing Q from Z which

was described in Example 9.21. The main difference is that the equivalence relation has to be

defined in a more complicated way to account for the possibility of zerodivisors in X.

Consider all ordered pairs in the set R × X, but we write the ordered pair (r, x) suggestively

as r/x. We put a binary relation ∼ on this set, where r1/x1 ∼ r2/x2 if there exists s ∈ X such
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that s(r1x2 − x1r2) = 0. This relation is trivially reflexive and symmetric. To see it is transitive,

suppose also that r2/x2 ∼ r3/x3, so t(r2x3 − x2r3) = 0 with t ∈ X. Then

stx2x3r1 = tx3(sr1x2) = tx3(sx1r2) = sx1(tr2x3) = sx1(tx2r3) = stx2r3x1,

and so stx2(r3x1− x3r1) = 0, where stx2 ∈ X since X is multiplicatively closed. We conclude that

∼ is an equivalence relation. Let [r/x] indicate the equivalence class of the element r/x, and let

RX−1 be defined as the set of all equivalence classes of elements of R×X under this relation.

We claim that the operations [r1/x1] + [r2/x2] = [(r1x2 + r2x1)/(x1x2)] and [r1/x1] · [r2/x2] =

[(r1r2)/(x1x2)] make RX−1 into a ring. First, one must show that these are well defined operations

on equivalence classes. If [r1/x1] = [p1/y1] and [r2/x2] = [p2/y2], then s(r1y1 − x1p1) = 0 and

t(r2y2 − x2p2) = 0 for some s, t ∈ X. Thus

(r1x2 +r2x1)(sty1y2) = str1x2y1y2 +str2x1y1y2 = stx1p1x2y2 +stx1y1x2p2 = (p1y2 +y1p2)(stx1x2).

Then st
(
(r1x2+r2x1)(y1y2)−(p1y2+y1p2)(x1x2)

)
= 0, in other words we have [(r1x2+r2x1)/(x1x2)] =

[(t1y2 + y1t2)/(y1y2)] and addition is well-defined. Showing that multiplication is well-defined is

similar and left to the reader. Now that we have well-defined operations, checking the ring axioms

for RX−1 is routine, where the identity for addition is [0/1] and the identity for multiplication is

[1/1]. It is a good exercise for the reader to check the details.

(1) We define the map φ : R→ RX−1 by φ(r) = [r/1]. It is clear that φ is a ring homomorphism.

If x ∈ X, then φ(x) = [x/1], and this is a unit in RX−1, since [x/1][1/x] = [x/x] = [1/1], so

[x/1]−1 = [1/x]. We also have for a general element [r/x] of RX−1 that [r/x] = [r/1][1/x] =

φ(r)φ(x)−1.

(2) Suppose that ψ : R → D is another ring homomorphism such that ψ(x) is a unit in D

for all x ∈ X. Define θ : RX−1 → D by θ([r/x]) = ψ(r)ψ(x)−1. The element ψ(x)−1 makes

sense because ψ(x) is a unit in D. This function is well-defined, since if [r1/x1] = [r2/x2], this

implies s(r1x2 − x1r2) = 0 for some x ∈ S, so ψ(s)ψ(r1)ψ(x2) = ψ(s)ψ(x1)ψ(r2), and hence

ψ(r1)ψ(x1)−1 = ψ(r2)ψ(x2)−1 because ψ(s), ψ(x1), and ψ(x2) are units.

It is easy to check that θ is a ring homomorphism. Obviously θφ(r) = θ([r/1]) = ψ(r)ψ(1)−1 =

ψ(r) and so θφ = ψ. Finally, θ is unique: If θ′ is any homomorphism with θ′φ = ψ, since any

ring homomorphism preserves multiplicative inverses, we have θ′([r/x]) = θ′([r/1])θ′([x/1])−1 =

θ′φ(r)(θ′φ(x))−1 = ψ(r)ψ(x)−1 and hence θ′ = θ.

(3) We have φ(r) = [r/1] = [0/1] in RX−1 if and only if 0 = x(r(1) − (1)(0)) = xr for some

x ∈ X, by the definition of the equivalence relation. �
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The ring RX−1 is called the localization of R along X. When the localization RX−1 is used

in practice, one tends to write its elements as fractions r/x or
r

x
without the equivalence class

formalism. One simply remembers that a particular fraction can be written in many different ways

(other elements of the equivalence class), as we do with the rational numbers.

Remark 9.23. In many common situations X is a set of nonzerodivisors in R. When this is the

case, r1/x1 = r2/x2, which means by definition s(r1x2 − x1r2) = 0 for some s ∈ X, is equivalent

to r1x2 − x1r2 = 0. Thus when X is a set of nonzerodivisors, one can define the localization using

the simpler and more natural equivalence relation we used in Example 9.21. Also, in this case by

part (3) of the theorem the kernel of φ : R→ RX−1 is 0, so one can think of R as a subring of its

localization RX−1 via the injective homomorphism φ.

Example 9.24. Let R be any integral domain. Then X = R \ {0} is a multiplicative system. In

this case RX−1 is called the field of fractions of R. It comes along with the canonical injective ring

homomorphism φ : R → RX−1, and usually one identifies R with its image and thinks of R as a

subring of RX−1. In this way we can just write r for the fraction r/1 = φ(r). It is easy to see that

RX−1 is a field, since if r/x 6= 0, we must have r 6= 0. Then r ∈ X, so x/r is an element of RX−1

and clearly x/r = (r/x)−1. So every nonzero element is a unit.

We see from this that every integral domain can be embedded in a field. When R = Z we recover

Q as its field of fractions. When F is a field and we take R = F [x] to be the polynomial ring, then

its field of fractions is written as F (x) and called the field of rational functions in one variable over

F . The elements of F (x) are formal ratios of polynomials f(x)/g(x) where g(x) is not 0.

Example 9.25. Since we allowed X to be any multiplicative system in R, at the opposite extreme

from the case where X consists of zerodivisors is the case where 0 ∈ X. Then 0(r1− 0x) = 0 and

so r/x = 0/1 in RX−1 for all r/x ∈ RX−1. Thus RX−1 collapses to the zero ring. This makes

sense since the zero ring is the only ring in which 0 can be a unit.

9.3.1. Exercises.

Exercise 9.26. Prove that any field of characteristic 0 contains a unique subring isomorphic to Q.

Exercise 9.27. Consider the ring Zn for some n ≥ 2. Let a ∈ Zn and let X = {1, a, a2, . . . } be

the set of powers of a. Then X is a multiplicative system in Zn. Show that ZnX−1 is isomorphic

to Zd for some divisor d of n and explain how to determine d.
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Exercise 9.28. Let R be a commutative ring. The ring of formal Laurent series over R is the ring

R((x)) given by

R((x)) = {
∞∑
n≥N

anx
n|an ∈ R,N ∈ Z}.

Note that this is similar to the power series ring R[[x]], except that Laurent series are allowed to

include finitely many negative powers of x. The product and sum in this ring are defined similarly

as for power series.

(a) Prove that if F is a field, then F ((x)) is a field.

(b) Prove that if F is a field, then F ((x)) is isomorphic to the field of fractions of F [[x]]. (Hint:

use the universal property of the localization to show there is a map from the field of fractions to

F ((x)), then show it is surjective).

(c) Show that Q((x)) is not the field of fractions of its subring Z[[x]]. (Hint: consider the power

series representation of ex.)

Exercise 9.29. Recall that a commutative ring R is local if it has a unique maximal ideal M .

(a) Let P be a prime ideal of R. Let X = R − P be the set of elements in R which are not in

P . Consider the localization RX−1. Show that RX−1 is a local ring, with unique maximal ideal

PX−1 =
{
r/x

∣∣ r ∈ P, x ∈ X}.

(b) Note that R/P is a domain, since P is prime. Show that RX−1/PX−1 is isomorphic to the

field of fractions of R/P .

Exercise 9.30. Let R be an integral domain with multiplicative system X not containing 0.

(a) For any ideal I of R, define IX−1 = {r/x ∈ RX−1|r ∈ I}. Show that I is an ideal of RX−1.

(b) Show that every ideal of RX−1 has the form IX−1 for some ideal I of R.

(c) Show that if P is a prime ideal of RX−1, then P = IX−1 for some prime ideal I of R with

I ∩X = ∅.

10. Factorization theory in commutative domains

10.1. Euclidean Domains. The integers Z satisfy a number of important results that are keys

to understanding their structure. First, there is division with remainder: for any integers a, b with

b 6= 0, there is a quotient q and remainder r in Z, with 0 ≤ r < |b|, such that a = qb+ r. Second,

any two integers a, b, not both zero, have a greatest common divisor gcd(a, b) which is an integral

linear combination of a and b. The GCD can be calculated using the Euclidean algorithm, which

is based simply on repeated applications of division with remainder. We have also seen above that

the ideals of Z have a very simple structure—they are precisely the principal ideals mZ for m ≥ 0.
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This is another consequence of division with remainder. A third important idea is that any positive

integer can be written uniquely as a product of primes. This can also be used to show that any

two integers have a greatest common divisor.

The next goal is to show that all of the results above can be generalized and shown to hold for

certain classes of integral domains. The existence of something like division with remainder is the

most special condition, and will hold for a class of rings called Euclidean Domains. Integral domains

such that every ideal is generated by one element are called principal ideal domains or PIDs, and

every Euclidean domain is a PID. Finally, rings which have an analog of unique factorization into

primes are called unique factorization domains or UFDs. Every PID is UFD, but it turns out that

UFDs are a much more general class of rings, as PIDs are “small” in a certain sense.

The main thing we have to be more careful about when defining and studying these concepts

for more general rings is the possible existence of a lot more units in the ring. The units group of

Z is just {1,−1}, so multiplication by a unit either does nothing or negates an element, and this

can be easily controlled. In more general rings, we will have to explicitly allow for unknown unit

multiples in the definitions.

In the next sections we will consider these concepts in the order discussed above, from most

special to the most general.

Definition 10.1. Let R be an integral domain. We say that R is a Euclidean domain if there is a

function d : R → N = {0, 1, 2 . . . }, such that for any a, b ∈ R with b 6= 0, there exist q, r such that

a = qb+ r with either r = 0 or d(r) < d(b).

The function d is called the norm function for the Euclidean domain. Because the two possible

conclusions are r = 0 or d(r) < d(b), the value of d(0) is actually irrelevant. Some authors decline

to define d at 0, or specify that d(0) = 0, but it doesn’t make any difference.

Example 10.2. Let R = Z and define d : R → N to be the absolute value function d(a) = |a|.

Then R is a Euclidean domain. For by the usual division with remainder, if a, b ∈ Z with b 6= 0,

we have a = qb+ r for unique q and r with 0 ≤ r < |b|, so r = 0 or r < |b|.

Note that in the example above the elements q and r are uniquely determined, but there is

no requirement that this be the case for a Euclidean domain in general. Also, for the case of Z,

the required norm function can be taken to be something canonical and familiar—the absolute

value—but other less natural norm functions would work, such as d(a) = 2|a|.

After the integers, the simplest example of a Euclidean domain is the ring of polynomials over a

field.
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Example 10.3. Let F be a field and let R = F [x]. For 0 6= f ∈ F [x] define d(f) = deg(f), and

let d(0) = 0. Then R is a Euclidean domain with respect to this norm function. This follows from

polynomial long division: Given f, g ∈ F [x] with g 6= 0, there are unique q, r ∈ F [x] such that

f = qg + r, with r = 0 or deg(r) < deg(g).

The reader may have learned how to divide one polynomial by another but not have seen a proof

that this always works, so we give a proof here.

Lemma 10.4. Consider the setup in Example 10.3. Then a unique q and r with the claimed

properties exist.

Proof. Let S = {f − tg|t ∈ F [x]}. If 0 ∈ S, take r = 0. Otherwise, let r be an element of S

with minimal value of d(r) = deg(r) among elements of S. Write r = a0 + a1x + · · · + amx
m and

g = b0 + b1x+ · · ·+ bnx
n, where am 6= 0 and bn 6= 0, so that m = d(r) and n = d(g). Now if m ≥ n,

the leading terms in the difference h = r − (amb
−1
n )xm−ng cancel, so that d(h) < d(r) = m. Since

h ∈ S, this contradicts the choice of r. Thus d(r) < d(g). Since r = f − qg for some q ∈ F [x], we

now have f = qg + r with either r = 0 or d(r) < d(g), as required.

For uniqueness, suppose that f = q′g + r′ with d(r′) < d(g) or r′ = 0. Then (q − q′)g = r′ − r.

Suppose that r′−r 6= 0. Then q−q′ 6= 0 as well and we get d(q−q′)+d(g) = d(r′−r), by Lemma 8.25.

Since either r or r′ is nonzero, in any case we have d(r′ − r) ≤ max(d(r′), d(r)) < d(g). This forces

d(q − q′) < 0 which is a contradiction. Hence r′ − r = 0, which implies that q − q′ = 0 as well. �

More interesting examples of Euclidean domains are provided by certain quadratic integer rings

which are important in number theory. Let D be a squarefree integer. For our purposes, it is

convenient to take this to mean either D = ±p1p2 . . . pm for some nonempty set of distinct primes

p1, . . . , pm, or else D = −1. Let
√
D be a square root of D in C (choose either square root).

We define Q(
√
D) = {a + b

√
D|a, b ∈ Q}, as a subset of C. Note that (a + b

√
D)(c + d

√
D) =

(ac+dbD+ (ad+ bc)
√
D), and clearly Q(

√
(D) is closed under subtraction, so Q(

√
D) is a subring

of C. In fact, Q(
√
D) is a field, as follows. We define the norm of an element a+ b

√
D ∈ Q(

√
D)

as N(a + b
√
D) = (a + b

√
D)(a − b

√
D) = (a2 − b2D) ∈ Z. If N(a + b

√
D) = 0, then a2 = b2D

in Z; if both sides are nonzero, after clearing denominators, unique factorization in Z implies that

D is a square, contradicting the choice of D. Thus a = b = 0 and a + b
√
D = 0. So N(x) = 0

implies x = 0, as we expect of something called a norm. In particular, if 0 6= x = a + b
√
D, then

N = N(x) = a2 − b2D 6= 0, so that ((a/N)− (b/N)
√
D) = x−1 in Q(

√
D).
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The norm is also multiplicative:

N((a+ b
√
D)(c+ d

√
D)) = N((ad+ bcD) + (bc+ ad)

√
D)

= (ac+ bdD)2 − (bc+ ad)2D = (a2 − b2D)(c2 − d2D) = N(a+ b
√
D)N(c+ d

√
D).

In fact, when D < 0 so that
√
D is imaginary, then a − b

√
D = a+ b

√
D and N(x) = xx = ||x||2

where || || is the complex norm, so multiplicativity is a consequence of the multiplicativity of the

complex norm in that case.

Definition 10.5. Let D be a squarefree integer. We define the quadratic integer ring OQ(
√
D) =

{a+ bω|a, b ∈ Z}, where ω =
√
D if D 6≡ 1 mod 4, while ω = (1 +

√
D)/2 if D ≡ 1 mod 4.

We also define Z[
√
D] = {a+ b

√
D|a, b ∈ Z} for any such D, so Z[

√
D] ⊆ OQ(

√
D), with equality

unless D ≡ 1 mod 4. All of the rings in question are subrings of Q(
√
D). The motivation for

the definition of OQ(
√
D) comes from number theory. The ring OQ(

√
D) is the integral closure of Z

inside Q(
√
D). Explicitly, this means that OQ(

√
D) is the set of all α ∈ Q(

√
D) such that α is a

root of a monic polynomial f = xm + am−1x
m−1 + · · · + a0 ∈ Z[x], that is, a polynomial whose

leading coefficient is 1. Such rings and their factorization theory are relevant to the study of certain

diophantine equations. Integral closures are important in commutative algebra more generally.

We claim that if x ∈ OQ(
√
D) then N(x) ∈ Z. This is obvious if D 6≡ 1 mod 4. If D ≡ 1 mod 4,

then x = a+ bω = (a+ b/2) + (b/2)
√
D so

N(x) = (a+ b/2)2 − (b/2)2D = a2 + ab+ b2/4−Db2/4 = a2 + ab+ b2(1−D)/4 ∈ Z

since D − 1 is a multiple of 4, proving the claim. Now suppose that x is a unit in OQ(
√
D). Then

1 = N(1) = N(x)N(x−1). Since N(x) and N(x−1) are integers, N(x) = ±1. Conversely, if

N(x) = ±1 then x−1 = N(x)[(a + b/2) − b/2
√
D] = N(x)[(a + b) − bω] ∈ OQ(

√
D), so x is a unit.

We conclude that the units group of OQ(
√
D) is {x ∈ OQ(

√
D)|N(x) = 1}.

The special case where D = −1 is called the Gaussian integers. In this case OQ(
√
−1) = Z[i] =

{a+ bi|a, b ∈ Z}. By the remarks above, this ring has units group U(Z[i]) = {±1,±i}.

Example 10.6. The ring of Gaussian integers Z[i] is a Euclidean domain.

Proof. We define d(a+ bi) = N(a+ bi) = a2 + b2 = ||a+ bi||2, where || || is the complex norm. Let

x = a + bi and y = c + di with y 6= 0. We seek q, r ∈ Z[i] such that x = qy + r, with r = 0 or

N(r) < N(y). We know that Q[i] is a field, so in this ring xy−1 makes sense; write z = xy−1 = s+ti

where s, t ∈ Q. The idea is to take q to be an element of Z[i] which approximates z ∈ Q[i] as closely

as possible. Since x− zy = 0, the “error term” r = x− qy should then be small.
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Every rational number lies at a distance of no more than 1/2 from some integer. Choose q =

e+ fi ∈ Z[i] such that |e− s| ≤ 1/2 and |f − t| ≤ 1/2. Then

||(z − q)||2 = ||(e+ fi)− (s+ ti)||2 = ||(e− s) + (f − t)i||2 = (e− s)2 + (f − t)2 ≤ 1/4 + 1/4 = 1/2.

Now x = zy and so r = x−qy = zy−qy = (z−q)y. Then ||r||2 = ||(z−q)||2||y||2 ≤ ||y||2/2 < ||y||2.

Thus x = qy + r with r = 0 or N(r) < N(y), as required. �

Note that in this case the choice of q and r are not necessarily unique, because there is some

freedom in the choice of e and f in the proof when s or t is halfway betweeen two integers. For

example, if x = 1 and y = (1 + i), then 1 = (1 − i)(1 + i) − 1 and 1 = (−i)(1 + i) + i, where

N(−1) = N(i) = 1 < N(y) = 2.

One may show in a similar way that the rings OQ(
√
D) are Euclidean domains for a finite number

of small values of D (see Exercise 10.8), but for most D these rings are not Euclidean domains

(or even unique factorization domains in the sense we will study shortly). They are all Dedekind

Domains, rings which satisfy a looser kind of unique factorization property.

10.1.1. Exercises.

Exercise 10.7. Consider the ring OQ(
√

2) = Z[
√

2]. If u = 3+2i then clearly N(u) = (32)−2(22) =

1, so u is a unit. Show that u has infinite order in the units group and hence the units group is

infinite. (It is a fact that the units group of OQ(
√
D) is always infinite when D > 0.)

Exercise 10.8. Recall that when D is a squarefree integer, then the ring of integers in the field

Q(
√
D) = {x+y

√
D|x, y ∈ Q} is the subring O = {a+ bω|a, b ∈ Z} of Q(

√
D), where ω =

√
D if D

is congruent to 2 or 3 modulo 4, while ω = (1 +
√
D)/2 if D is congurent to 1 modulo 4. The field

Q(
√
D) has the norm N(a+ b

√
D) = a2−Db2, which is multiplicative, i.e. N(z1z2) = N(z1)N(z2)

for z1, z2 ∈ Q(
√
D).

(a) Consider the ring of integers O in Q(
√
D). Suppose that for every z ∈ Q(

√
D), there exists

an element y ∈ O such that |N(z − y)| < 1. Prove that O is a Euclidean domain with respect to

the function d : O → N given by d(x) = |N(x)|. (Hint: follow the method of proof we used to show

that Z[i] is a Euclidean domain).

(b) Show that the ring of integers O is a Euclidean domain when D = −2, 2,−3,−7, or −11. (In

each case show that part (a) applies).

10.2. Principal Ideal Domains (PIDs). After fields, which have no nontrivial proper ideals at

all, the commutative domains with the simplest ring theory are the principal ideal domains, which
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every ideal is generated by one element. We will see that such rings have a number of very nice

properties which are similar to the ring Z of integers.

Definition 10.9. Let R be an integral domain. The ring R is a principal ideal domain or PID if

every ideal I of R has the form (a) = aR for some a ∈ R.

We noted that Z is a PID in Example 8.68. More generally, we have the following result.

Proposition 10.10. Let R be a Euclidean domain with respect to the function d : R→ N.

(1) R is a PID.

(2) If I is a nonzero ideal of R, then I = (b) where b is any nonzero element with d(b) minimal

among nonzero elements of I.

Proof. (1) If I = 0, then I = (0) is certainly principal. Assume now that I is nonzero. Let

m = min(d(a)|0 6= a ∈ I) and pick any b ∈ I with d(b) = m. We claim that I = bR. Certainly

bR ⊆ I, since b ∈ I. If a ∈ I, we can find q, r ∈ R such that a = bq+ r, where r = 0 or d(r) < d(b).

Note that r = a − bq ∈ I, since a, b ∈ I. If d(r) < d(b) we contradict the choice of b, which forces

r = 0. But now a = bq ∈ bR, so I ⊆ bR. We have I = bR, as claimed, and so R is a PID.

(2) This was shown in the course of the proof of (1). �

Example 10.11. Let φ : R[x] → C be the evaluation map φ(f(x)) = f(i), where i =
√
−1 ∈ C.

(Recall from Example 8.41 that we can define an evaluation homomorphism which evaluates at an

element in a commutative ring containing the coefficient field as a subring.)

Since φ is a homomorphism, I = kerφ is an ideal of the Euclidean domain R[x]. If f = a+ bx for

a, b ∈ R, then φ(f) = a+ bi, which is not 0 in C unless a = b = 0 and so f = 0. On the other hand

φ(x2 + 1) = 0 and so x2 + 1 ∈ I. By Proposition 10.10(2), since x2 + 1 is an element of minimal

degree among nonzero elements of I, we must have I = (x2 + 1).

Moreover, φ is clearly surjective, since a + bi = φ(a + bx). Thus from the first isomorphism

theorem we conclude that R[x]/(x2 + 1) ∼= C. This shows how to “construct” C from R in some

sense. Also, we see that (x2 + 1) must be a maximal ideal of R[x].

Example 10.12. Consider the map φ : Z[i]→ Z5 given by φ(a+ bi) = a+ 2b. An easy calculation

shows that φ is a homomorphism of rings. It is clear that φ is surjective. Let I = kerφ. By the

first isomorphism theorem, Z[i]/I ∼= Z5. So I is a maximal ideal because Z5 is a field.

We know that I = (x) is prinicpal, generated by x = a+ bi with minimal value of N(x) = a2 + b2

among nonzero elements of I. We see that φ(2− i) = 0 and so 2− i ∈ I, with N(2− i) = 5. The
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only nonzero elements with a smaller norm are (±1± i), ±1, and ±i, none of which is in I. Thus

I = (2− i) and we conclude that Z[i]/(2− i) ∼= Z5.

Euclidean domains are our only examples of PIDs so far, so one may well wonder whether every

PID must be a Euclidean domain. The answer is no: the quadratic integer ring OQ(
√
−19) =

Z + Z((1 +
√
−19)/2) is a PID which is not Euclidean; see Dummit and Foote, sections 8.1, 8.2.

We view this as mostly a curiosity, as many quadratic integer rings are not PIDs at all, and so

the more advanced techniques of Dedekind domains must be used to study them anyway. And the

simple examples of PIDs of greatest importance in this first course—in particular the polynomial

ring F [x] where F is a field—are Euclidean.

We show now that in an arbitrary PID we have a theory of divisors, gcds, and lcms which behaves

very analogously to the familiar special case of Z.

Definition 10.13. Let R be an integral domain. We write d|b for d, b ∈ R and say d divides b if

b = cd for some c ∈ R. Given a, b ∈ R, we say that d ∈ R is a greatest common divisor or gcd of a

and b if (i) d|a and d|b; and (ii) for any c ∈ R such that c|a and c|b, then c|d. If d is a gcd of a and

b then we write d = gcd(a, b).

Traditionally when working in the ring of integers Z, one insists that gcds should be positive;

with this convention there is a unique gcd of two integers a and b (not both 0), and this gcd is

literally the greatest (i.e. largest) common divisor of a and b. In a general PID, the term “greatest”

is maintained, but it has no literal meaning; note that the definition of gcd is made purely in terms

of divisibility with no reference to any ordering of the elements. We no longer insist on a unique

gcd but just refer to “a” gcd. Even in Z, with our definition above, either 6 or −6 is a gcd of 12

and 18, for example. Note that we also allow a = b = 0 in the definition—this is often avoided in

Z because every number is a common divisor of both 0 and 0, so there is no “greatest”; however,

gcd(0, 0) makes sense according to our definition and is equal to 0.

It is useful to recast divisibility in terms of ideals. Note that d|b means b = cd for some c ∈ R,

so that b ∈ (d). Then (b) ⊆ (d) since (b) is the unique smallest ideal containing b. Conversely, if

(b) ⊆ (d) then b ∈ (b) ⊆ (d) and so b = cd for some c. We conclude that d|b if and only if b ∈ (d)

if and only if (b) ⊆ (d). This means that d is a common divisor of a and b if and only if (b) ⊆ (d)

and (a) ⊆ (d), or equivalently (a) + (b) = (a, b) ⊆ (d). So d is a greatest common divisor of a and

b if for all principal ideals (c) with (a, b) ⊆ (c), we have (d) ⊆ (c). In other words, d = gcd(a, b)

is equivalent to the statement that the ideal (d) is uniquely minimal among principal ideals that

contain (a, b).
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As mentioned above, d = gcd(a, b) (when it exists) is not uniquely determined, However, as the

discussion in the previous paragraph makes clear, the ideal (d) generated by the gcd is uniquely

determined by a and b, as it is the uniquely minimal principal ideal containing (a, b). Thus the

other possible choices of gcd(a, b) are exactly the other elements d′ such that (d′) = (d). Let us

tease out further exactly how this can happen.

Definition 10.14. Let R be an integral domain. We say that a is an associate of b if a = ub for

some unit u ∈ R.

A quick argument shows that the relation “a is an associate of b” is an equivalence relation. We

often say that “a and b are associates” without preferencing one over the other.

Lemma 10.15. Let R be any integral domain. Then (a) = (b) if and only a and b are associates.

Proof. Suppose that (a) = (b). If a = 0 then (a) is the zero ideal and so b = 0, and vice versa.

Obviously a and b are associates in this case.

Now assume that a and b are nonzero. Since a ∈ (a) = (b), we have a = bx for some x ∈ R.

Similarly, since b ∈ (b) = (a) we have b = ay for y ∈ R. Hence a = bx = ayx and so a(yx− 1) = 0.

Since R is a domain and a 6= 0, we get yx = 1 and thus x is a unit. Thus a and b are associates.

Conversely, if a = ub for some unit u, then for any r ∈ R we have ar = b(ur) ∈ (b), so (a) ⊆ (b).

But b = u−1a and thus (b) ⊆ (a) by the same argument. We conclude that (a) = (b). �

In particular, we see that the set of possible gcd’s of a pair of elements a, b is an equivalence class

of associates. For example, Z× = {−1, 1}, so in the integers the only freedom is the sign of the

gcd. In the Gaussian integers Z[i] the units are {±1,±i} and so the set of associates of an element

a+ bi is {±a± bi}.

Let us return to PIDs now.

Proposition 10.16. Let R be PID. Given elements a, b ∈ R, then d = gcd(a, b) exists, and

moreover (d) = (a, b) = (a) + (b). Thus d = ax+ by for some x, y ∈ R.

Proof. Since R is a PID, (a, b) = (d) for some d. Thus since (a, b) = (d) is already principal, clearly

(d) is uniquely minimal among principal ideals containing (a, b). That d = ax+by for some x, y ∈ R

is just a restatement of d ∈ (a, b). �

We note that in an integral domain R which is not a PID, it is possible that a pair of elements

a, b has a gcd d, but that (a, b) ( (d). It is also possible that no gcd of those elements exist, as we

will see in Example 10.35.
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It is also easy to develop of theory of least common multiple (lcm) in an integral domain. In any

PID R, the lcm of any 2 elements a, b exists, and if m = lcm(a, b) then (m) = (a) ∩ (b). Moreover,

one has the nice formula (ab) = (gcd(a, b) lcm(a, b)) as one gets in the integers, or in terms of

elements, ab and gcd(a, b) lcm(a, b) are associates. We leave this to the exercises.

10.2.1. Calculating the GCD. In this optional section we describe how one might calculate GCDs

in practice.

Since a Euclidean domain is a PID, gcd’s always exist in a Euclidean domain. Assuming that

there is an algorithm for computing q and r such that a = qb + r with r = 0 or d(r) < d(b), then

there is an algorithm for calculating the gcd, modelled on the Euclidean algorithm for finding the

gcd of two integers. Suppose that R is Euclidean with respect to the norm function d : R → N.

Given a, b ∈ R with b 6= 0, we can find q, r such that a = qb+ r, where d(r) < d(b) or r = 0. Note

that r = a− qb ∈ (a, b), so (r, b) ⊆ (a, b). Conversely, a = qb+ r ∈ (b, r), so (a, b) ⊆ (b, r). We see

that (a, b) = (b, r) and thus gcd(a, b) = gcd(b, r).

Now in general, given a, b for which we want to find a gcd, assume both are nonzero, since

gcd(0, b) = b is trivial to calculate. Let 0 6= a1 = a, 0 6= a2 = b, and calculate a1 = q1a2 + a3 as

above, with d(a3) < d(a2) or a3 = 0. Then gcd(a1, a2) = gcd(a2, a3). If a3 6= 0, continue in this

way, writing a2 = q2a3 + a4, with d(a4) < d(a3) or a4 = 0. We create a sequence a1, a2, a3, . . . , an

for which d(ai+1) < d(ai) for all i ≥ 2. Necessarily there is n such that an = 0 but ai 6= 0 for i < n.

Then gcd(a, b) = gcd(a1, a2) = gcd(a2, a3) = · · · = gcd(an−1, an) = gcd(an−1, 0) = an−1. So the

last nonzero term of the sequence is a gcd of a and b. It is also possible to use the results of this

calculation to find explicit x, y ∈ R such that ax+ by = gcd(a, b). For the last two nontrivial steps

gave an−3− qn−3an−2 = an−1 and an−4− qn−4an−3 = an−2. Substituting the second in the first we

obtain

an−1 = an−3 − qn−3(an−4 − qn−4an−3) = (1 + qn−3qn−4)an−3 + (−qn−3)an−4.

Continuing inductively in this way we obtain an explicit expression for an−1 as an R-linear combi-

nation of an−i and an−i+1 for all i ≤ n− 1; when i = n− 1 we get an−1 as an R-linear combination

of a and b.

Example 10.17. Let R = Q[x]. Let us calculate gcd(x5 − x2 + 5x − 5, x4 − 1). Each step of

the Euclidean algorithm can be performed by polynomial long division with remainder (we leave

the details of these calculations to the reader). Let a1 = x5 − x2 + 5x − 5 and a2 = x4 − 1.

Then x5 − x2 + 5x − 5 = x(x4 − 1) + (−x2 + 6x − 5), so set a3 = −x2 + 6x − 5. Now x4 − 1 =

(−x2 − 6x − 31)(−x2 + 6x − 5) + (156x − 156), so set a4 = 156x − 156. Next, −x2 + 6x − 5 =
132



(−(1/156)x + 5/156)(156x − 156) + 0. So a5 = 0 and a4 = 156x − 156 is the gcd. Since nonzero

scalars are units in Q, x− 1 is also a gcd. So gcd(x5 − x2 + 5x− 5, x4 − 1) = x− 1.

10.2.2. Exercises.

Exercise 10.18. Let R be an integral domain. We take m is a multiple of a to mean the same

thing as a divides m, i.e. a|m. The element m is a least common multiple of a and b if (i) a|m and

b|m; and (ii) for all x ∈ R such that a|x and b|x, we have m|x. We write m = lcm(a, b) in this case.

(a). Show that m is a least common multiple of a and b if and only if (m) is uniquely maximal

among principal ideals contained in (a) ∩ (b).

(b). Prove that a and b have a least common multiple if and only if a and b have a greatest

common divisor, and that in this case (ab) = (gcd(a, b) lcm(a, b)).

(c). Show that in a PID, m = lcm(a, b) exists for any elements a, b, and (m) = (a) ∩ (b).

Exercise 10.19. A Bezout domain is an integral domain R in which every ideal generated by 2

elements is principal; that is, given a, b ∈ R we have (a, b) = (d) for some d.

(a). Prove that an integral domain R is a Bezout domain if and only if every pair of elements

a, b has a GCD d ∈ R such that d = ax+ by for some x, y ∈ R.

(b). Prove that every finitely generated ideal of a Bezout domain is principal.

Exercise 10.20. Use the calculation in Example 10.17 to write find u(x), v(x) ∈ Q[x] such that

gcd(x5 − x2 + 5x− 5, x4 − 1) = u(x)(x5 − x2 + 5x− 5) + v(x)(x4 − 1).

10.3. Unique Factorization Domains (UFD’s). We now study factorization of elements in an

integral domain as products of simpler elements. We will see that there is a large class of rings for

which factorization behaves in a similar way as the factorization of integers as products of primes

in Z.

Definition 10.21. Let R be an integral domain. Let a be element of R with a 6= 0 and a not a

unit. We say that a is irreducible if whenever a = bc in R, then either b or c is a unit in R. We say

that a is prime if whenever a|(bc) then a|b or a|c.

Example 10.22. Let R = Z. Since the units in Z are just ±1, a is irreducible in Z if the only

ways to write a in Z as a product of other elements are a = (1)(a) or a = (−1)(−a). Clearly this

holds if and only if a = ±p for a prime number p.

If a = ±p for a prime number p, then Euclid’s lemma states that if a|bc then a|b or a|c, so a

is a prime element in Z. Conversely if a is a composite number, then a = bc where |b| < |a| and

|c| < |a|, and so a|(bc) but clearly a 6 |b and a 6 |c, so a is not a prime element.
133



We conclude that the irreducible and prime elements in Z are the same, both consisting of the

numbers ±p for prime numbers p.

We see that both prime and irreducible elements are reasonable ways to try to generalize the idea

of a prime number in the integers. It turns out that they give distinct concepts in arbitrary integral

domains, which is why it is useful to study both of them. This is actually a common situation in

algebra: when trying to generalize a concept, there may be several different but equivalent ways to

formulate the original idea, where the natural generalizations of these different ways lead to distinct

notions in the more general setting. Sometimes one of the generalizations is clearly the most useful

one to consider; other times they all give potentially interesting concepts worth investigating. In

the case at hand, we will see that in rings where factorization behaves best (unique factorization

domains), prime and irreducible will turn out to be equivalent concepts.

Example 10.23. Let F be a field and let R = F [x]. An irreducible element of R is called an

irreducible polynomial. Note that if deg f = 1 then f is irreducible; for if we write f = gh, then

deg f = deg g + deg h, and there is no choice but to have deg g = 1 and deg h = 0 or deg g = 0

and deg h = 1. Since the polynomials of degree 0 are the nonzero constants, which are units in R,

either g or h is a unit.

The polynomial x2 + 1 is not irreducible in C[x], since x2 + 1 = (x − i)(x + i) in this ring, and

neither x− i or x+ i is a unit since only the nonzero constant polynomials are units. On the other

hand, x2 + 1 is irreducible in R[x], which we can see as follows. if not, it clearly would be a product

of two degree 1 polynomials in R[x], say x2 + 1 = (ax + b)(cx + d). Since bd = 1, b and d are

nonzero, so x2 + 1 = ac(x+ b/a)(x+ d/c), but ac = 1, so x2 + 1 = (x+ r)(x+ s) for r, s ∈ R. Now

we must have r + s = 0 and rs = 1, leading to r(−r) = 1 or r2 = −1, which has no solution with

r ∈ R.

Example 10.24. Let R = Z[i]. We claim that 3 ∈ Z[i] is irreducible. If we write 3 = xy, then

N(3) = N(x)N(y) as the norm N(a + bi) = a2 + b2 is multiplicative. Thus 9 = N(x)N(y). No

element in R has norm 3, since a2+b2 = 3 clearly has no solutions in integers. Thus either N(x) = 1

or N(y) = 1. However, an element of norm 1 in R is a unit.

We are now ready to define the rings with well-behaved factorization.

Definition 10.25. Let R be an integral domain. Then R is a unique factorization domain or UFD

if
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(1) Every element a ∈ R which is nonzero and not a unit has an expression a = p1p2 . . . pn for

some n ≥ 1 where each pi is irreducible in R.

(2) If p1p2 . . . pn = q1q2 . . . qm where each pi and qj is irreducible, then n = m and possibly

after rearranging the qi, pi is an associate of qi for all i.

Example 10.26. Z is a UFD. The irreducibles in Z are the primes and their negatives. It is a

familiar theorem that any positive number greater than 1 has a unique expression as a product of

positive primes; this extends in an obvious way to all nonzero, nonunit integers if we allow all prime

elements and only require uniqueness up to associates. For example, 10 = (2)(5) = (−5)(−2) are

two factorizations of 10 as products of irreducibles, but after rearrangement the two factorizations

are the same up to associates.

In a general integral domain, asking for any two factorizations to be the same “up to associates”

is the best we can hope for. For, note that if p is an irreducible and u is a unit, then pu is again

an irreducible which is an associate of p. Thus, for example, any product of two irreducibles p1p2

is also the product of irreducibles p′1, p
′
2 where p′1 = up1, p′2 = u−1p2 for any unit u, so this kind

of ambiguity cannot be avoided. So the definition of UFD captures those domains in which every

nonzero, nonunit element can be written as a product of irreducibles in a way that is as unique as

we can reasonably ask for.

Our next main goal is prove that any PID is also a UFD. We will see later that the class of

UFD’s is considerably more general than the class of PIDs. We first need some preliminary results.

Here are some basic properties of prime and irreducible elements.

Lemma 10.27. Let R be an integral domain.

(1) a ∈ R is a prime element if and only if (a) is a nonzero prime ideal of R.

(2) If a is prime, then a is irreducible.

(3) If R is a PID, then a is prime if and only if a is irreducible, if and only if (a) is maximal

and not zero. Thus all nonzero prime ideals are maximal.

Proof. (1) This follows more or less from the definitions. If (a) is a nonzero prime ideal, then by

definition (a) is proper so a is not a unit. If a = bc then bc ∈ (a), so either b ∈ (a) or c ∈ (a) and

thus a|b or a|c. Thus a is a prime element. The converse is similar.

(2) Suppose that a is prime, so a 6= 0 and a is not a unit. If a = bc then a|(bc) so either a|b or

a|c. If a|b, then b = ad, say, so a = adc and a(1 − dc) = 0. Since we are in a domain, cd = 1 and

thus c is a unit. By symmetry, if a|c we conclude that b is a unit.
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(3) Now let R be a PID. If a is an irreducible element, consider (a). Since by definition a is not

a unit, (a) is a proper ideal. If (a) ⊆ I ⊆ R for some ideal I, we can write I = (b) for some b.

Then b|a, so a = bc. Since a is irreducible, either b or c is a unit. If b is unit, then (b) = R. If

c is a unit, then a and b are associates and (a) = (b). We see that either I = (a) or I = R and

hence (a) is maximal ideal, which is nonzero since a 6= 0. Now any nonzero maximal ideal (a) is a

nonzero prime ideal, and hence a is a prime element by (1). Finally a prime element is irreducible

by (2). �

We see from the result above that the picture of the prime ideals in a PID is quite simple. Note

that a field F is trivially a PID, and in this case (0) is maximal and the only prime ideal of F ; F

has no prime or irreducible elements and the previous result is vacuous. If R is a PID which is not

a field, then it has some nonzero proper ideal and hence at least one nonzero maximal ideal. Then

(0) is the only prime of R which is not maximal, and all of the other primes are maximal ideals

(a) generated by irreducible elements a. There is one maximal ideal for each associate equivalence

class of irreducible elements. In general the set of prime ideals of a commutative ring, considered

as a poset under inclusion, is called its prime spectrum.

10.3.1. the noetherian property. The final element we need for the proof that PIDs are UFDs is the

following notion which is very important in the theory of rings and modules in general. We take a

small detour to explore this concept a bit beyond what we technically need at this point.

Definition 10.28. Let R be a commutative ring. Then R is called noetherian if given a chain of

ideals Ii of R for all i ≥ 1 with I1 ⊆ I2 ⊆ I3 ⊆ · · · ⊆ In ⊆ . . . , then there exists n such that Im = In

for all m ≥ n (we say the chain stabilizes). This condition is also known as the ascending chain

condition or ACC as well as the noetherian property.

Note that only chains indexed by the natural numbers are needed here; these are not the general

chains (totally ordered sets) considered in Zorn’s Lemma. It is important to remember that it does

not suffice to consider chains of this special sort when verifying the hypothesis of Zorn’s lemma.

The term noetherian honors Emmy Noether, a German mathematician who in her last years

moved to America and taught at Bryn Mawr college. She was one of the most important figures in

the development of commutative ring theory in the early twentieth century. As it turns out many

of the rings one naturally tends to encounter in practice are noetherian; the fact that the condition

is so common is one of the things that makes it the most useful. It is easy to prove this for PIDs.

Lemma 10.29. A PID is a noetherian ring.
136



Proof. Let I1 ⊆ I2 ⊆ . . . be a chain of ideals in the PID R. Then I =
⋃
i≥1 Ii is again an ideal

of R. Since R is a PID, I = (a) for some a. Now a ∈ In for some n. Then for m ≥ n, we have

(a) ⊆ In ⊆ Im ⊆ I = (a) and so In = Im for all m ≥ n. Thus the chain stabilizes and R is

noetherian. �

Let us prove several different characterizations of the noetherian property, all of which are useful

and interesting.

Proposition 10.30. Let R be a commutative ring. The following are equivalent:

(1) R is noetherian; i.e. R has the ascending chain condition on ideals.

(2) Every nonempty collection of ideals of R has a maximal element (under inclusion).

(3) Every ideal I of R is finitely generated, i.e. I = (a1, . . . , ak) for some ai ∈ R.

Proof. (1) =⇒ (2). Let S be some nonempty collection of ideals of R. Suppose that S has no

maximal element. Pick any I1 ∈ S. Since I1 is not a maximal element of S under inclusion, there

must be I2 ∈ S with I1 ( I2. Now I2 is also not maximal in S, so there is I3 ∈ S with I2 ( I3.

Continuing inductively, we have an ascending chain I1 ( I2 ( I3 ( · · · ( In ( . . . , which shows

that the ascending chain condition fails.

(2) =⇒ (3). Let I be an ideal of R. Consider the collection S of all finitely generated ideals

of R which are contained in I. Note that this is a nonempty collection since (0) ⊆ I. Now by

hypothesis S has a maximal element J ⊆ I, say with J = (a1, . . . , ak). Suppose that J ( I. Pick

any ak+1 ∈ I \ J . Then J ( (a1, . . . , ak, ak+1) ⊆ I, which shows that J was not maximal after all.

This contradiction implies that J = I and so I is finitely generated.

(3) =⇒ (1). This is similar to the proof of Lemma 10.29; indeed, that proof could have been

skipped as this result is more general. If I1 ⊆ I2 ⊆ . . . is a chain of ideals, then I =
⋃
i≥1 Ii is an

ideal of R, so I = (a1, . . . ak) for some ai ∈ R, by condition (3). Now each ai is contained in some

Ij ; since the ideals form a chain, there is n such that ai ∈ In for all i. Then for m ≥ n we have

(a1, . . . , ak) ⊆ In ⊆ Im ⊆ I = (a1, . . . , ak) and so In = Im for all m ≥ n. �

Condition (2) in the previous result is called the maximal condition. It is useful to compare it

with Zorn’s Lemma. Our study of applications of Zorn’s Lemma showed why it is useful to be

able to choose maximal elements of posets. Zorn’s Lemma potentially applies to posets of ideals in

arbitrary commutative rings, but in order to apply it one needs that poset to satisfy the condition

that chains have upper bounds. Some posets of ideals of interest do not satisfy this condition, and

so Zorn’s Lemma cannot be used. In a noetherian ring, any poset of ideals has a maximal element
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and so we never need to use Zorn’s Lemma, but instead we have restricted the kind of ring that

our results apply to.

Condition (3) shows that in some sense noetherian rings generalize PIDs. The definition of a

PID, where every ideal must be generated by one element, is generalized to the weaker condition

that every ideal must be generated by some finite set of elements.

10.3.2. PIDs are UFDs. We are now ready to prove the main goal of this section, that PIDs have

the unique factorization property. In fact, we are able to prove a somewhat more general statement.

Theorem 10.31. Let R be an integral domain.

(1) Suppose that R is noetherian, and that all irreducibles in R are prime. Then R is a UFD.

(2) If R is a PID, then R is a UFD.

Proof. (1) We first have to show that if a is a nonzero, nonunit element of R, then a can be written

as a finite product of irreducibles. Consider the set of ideals

S = {(a)|a is nonzero, nonunit, and not a finite product of irreducibles}.

Suppose that the collection S is nonempty. Since R is noetherian, it satisfies the maximal condition

(condition (2) in Proposition 10.30) and so S has a maximal element, say (a). Now a is not itself

irreducible (note that we consider a single irreducible to be a “product” of 1 irreducible) and so we

can write a = bc where b and c are both not units. Then (a) ( (b), for if (a) = (b), then c would

be forced to be a unit. Similarly, (a) ( (c). Since (a) is a maximal element of S, neither (b) nor

(c) belongs to S, and neither b nor c is zero or a unit. Thus b and c are both finite products of

irreducibles. But then a = bc is a finite product of irreducibles as well, a contradiction. It follows

that S = ∅ and so every nonzero nonunit element of R is a finite product of irreducibles.

Now suppose that p1p2 . . . pm = q1q2 . . . qn, where each pi and qj is irreducible, and hence also

prime by hypothesis. Note that we allow the case that m = 0 or n = 0, so that one or the other

product is empty and by convention equal to 1. We prove by induction on m that m = n, and after

relabeling the qj we have pi is an associate of qi for all i. If m = 0 then we have 1 = q1q2 . . . qn; if

n 6= 0, then each qi is irreducible and a unit, a contradiction. So n = 0 and there is nothing further

to show. Now we assume m ≥ 1; similarly, this forces n ≥ 1. Since p1 is prime, the definition of

prime extends by induction to prove that since p1|q1q2 . . . qn, we have p1|qi for some i. Relabel the

q’s so that qi becomes q1. Now p1|q1 means q1 = p1x, but since q1 is irreducible, either p1 or x is a

unit. The element p1 is irreducible and hence not a unit, so x is a unit and p1, q1 are associates.
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Since we are in a domain, We may now cancel p1 from both sides to get p2p3 . . . pm = (xq2)q3 . . . qn

(some product could be empty). Since x is a unit and q2 is irreducible, xq2 is irreducible. By

induction we obtain that m− 1 = n− 1 and possibly after relabeling, pi is an associate of qi for all

i (note that an associate of xq2 is also an associate of q2). Since we already showed that p1 is an

associate of q1, we are done.

(2) We proved that PID’s are noetherian in Lemma 10.29, and that irreducible elements are

prime in a PID in Lemma 10.27. Thus (1) applies and shows that a PID is a UFD. �

10.3.3. Properties of UFDs. Some of the nice properties we proved for PIDs in the preceding section

hold for general UFD’s. First, we have that there is no distinction between irreducible and prime

elements.

Lemma 10.32. Let R be a UFD. Then a ∈ R is prime if and only if it is irreducible.

Proof. We already saw that a prime element in an integral domain is irreducible in Lemma 10.27.

Now let a be irreducible. Suppose that a|(bc). Write bc = ad for some d ∈ R. Write b =

p1p2 . . . pm, c = q1q2 . . . qn, and d = r1r2 . . . rt, for some irreducibles pi, qi, and ri. Now we have

ar1r2 . . . rt = p1p2 . . . pmq1q2 . . . qn. By the uniqueness condition in the definition of UFD, we must

have that a is an associate of some pi or some qi. Then a|b or a|c, and so a is a prime element. �

For the next result and other applications it is useful to make the following observation. Suppose

that a = p1p2 . . . , pk is a product of irreducible elements pi. Some of the pi may be associates of

each other; if we multiply these together we will get a unit multiple of a power of a single pi. Doing

this for each class of associates and renaming the irreducibles, we get a = uqe11 q
e2
2 . . . qemm for some

ei ≥ 1, where qi and qj are not associates for i 6= j, and for some unit u. By the uniqueness property

of the UFD, we get that this expression for a is unique up to replacing the qi with associates and

changing the unit u. Note that the unit u cannot be removed in general as it cannot necessarily

be “absorbed” into a prime power. For example, in Z we have −36 = (−1)(22)(32), and replacing

2 by −2 or 3 by −3, the only possible associates, does not remove the unit in front.

Now we can also easily get that gcd’s exist in a UFD.

Lemma 10.33. Let R be a UFD. Then for every pair of elements a, b ∈ R, gcd(a, b) exists.

Proof. If a = 0 then gcd(0, b) = b. If a or b is a unit then (a, b) = R and so 1 = gcd(a, b). So we can

assume that a and b are nonzero, nonunits, and thus we can express each as a unit times a product

of powers of pairwise non-associate irreducibles. In fact, if we make the convention that p0 = 1 for

any irreducible p, then we can write each of a and b using the same overall set of irreducibles by
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taking the union of all associate classes of irreducibles that appear in either a or b. In this way

we can write a = upe11 p
e2
2 . . . pemm and b = vpf11 p

f2
2 . . . pfmm where the pi are pairwise non-associate

irreducibles; ei ≥ 0 and fi ≥ 0, and u, v are units in R. Note that the exponents ei and fi are

uniquely determined by a and b.

Now define gi = min(ei, fi) for all i. Then d = pg11 p
g2
2 . . . pgmm is a gcd of a and b. We leave it to

the reader to check the details. �

10.3.4. Examples. There are many examples of integral domains which are not UFDs. We think

the following example is one of the simplest.

Example 10.34. Let F be a field. Let

R = {f ∈ F [x]|f(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m with a1 = 0}.

It is easy to check that R is a subring of F [x], as we never create a nonzero x-term by multiplying

or adding polynomials without an x-term. R is a domain since it is a subring of a domain.

Now R contains no polynomials of degree 1. Hence if f ∈ R has degree 2 or 3, if we write f = gh

for g, h ∈ R[x], then deg f = deg g + deg h forces either deg g = 0 or deg h = 0. But R contains all

of the scalars in F [x] and so every nonzero element in R with degree 0 is a unit. It follows that all

elements in R with degree 2 or degree 3 are irreducible in R.

Now x6 = (x2)(x2)(x2) = (x3)(x3) gives two factorizations of x6 ∈ R as a product of irreducibles,

where the number of irreducibles is not even the same in the two expressions. Thus R is not a

UFD.

Most quadratic integer rings are not UFDs, so these are also an easy source of examples of

non-UFDs. The following is one example, but there are lots of similar ones.

Example 10.35. Let R = OQ(
√
−10). Thus R = Z[

√
−10] = {a + b

√
−10|a, b ∈ Z} since −10 is

not congruent to 1 modulo 4. In this ring we have the norm N(a+ b
√
−10) = a2 + 10b2. Since an

element is a unit if and only if it has norm 1, it is clear that R has group of units R× = {±1}.

Note that −10 = (−2)(5) = (
√
−10)(

√
−10) in R. We claim that −2, 5, and

√
−10 are all

irreducibles in R. Because we know the units in R it is clear that none of these are associates of

each other, so this will then imply that factorization in R is not unique.

Since N(−2) = 4, if −2 = xy with x, y ∈ R both nonunits, since N(−2) = N(x)N(y) we must

have N(x) = N(y) = 2. But a2 + 10b2 = 2 has no solutions. So −2 is irreducible in R. Similarly,

there are no elements of norm 5 and so 5 is irreducible in R. If
√
−10 = xy with x and y nonunits,

then N(x)N(y) = 10 and again if x and y are to be nonunits then N(x) = 2 and N(y) = 5 or vice
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versa; but we know there are no elements of such norms. Thus −2, 5, and
√
−10 are all irreducible

as claimed. We conclude that R is not a UFD.

We can also see that R has irreducible elements which are not prime (which gives an additional

proof that R is not a UFD, by Lemma 10.32). We already saw that 5 is irreducible and that

5|(
√
−10)(

√
−10). Suppose that 5 is prime. Then 5|

√
−10. But if

√
−10 = 5x for x ∈ R then

taking norms we get 10 = 25N(x) which is clearly impossible. So 5 is an irreducible element which

is not prime. Similar arguments show that 2 and
√
−10 also have this property.

Using the same idea we can also give an example of a pair of elements in an integral domain

which have no greatest common divisor. Let a = 10 and b = 2
√
−10. One may check that both

principal ideals (2) and (
√
−10) contain (a, b) and are minimal among principal ideals containing

it. Thus there is no uniquely minimal principal ideal containing (a, b).

10.3.5. Exercises.

Exercise 10.36. Finish the proof of Lemma 10.33.

Exercise 10.37. Let R be an integral domain. LetX be a multiplicative system in R not containing

0, and let D = RX−1. Show that if R is a Euclidean domain, so is D. (Hint: use factorization into

irreducibles to define the norm function.)

Exercise 10.38. Let G = (R>0, ·) be the group of positive real numbers under multiplication.

Then G is an ordered group: it is a totally ordered set such that if α < β and γ ∈ G then αγ < βγ.

Let F be any field and let FG be the group ring. Let R be the subset of FG consisting of the

F -span of R≥1. It is easy to see that R is a subring of FG.

(a). Prove that R is an integral domain, and the only units in the ring R are those of the form

λ1R, where 0 6= λ ∈ F .

(b). Show that any element x in the F -span of R>1 is a product of two elements in R>1. Conclude

that no such element can be written as a finite product of irreducibles. Thus R is not a UFD.

(c). Show that R is not noetherian, and find an explicit properly ascending chain of ideals in R.

Exercise 10.39. Let n be a squarefree integer with n > 3 and let R = Z[
√
−n] = {a+b

√
−n|a, b ∈

Z}. (Note this is different from the ring of integers OQ(
√
−n) when n ≡ 1 mod 4).

(a). Prove that 2,
√
−n, 1 +

√
−n, and 1−

√
−n are all irreducible in R.

(b). Show that R is not a UFD.

(c). Find an element in R which is irreducible and not prime.
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Exercise 10.40. Consider the ring R = Z[
√
−5] = {a + b

√
−5|a, b ∈ Z}, in other words the ring

of integers OQ(
√
−5).

(a). Consider the ideals I2 = (2, 1 +
√
−5), I3 = (3, 2 +

√
−5), I ′3 = (3, 2 −

√
−5). Show that

R/I2
∼= Z2, and R/I3

∼= R/I ′3
∼= Z3. Conclude that all three ideals are maximal ideals.

(b). Show that R/(3) ∼= Z3 × Z3 as rings. (Hint: Chinese Remainder theorem).

(c). Is R/(2) ∼= Z2 × Z2?

Exercise 10.41. This problem continues the investigations of the ring R in the previous problem.

(a). Prove that I2, I3, I
′
3 are all not principal ideals of R.

(b). Prove that I2
2 = (2), I2I3 = (1 −

√
−5), I2I

′
3 = (1 +

√
−5), and I3I

′
3 = (3). In particular,

this gives multiple examples showing that a product of nonprincipal ideals can be principal.

(c). Consider the equality of products of principal ideals (2)(3) = (1 +
√
−5)(1 −

√
−5). Show

that expressing each of the ideals in this equation as a product of maximal ideals, one gets the

same result on both sides of the equation up to rearrangement of the ideals.

Remark. The ring R is an example of a Dedekind domain. Although unique factorization fails in

the sense that R is not a UFD, there is a different kind of unique factorization: every nonzero ideal

is a product of maximal ideals in a unique way up to the order of the factors. This is demonstrated

by part (c): even though the element 6 factors in two essentially different ways (hence R is not a

UFD), the equality of products of principal ideals (2)(3) = (1 +
√
−5)(1−

√
−5) leads to the same

answer once everything is expressed in terms of products of maximal ideals. Dedekind domains are

important in algebraic geometry and number theory and we will study them in more detail in Math

200c.

Exercise 10.42. Suppose that R is a UFD with field of fractions F . A polynomial f is monic if

it has leading coefficient 1; in other words f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xn.

(a). Suppose that f ∈ R[x] factors as f = gh with g, h ∈ F [x]. Show that the product of any

coefficient of g with any coefficient of h is in R.

(b). Suppose that f , g, and h are as in part (a) and that moreover g and h are monic. Show

that g ∈ R[x] and h ∈ R[x].

(c). Show that the ring S = Z[2
√

2] = {a + b2
√

2|a, b ∈ Z} is not a UFD by finding f ∈

S[x], g, h ∈ F [x], where F is the field of fractions of S, which violate the results above.

10.4. Applications to number theory. In this optional section we show how factorization in the

Gaussian integers Z[i] can be used to solve some classical problems in number theory. Factorization

in other quadratic integer rings has similar applications.
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Let R = Z[i]. The norm function is N(a+bi) = a2+b2 = ||a+bi||2. We have seen that an element

is a unit in R if and only if it has norm 1, so the units are {±1,±i}. The norm is multiplicative,

so if N(x) = p is a prime number, then x must be irreducible: if x = yz then N(x) = N(y)N(z)

and so either N(y) or N(z) equals one and hence y or z is a unit.

Consider those integers n for which N(x) = n for some x ∈ R. Then if x = a + bi we have

N(x) = a2 + b2 = n. It follows that if we understand which positive integers are norms, we will

have solved the classical problem of which integers can be represented as sums of two squares. The

answer was originally given by Fermat (without proof) and Euler first proved it was correct.

The main step is to understand which prime numbers in Z are irreducible elements of R = Z[i].

Lemma 10.43. Let p be a prime integer. Then the following are equivalent:

(1) p is reducible in Z[i].

(2) p = a2 + b2 for a, b ∈ Z.

(3) p = 2 or p ≡ 1 mod 4.

Proof. (1) =⇒ (2). Suppose that p is reducible, so p = xy where x, y ∈ R = Z[i] and neither

x nor y is a unit. Now N(p) = p2 = N(x)N(y) and neither x nor y can have norm 1. Thus

N(x) = N(y) = p. Writing x = a+ bi, we have p = N(x) = a2 + b2 for a, b ∈ Z.

(2) =⇒ (3). If a ∈ Z, then either a is even, so a2 ≡ 0 mod 4, or a is odd, so a2 ≡ 1 mod 4. It

follows that for any a, b ∈ Z, a2 + b2 is congruent to 0, 1, or 2 modulo 4. Thus p is either 2 or an

odd prime with p ≡ 1 mod 4.

(3) =⇒ (1). If p = 2 then p = (1 + i)(1− i) is reducible. Now assume that p ≡ 1 mod 4. We

will use in this proof that the units group Z×p is cyclic of order p − 1. It is a consequence of the

fact that any finite field has cyclic multiplicative group, which will be proved later. We have that

|Z×p | is a multiple of 4. It therefore has an element c which has order exactly 4 in this group. Since

−1 is the unique element with order exactly 2, we have c2 = −1. Thus p|(c2 + 1). Now in Z[i] we

have c2 + 1 = (c + i)(c − i). Suppose that p is irreducible in Z[i]. Since Z[i] is a PID, then p is a

prime element of Z[i]. From p|(c+ i)(c− i) we deduce that p|(c+ i) or p|(c− i) in Z[i]. But this is

clearly false as a multiple of p has the form p(a+ bi) = pa+ pbi with both real and imaginary part

multiples of p. So p is reducible in Z[i]. �

Having proved which prime numbers are sums of 2 squares, it is not hard to characterize which

integers are sums of 2 squares in general.

Theorem 10.44. Let n > 1. Then n is a sum of 2 squares in Z if and only if for every prime p

dividing n such that p ≡ 3 mod 4, the maximal power pe dividing n has even exponent e.
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Proof. Suppose first that n = a2 + b2 is a sum of 2 squares in Z. Then n = (a + bi)(a − bi) in

R = Z[i]. Let p be a prime dividing n with p ≡ 3 mod 4. Let pe be the maximal power of p

dividing n in Z. By Lemma 10.43, p is also an irreducible and hence prime element of R. Let

(a+ bi) = p1p2 . . . pm where each pi is irreducible in R. Now the complex conjugation map R→ R

given by (a+ bi) 7→ a+ bi = (a− bi) is a ring isomorphism, so (a− bi) = p1 . . . pm where each pi is

irreducible as well. The number n has an irreducible factorization in R of the form n = peq1 . . . qs

where the qi are non-associates of p. We also have n = p1p2 . . . pmp1 . . . pm. If k of the pi are

associates of p, then k of the pi are associates of p, since p = p. It follows from unique factorization

that e = 2k.

Conversely, suppose the given condition holds. Factor n in Z as n = mpe11 p
e2
2 . . . pess where the

pi are distinct primes with pi ≡ 3 mod 4, each ei is even, and m is not divisible by any prime q

with q ≡ 3 mod 4. If we find a and b such that a2 + b2 = m, then (ac)2 + (bc)2 = mc2 = n where

c = p1p2 . . . ps. Moreover, note that if m1 = a2 +b2 and m2 = c2 +d2 are both sums of squares, then

m1m2 = (a+ bi)(a− bi)(c+di)(c−di) = (a+ bi)(c+di)(a− bi)(c−di) = (x+ yi)(x− yi) = x2 + y2

where (a+ bi)(c+ di) = (x+ yi). It follows that if we write m as a product of primes, we just need

to express each prime factor of m as a sum of 2 squares. But this is possible by Lemma 10.43. �

10.4.1. Exercises.

Exercise 10.45. Let R be the ring Z[
√
−2] = {a + b

√
−2|a, b ∈ Z}. By using similar arguments

as we used to study the Gaussian integers Z[i], show that the following are equivalent for an odd

prime number p ∈ Z:

(i) p is not irreducible in R.

(ii) p = a2 + 2b2 for some a, b ∈ Z.

(iii) −2 is a square in Zp.

(By the way, it is also known that −2 is a square mod p as in condition (iii) if and only if p is

congruent to either 1 or 3 modulo 8.)

Exercise 10.46. Recall that the characteristic of a ring R is the order of the element 1 in the

additive group of R, when this is a finite number; otherwise we say that R has characteristic 0.

Using the Eisenstein criterion, prove that the following elements are irreducible in the indicated

ring.

(a). The element xn − p ∈ (Z[i])[x], where p is an odd prime in Z and n ≥ 1.

(b). The element x2 + y2 − 1 ∈ F [x, y], where F is any field of characteristic not 2.
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11. Polynomial extensions

11.1. Gauss’s Lemma. In this section we will prove that if R is a UFD, then so is the polynomial

ring R[x]. Since this process can be iterated, this produces a large collection of examples of UFDs.

On the other hand, we will see that R[x] is not a PID unless R is a field.

The main technical element needed for the proof is a Lemma of Gauss which is interesting in its

own right. We begin now with some preliminary results directed towards that result.

Throughout this section we assume that R is a UFD. We would like to understand factorization

in R[x] and how it relates to factorization in R. It will turn out to be very useful to let F be

the field of fractions of R (which exists since R is a domain), and think of R as a subring of F .

Then R[x] is naturally a subring of F [x], and the ring F [x] is a PID as we have seen, and so has

a relatively simple factorization theory. We will be able to use factorization in F [x] to help us

understand factorization in R[x].

Example 11.1. Let R = Z, so F = Q. Consider f(x) = 5x−10 ∈ Z[x]. Then f(x) is not irreducible

in Z[x], for this ring has only ±1 as units, while f = 5(x− 2) is a product of 2 irreducible elements

in Z[x]. On the other hand, if we consider f as an element of Q[x], then in this ring 5 is a unit and

so is ignored when considering factorization. Then the element 5x− 10 is already itself irreducible,

as is true for any degree 1 polynomial in a polynomial ring over a field.

We see from the preceding example that one of the main differences between factorization in

Z[x] and Q[x] is that there are constant polynomials in Z[x] that are themselves irreducibles.

Example 11.2. Let f(x) = x2 − 5x+ 6 ∈ Z[x]. Although this polynomial has integer coefficients,

we can consider it as an element of Q[x]. As such, there are many factorizations of it as a product of

two linear terms, for example f(x) = ((2/3)x− (4/3))((3/2)x− (9/2)). Since any linear polynomial

is irreducible in Q[x], this is a factorization of f as a product of irreducibles in Q[x]. But it

doesn’t tell us about factorization in Z[x] because the polynomials have coefficients that are not

in Z. On the other hand, we can multiply the first factor by 3/2 and the second by 2/3 to obtain

f(x) = (x − 2)(x − 3), which is a factorization in Z[x]. Because no constants in Z factor out of

x− 2 or x− 3, it is easy to see that these polynomials are irreducible in Z[x], so we have found a

factorization into irreducibles in Z[x].

The example above already shows the main idea of Gauss’s lemma. If we factor a polynomial in

R[x] over F [x], we will see that we will be able to adjust the terms by scalars to get a factorization

in R[x].
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In the previous section we saw that in a UFD R, gcd(a, b) is defined (up to associates as always)

for any a, b ∈ R. It is easy to extend this definition to define d = gcd(a1, . . . an) for any elements

ai ∈ R. This is an element such that d|ai for all i, and if c|ai for all i, then c|d. To show that it

exists, one may define it as gcd(a1, a2, . . . , an) = gcd(gcd(a1, . . . , an−1), an) by induction and then

show it has the required properties. Alternatively, one can generalize Lemma 10.33 directly to the

case of finitely many elements.

Definition 11.3. Let f ∈ R[x] for a UFD R. Write f = a0 +a1x+a2x
2 + · · ·+amx

m with am 6= 0.

The content of f is C(f) = gcd(a0, a1, . . . , am) ∈ R. As usual this is defined only up to associates.

For example, if f = 12x2 + 15x− 6 ∈ Z[x], then C(f) = 3 (or −3).

Since a lot of things will hold “up to associates” in this section, we use the notation a ∼ b to

indicate that elements a, b are associates in the ring R. If we need to emphasize in which ring R

the elements are associates, we write a ∼R b.

Lemma 11.4. Let R be a UFD and let f, g ∈ R[x]. Let a ∈ R.

(1) C(af) ∼ aC(f).

(2) If C(f) ∼ 1 and C(g) ∼ 1 then C(fg) ∼ 1.

(3) C(fg) ∼ C(f)C(g).

Proof. (1) It is easy to verify fact that for a1, . . . , an, b ∈ R, gcd(ba1, ba2, . . . , ban) = b gcd(a1, . . . , an).

The formula in (1) is an immediate consequence.

(2) To show C(fg) = 1, it is enough to prove that for every irreducible element p ∈ R, p does not

divide C(fg); in other words, fg has some coefficient not divisible by p. Now let φ : R → R/(p)

be the natural homomorphism. For r ∈ R write r = φ(r) = r + (p). We can extend this to a map

φ̃ : R[x]→ R/(p)[x] defined by φ̃(f) = f = φ̃(a0 +a1x+ · · ·+amx
m) = a0 +a1x+ · · ·+amx

m. It is

easy exercise using the definition of the ring operations in a polynomial ring to prove that φ̃ is also

a homomorphism of rings. Now since C(f) ∼ 1, p does not divide every ai, and thus some ai 6= 0

in R/(p). It follows that f 6= 0 in R/(p)[x]. Similarly, since C(g) ∼ 1, g 6= 0 in R/(p)[x]. But now

note that since p is irreducible, it is a prime element by Lemma 10.32 and so (p) is a prime ideal.

Thus R/(p) is a domain. Then R/(p)[x] is also a domain. Thus fg = fg 6= 0. It follows that some

coefficient of fg is not divisible by p. Since p was arbitrary, C(fg) ∼ 1 as desired.

(3) We may assume that f 6= 0 and g 6= 0; otherwise the statement is trivial. Write f =

a0 +a1x+ · · ·+amx
m and g = b0 + b1x+ · · ·+ bnx

n. Since C(f) = gcd(a0, a1, . . . , am) divides every

coefficient ai, we can write f = C(f)f̃ where f̃ ∈ R[x] has content C(f̃) ∼ 1. Similarly, g = C(g)g̃
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for g̃ ∈ R[x] with C(g̃) ∼ 1. Now fg = C(f)C(g)f̃ g̃ and so using (1), C(fg) ∼ C(f)C(g)C(f̃ g̃).

But by (2) we have C(f̃ g̃) ∼ 1. �

We are now ready to prove Gauss’s Lemma.

Lemma 11.5 (Gauss). Let R be a UFD with field of fractions F . Consider R[x] as a subring of

F [x]. Suppose that f ∈ R[x] and that f = gh for g, h ∈ F [x]. Then there are is a scalar 0 6= λ ∈ F

such that g′ = λg and h′ = λ−1h satisfy g′, h′ ∈ R[x] (and of course, f = g′h′).

Proof. Notice that for any f ∈ F [x], there is a ∈ R such that af ∈ R[x]. (If f = (s1/t1)+(s2/t2)x+

· · ·+ (sm/tm)xm with si, ti ∈ R, then a = t1t2 . . . tm suffices.)

Applying this to both g and h we have a, b ∈ R such that ag ∈ R[x] and bh ∈ R[x]. Now

ag = C(ag)g̃ for some g̃ ∈ R[x] with C(g̃) ∼ 1. similarly, bh = C(bh)h̃ for h̃ ∈ R[x] with C(h̃) ∼ 1,

and f = C(f)f̃ with C(f̃) ∼ 1. We now have abC(f)f̃ = (ag)(bh) = C(ag)C(bh)g̃h̃. Taking the

content of both sides and using that C(g̃h̃) ∼ 1 by Lemma 11.4(2), we get abC(f) ∼ C(ag)C(bh).

Cancelling gives a unit u ∈ R such that f̃ = ug̃h̃ or f = C(f)g̃uh̃. Let g′ = C(f)g̃ ∈ R[x] and

h′ = uh̃ ∈ R[x]. We now get f = g′h′ with g′, h′ ∈ R[x]. Tracking through the proof we see that we

only ever adjusted polynomials by scalars in F , so g′ = λ1g and h′ = λ2h with λ1, λ2 ∈ F . Since

f = gh = g′h′, λ1λ2 = 1 so we can take λ1 = λ, λ2 = λ−1 for some λ ∈ F . �

11.2. Factorization in R[x]. Gauss’s Lemma allows us to understand the irreducibles in R[x] in

terms of those of F [x].

Corollary 11.6. Let R be a UFD with field of fractions F .

(1) Let f ∈ R[x] be a polynomial with deg f ≥ 1. Then f is irreducible in R[x] if and only if f

is irreducible in F [x] and C(f) ∼ 1.

(2) Let f, g ∈ R[x] be irreducibles in R[x] of positive degree. Then f and g are associates in

R[x] if only if they are associates in F [x].

Proof. (1) Suppose that f is irreducible in R[x]. We can write f = C(f)f ′ with f ′ ∈ R[x]. Then

deg f ′ = deg f ≥ 1, so f ′ is not a unit in R[x]. This forces C(f) to be a unit, i.e. C(f) ∼ 1. Next,

suppose we write f = gh for g, h ∈ F [x]. By Gauss’s Lemma, we have f = g′h′ with g′, h′ ∈ R[x],

where g′ = λg and h′ = λ−1h, some λ ∈ F . Since f is irreducible in R[x], either g′ or h′ is a unit

in R[x], which means either deg g′ = 0 or deg h′ = 0. Then deg g = 0 or deg h = 0. But nonzero

constant polynomials are units in F [x], so either g or h is a unit in F [x]. Hence f is irreducible

over F [x].
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Conversely, suppose that C(f) ∼ 1 and f is irreducible in F [x]. Suppose that f = gh with

g, h ∈ R[x]. This is a factorization in F [x] as well, so either g or h is a unit in F [x], and hence

either deg g = 0 or deg h = 0. Without loss of generality we may suppose that deg(g) = 0, so

g = a ∈ R is a constant polynomial. Then a divides f , so a divides every coefficient of f . Since

C(f) ∼ 1, a is a unit in R. Thus f is irreducible in R[x].

(2) Suppose that f and g are associates in F [x]. Then f = λg where 0 6= λ ∈ F . Write λ = r/s

with r, s ∈ R, so sf = rg. Now taking contents we have sC(f) = C(sf) = C(rg) = rC(g) but since

f and g are irreducible in R[x], C(f) ∼ 1 and C(g) ∼ 1 by part (1). Thus s ∼ r and hence λ is a

unit in R. So f and g are associates in R[x]. The converse is trivial. �

We are now ready to prove the main theorem.

Theorem 11.7. Let R be a UFD. Then R[x] is also a UFD.

Proof. Let f ∈ R[x] where f is nonzero and not a unit. We first need to show that f is a product

of irreducibles in R[x]. We prove this by induction on deg f . If deg f = 0, then f = r ∈ R for some

nonzero nonunit r ∈ R, so r = p1p2 . . . pm for some irreducibles pi in R, some m ≥ 1, since R is a

UFD. Clearly each pi is also irreducible in R[x], so this case is done.

Now assume that deg f > 0. Let r = C(f); so we can write f = rf ′ with f ′ ∈ R[x] where

C(f ′) ∼ 1. Either r is a unit or else we can factor r = p1p2 . . . pm as above. So we just need to

prove that f ′ is a product of irreducibles in R[x]. If f ′ is irreducible in R[x] we are done. If f ′

is reducible in R[x], since C(f ′) ∼ 1, by Corollary 11.6, f ′ is also reducible over F [x], so f ′ = gh

for g, h ∈ F [x] with deg g < deg f and deg g < deg f . By Gauss’s Lemma, we can adjust g and h

by nonzero scalars in F to get a factorization f ′ = g′h′ with g′, h′ ∈ R[x] and still deg g′ < deg f ,

deg h′ < deg f . By induction on degree, each of g′ and h′ is a product of finitely many irreducibles

in R[x], so f ′ is as well.

Next we need to prove uniqueness. Suppose that p1p2 . . . pmg1g2 . . . gn = q1q2 . . . qsh1h2 . . . ht,

where pi, qi are irreducibles in R[x] of degree 0 (i.e. irreducibles in R) and gi, hi are irreducibles in

R[x] of degree ≥ 1. Each gi and hi must have content 1, by Corollary 11.6. Taking contents of both

sides we thus get p1p2 . . . pm ∼R q1q2 . . . qs. By unique factorization in the UFD R, we conclude

that m = s and pi is an associate of qi after relabeling. We can now cancel the degree zero parts to

get g1g2 . . . gn ∼R[x] h1h2 . . . ht. Each gi and hi is also irreducible in F [x], by Corollary 11.6. Since

F [x] is a UFD, we have n = t and after relabeling gi is an associate of hi in F [x] for all i. But then

by Corollary 11.6(2), gi is an associate of hi in R[x] for all i as well, so we are done. �
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The main result of this section implies that there are many examples of rings that are UFDs and

not PIDs.

Lemma 11.8. Let R be a UFD which is not a field. Then R[x] is a UFD and not a PID.

Proof. The ring R[x] is a UFD by Theorem 11.7. Since R is not a field, it has some irreducible

element p. Then we claim that the ideal I = (p, x) is a non-principal ideal of R[x]. If I = (d),

then d|p and d|x. If p = gd then deg(p) = 0 = deg(g) + deg(d) which forces deg(d) = 0, in other

words d ∈ R. But now d|x means x = df would force deg(f) = 1, say f = ax + b with a, b ∈ R,

and x = dax + db. This means da = 1 and so d is a unit in R and hence also in R[x]. Now

(d) = R. However, I is not the unit ideal, for R[x]/(p, x) ∼= R/(p) is a nonzero integral domain, as

p is irreducible and hence not a unit. �

Example 11.9. Given a ring R, we can define inductively a ring of polynomials in n variables

over R by R[x1, . . . xn] = (R[x1, . . . , xn−1])[xn]. If R is a UFD, then our main theorem gives that

R[x1, . . . , xn] is also a UFD for any n. In particular, if F is a field then F [x1, . . . , xn] is a UFD.

These rings play an important role in commutative algebra.

Rather than an inductive definition, one can also define S = R[x1, . . . , xn] directly as follows.

Let S be the set of all sums of the form
∑

(i1,i2,...,in)∈Nn r(i1,i2,...,in)x
i1
1 x

i2
2 . . . x

in
n , where r(i1,...,in) ∈ R

is 0 except for finitely many n-tuples (i1, . . . , in). (Recall that by our convention 0 ∈ N.) In

other words, S consists of finite R-linear combinations of monomials xi11 x
i2
2 . . . x

in
n . Monomials are

multiplied in the obvious way, and this extends linearly to a product on S. It is straightforward to

see that this ring is isomorphic to the one given by the inductive construction.

11.3. Irreducible Polynomials. In this section, we study some results that help one to under-

stand whether or not a particular polynomial is irreducible.

Let F be a field. We know that R = F [x] is a Euclidean domain, so it is a PID and UFD and

every nonzero nonunit polynomial is a product of irreducible polynomials. But how do we determine

which polynomials are irreducible? This is a hard problem in general that depends sensitively on

the properties of the field F . Here we will state some of the most basic results which we will need

when we study field theory in more detail later.

The following result is elementary from the point of view of our earlier study of Euclidean

domains.
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Lemma 11.10. Let f ∈ F [x] where F is a field. Given a ∈ F , we have f = q(x − a) + r where

q ∈ F [x] and r = f(a) ∈ F . In other words f(a) is the remainder when f is divided by (x− a). In

particular, f(a) = 0 if and only if (x− a)|f in F [x].

Proof. We know that F [x] is a Euclidean domain with respect to the function d : F [x] → N given

by d(0) = 0, d(f) = deg(f) for f 6= 0. Since g = (x − a) has degree 1, we have f = qg + r with

d(r) < d(g) = 1 or r = 0. Thus d(r) = 0 and hence r is a constant. Now since evaluation at a

is a homomorphism, we must have f(a) = r(a) = r. The last statement follows since q and r are

unique. �

The fact that the remainder when we divide f by (x − a) is equal to f(a) is often called the

“remainder theorem”, and the fact that (x− a)|f if and only if f(a) = 0 is often called the “factor

theorem”. We say that a ∈ F is a root of f ∈ F [x] if f(a) = 0.

Corollary 11.11. A polynomial f ∈ F [x] with deg(f) = n has at most n distinct roots in F .

Proof. If a ∈ F is a root of f then f = (x − a)g with g ∈ F [x] of deg g = n − 1, by the factor

theorem. If b 6= a is also a root of f then 0 = f(b) = (b− a)g(b) forces g(b) = 0. But g has at most

n− 1 roots in F by induction. �

There are a few fields F for which we can say exactly what the irreducible polynomials in F [x]

look like.

Example 11.12. Let F = C. By the fundamental theorem of algebra, which we will prove later

in the course, every f ∈ F [x] with deg f ≥ 1 factors as f = c(x − a1) . . . (x − an) for some

c, a1, . . . , an ∈ C. It follows that the only irreducible elements in C[x] are the linear polynomials

{x− a|a ∈ C} (up to associates).

Similarly, if F = R all irreducibles in R[x] can be described. Up to associates, they are the linear

polynomials x − a with a ∈ R and the quadratic polynomials x2 + ax + b with a, b ∈ R that have

non-real roots. We leave this to the reader to check (use the fact that any polynomial factors into

linear factors over C, and that for a polynomial with real coefficients the complex roots come in

conjugate pairs.)

Corollary 11.13. Let f ∈ F [x] where F is a field, with deg f ≥ 2.

(1) If f has a root in F then f is reducible in F [x].

(2) If deg f ∈ {2, 3}, then f is reducible in F [x] if and only if f has a root in F .
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Proof. (1) If f(a) = 0 for a ∈ F then (x− a) divides f by the factor theorem, so f = (x− a)g for

some g ∈ F [x]. Since deg f ≥ 2, deg g ≥ 1. Thus f is reducible since the units in F [x] are just the

nonzero constant polynomials.

(2) Let f have degree 2 or 3. If f is reducible, it must be a product of polynomials of strictly

smaller degree, so one of those polynomials has degree 1. Thus (tx− s) divides f for some s, t ∈ F

with t 6= 0, and so the associate (x− a) divides f , where a = s/t ∈ F . Thus a is a roof of f . The

converse is part (1). �

A method for proving that a polynomial over a field is or is not irreducible is called an irre-

ducibility test. We know that nonzero degree 0 polynomials in F [x] are units; degree 1 polynomials

are always irreducible, and for polynomials of degree 2 and 3, there is a simple test: it is irreducible

if and only if it has no roots in F . Note however that a reducible polynomial of degree 4 could be

a product of 2 irreducible polynomials of degree 2, and so needn’t have a root in F .

To use this test for irreducibility of polynomials of degree 2 or 3 we need ways to tell if a

polynomial has roots in the field or not. Here is a useful result in that regard.

Lemma 11.14. Let R be a UFD with field of fractions F . Let f = a0 + a1x+ · · ·+ amx
m ∈ R[x].

If r ∈ F is a root of f , where r = s/t with s, t ∈ R, t 6= 0 and gcd(s, t) = 1, we must have s|a0 and

t|am in R.

Proof. If f(r) = 0 we have 0 = f(r) = a0 + a1(s/t) + · · · + am(s/t)m. Multiplying by tm we have

0 = a0t
m + a1st

m−1 + · · ·+ am−1s
m−1t+ ams

m. This equation implies s|a0t
m. Since gcd(s, t) = 1,

we get s|a0. Similarly, the equation implies t|amsm and since gcd(s, t) = 1 we have t|am. �

The preceding result is often called the “rational root theorem”, since it is frequently used to

decide if f ∈ Q[x] has a root by taking F = Q, R = Z. Note that we can first clear denominators

in f to assume that f ∈ Z[x], without affecting the roots of f .

Example 11.15. Let f(x) = (3/2)x3 +x−5 ∈ Q[x]. Then f has the same roots as the polynomial

3x3 + 2x− 10 ∈ Z[x]. By the rational root theorem, if s/t ∈ Q is a fraction in lowest terms which is

a root of f , then s|10 and t|3. This gives a finite number of possible solutions s = ±1,±2,±5,±10

and t = ±1,±3. Checking all of them, no such fraction s/t is a root of f . Thus f has no roots in

Q and hence f is irreducible in Q[x] because deg f = 3.

Example 11.16. If F is a finite field, for example F = Fp for a prime p, then we can check if

a polynomial of degree 2 or 3 in F [x] has a root in F just by evaluating at all the finitely many

elements of F . This allows one to find irreducible polynomials of higher degree inductively; for
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example, once one finds all irreducible polynomials of degree 2 and 3, then we know all products of

two degree 2 irreducibles and we can also find all degree 4 polynomials with a root. The degree 4

irreducibles are the remaining degree 4 polynomials. Similarly, we could find all degree 5 irreducibles

by eliminating those with a root and the products of a degree 2 and a degree 3 irreducible. This

method is quite easy if F is small and we are interested in polynomials of low degree.

For example, let F = F2 = {0, 1}. There are 4 polynomials of degree 2, and only x2 + x+ 1 does

not have 0 or 1 as a root. So this is the only irreducible of degree 2. Similarly, the only degree 3

polynomials without a root are x3 +x+1 and x3 +x2 +1, so these are the degree 3 irreducibles. The

degree 4 polynomials without a root are x4 +x3 +1, x4 +x2 +1, x4 +x+1, and x4 +x3 +x2 +x+1.

The only product of 2 degree 2 irreducibles is (x2 +x+ 1)2 = x4 +x2 + 1; so x4 +x3 + 1, x4 +x+ 1,

and x4 + x3 + x2 + x+ 1 are the degree 4 irreducibles.

For polynomials of degree bigger than 3 over a general field, the methods above may not help.

The following criterion due to Eisenstein only applies to polynomials of a fairly special form, but

it does allow one to write down a lot of irreducible polynomials of arbitrarily high degree.

Proposition 11.17 (Eisenstein Criterion). The R be a UFD with field of fractions F . Suppose

that f = amx
m + · · · + a1x + a0 ∈ R[x] is a polynomial of degree ≥ 1. If there is an irreducible

element p ∈ R such that p 6 |am; p|ai for 0 ≤ i ≤ m− 1; and p2 6 |a0, then f is irreducible in F [x].

Proof. Suppose that f is reducible in F [x]. Then f = gh where g, h ∈ F [x] both have degree≥ 1. By

Gauss’s lemma (Lemma 11.5), adjusting by scalars if necessary, we can assume that g, h ∈ R[x]. Let

R = R/(p) and consider the homomorphism φ : R[x] → R[x] given by f =
∑
bix

i 7→ f =
∑
bix

i,

where bi = bi+(p). Then f = gh. Now by assumption every coefficient of f except am is a multiple

of p, so f = amx
m with am 6= 0. Let g =

∑
bix

i and h =
∑
cix

i and suppose that deg g = k,

deg h = l, where k + l = m = deg f . Let i be minimal such that bi 6= 0 and let j be minimal

such that cj 6= 0. Then since R/(p) is a domain, bicjx
i+j is the smallest degree term with nonzero

coefficient in gh = f . But f has no nonzero coefficients except the coefficient of xm, and this forces

i = k and j = l, so that g = bkx
k and h = clx

l. In particular, since k > 0 and l > 0, b0 = c0 = 0.

But then p|b0 and p|c0 in R, and the constant term of f is a0 = b0c0, so p2|a0. This contradicts the

assumption. �

Example 11.18. f(x) = 5x7 + 3x6 − 9x3 + 6 is irreducible in Q[x], by applying the Eisenstein

criterion with R = Z and p = 3. While we are primarily interested in irreducbility over a field

here, we can also say that f is irreducible in Z[x], since f has content gcd(5, 3,−9, 6) = 1 (see

Corollary 11.6).
152



Note that it was trivial to choose the polynomial in the previous example—we just had to make

sure the leading coefficient was not a multiple of 3, the other coefficients were multiples of 3, and

the constant term was not a multiple of 9. The other prime factors of the coefficients could be

anything at all, so one immediately gets an infinite collection of irreducible polynomials this way.

It is quite useful that the ring R can be any UFD at all in the Eisenstein criterion. Here is an

application to polynomials in two variables.

Example 11.19. Let f = x + x2yn−1 + yn ∈ F [x, y] = (F [x])[y], where F is a field. We claim

that f is an irreducible element in F [x, y]. To see this we embed R = F [x] in its field of fractions

K = F (x), and consider f ∈ K[y]. Now we can consider f as a polynomial in y over the field

K = F (x). The element x is irreducible in R = F [x]. Writing f = (1)yn + (x2)yn−1 + (x)y0

we see that x does not divide the leading coefficient in R, it divides the other coefficients, and

x2 does not divide the constant term. Thus Eisenstein’s criterion applies and shows that f is an

irreducible polynomial in F (x)[y]. Then f is also irreducible in F [x][y] = F [x, y] by Corollary 11.6

since gcd(x, x2, 1) = 1.

There is a particularly useful polynomial which can be proved irreducible using a tricky appli-

cation of the Eisenstein criterion.

Example 11.20. Let p be a prime. Then f = xp−1 + xp−2 + · · ·+ x+ 1 is irreducible in Q[x].

Proof. The trick is to make a substitution. Note that f = (xp − 1)/(x− 1). Substitute z + 1 for x

where z is another variable. We obtain

g(z) = f(z+1) = ((z+1)p−1)/z = (zp+
(
p
p−1

)
zp−1+· · ·+

(
p
1

)
z+1−1)/z = zp−1+

(
p
p−1

)
zp−2+· · ·+

(
p
1

)
,

by the binomial theorem. The binomial coefficient
(
p
i

)
is a multiple of p whenever 0 < i < p, and(

p
1

)
= p is not a multiple of p2. The Eisenstein criterion applies to g(z) for the prime p, so g(z) is

irreducible in Q[z]. But clearly then f(x) is irreducible in Q[x]. �

The substitution method above sometimes applies to other polynomials, but it is not easy to

predict when a polynomial might satisfy the Eisenstein criterion after a substitution.

We mention one more method for proving irreducibility, though we may not need to use it much.

It involves a similar idea as the Eisenstein criterion, but simpler.

Proposition 11.21 (Reduction mod p). Let R be a UFD with field of fractions F . Let f =

anx
n + · · · + a1x + a0 ∈ R[x]. Suppose that p is prime in R and that p 6 |an; let R = R/(p). Let

φ : R[x]→ R[x] be the homomorphism g → g which reduces coefficients mod p.
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If f is irreducible in R[x], then f is irreducible in F [x].

Proof. If f is reducible in F [x], then using Gauss’s Lemma (as in the proof of Proposition 11.17),

we have f = gh with g, h ∈ R[x] and deg g,deg h ≥ 1. Thus f = gh in R[x]. Since p 6 |an, f still

has degree n. Since n = deg f = deg g + deg h = deg g + deg h and deg g ≤ deg g, deg h ≤ deg h,

this forces deg g = deg g ≥ 1, deg h = deg h ≥ 1. But then f = gh contradicts that f is irreducible

in R[x]. �

Example 11.22. Let f = x4 +x+ 2 ∈ Z[x]. We use reduction mod p to prove that f is irreducible

in Q[x]. We need to choose a p such that reducing mod p gives an irreducible polynomial in

Fp[x]. Obviously p = 2 won’t work as the constant term will die, so we try p = 3. Consider

f = x4 +x+2 ∈ F3[x]. Clearly this polynomial has no root in F3 = {0, 1, 2}. Following the method

of Example 11.16, one may find all degree 2 irreducibles in F3[x] and show that f is not a product

of 2 degree 2 irreducibles. Thus f is irreducible in F3[x] and hence f is irreducible in Q[x] by

Proposition 11.21.

Remark 11.23. There exist polynomials f ∈ Z[x] which are irreducible but for which the reduction

mod p method fails for all primes p, as f ∈ Fp[x] is always reducible. A simple example is

f(x) = x4 + 1.

12. Modules

12.1. Definition and first examples. Let R be a ring. In our initial study of modules, we will not

assume that R is commutative. The concept of a left R-module is a “linearization” of the concept

of a left group action on a set. We saw that studying group actions had a lot of consequences for

the structure of the groups themselves. Similarly, to get a deeper understanding of rings, modules

are essential.

Definition 12.1. Let R be a ring. A left R-module is an abelian group (M,+) together with a

left action of R on M , that is, a function f : R ×M → M where we write f(r,m) = r ·m, such

that for all r, s ∈ R and m,n ∈M ,

(i) r · (s ·m) = (rs) ·m;

(ii) 1 ·m = m;

(iii) r · (m+ n) = r ·m+ r · n;

(iv) (r + s) ·m = r ·m+ s ·m.

Notice that axioms (i) and (ii) are the same as for the action of a group on a set (although R is

just a monoid, not a group, under multiplication). However, the set being acted on in this case is
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assume to be an abelian group, and the other two axioms are kind of generalized distributive laws.

Namely, (iii) shows that each element of R acts linearly on M , and (iv) shows that the additive

structure of the ring R is compatible with the action.

It is easy to check that the module axioms also force 0 ·m = 0 and −1 ·m = −m for all m ∈M .

When the module under discussion is clear, we often just write rm instead of r ·m for the action

of r ∈ R on m ∈M .

Just as it was possible to define a right action of a group on a set, there is also a notion of a right

R-module, defined using a function f ′ : M ×R→M given by f ′(m, r) = m ·r and with the obvious

right-sided versions of axioms (i)− (iv). In particular, axiom (i) becomes (i)′ : (m · s) · r = m · (sr).

In group theory, recall that left and right actions on a set are essentially equivalent concepts,

and there is a natural way to turn any left action into a right action; namely, if G acts on X on

the left, then there is a right action ∗ with x ∗ g = g−1x. In module theory, on the other hand, a

left module cannot easily be turned into a right module over the same ring, in general. There is

something we can do, however.

Definition 12.2. Given a ring R, its opposite ring Rop is the ring with the same underlying abelian

group as R, but with new product ∗ defined by r ∗ s = sr.

It is easy to check that the opposite ring is a ring. Now if M is a left R-module, then we

can define a right Rop-module structure on the same abelian group M by m · r = rm (where we

identify the underlying sets of R and Rop). The main thing to observe is that for axiom (i)′, we

get (m · s) · r = (sm) · r = r(sm) = (rs)m = m · (rs) = m · (s ∗ r) as required. Note that this would

not work if we did not use the opposite multiplication ∗.

The rings R and Rop are not isomorphic for a general ring, and so left and right modules are

distinct concepts that might behave quite differently. When R is commutative, however, of course

R = Rop. In this case, given a left R-module M , we can freely turn it into a right R-module by

acting on the other side, i.e. (m · r = rm).

We now give some important examples of modules.

Example 12.3. Let F be a field. A left F -module consists of an abelian group V together with an

action of F on V which we call scalar multiplication in this case. Examining the module axioms,

we see that the F -module V is exactly the same as a vector space over the field F .

Example 12.4. For any ring R, R is a left module over itself by left multiplication, i.e. with

r · s = rs. In this case module axiom (i) is the actual associativity of multiplication in R, and

module axioms (iii) and (iv) are the actual distributive laws in the ring.
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Similarly, R is a right module over itself by right multiplication.

Example 12.5. Let F be a field and let V = Fn be the set of column vectors
{[ a1

a2
...
an

]
|ai ∈ F

}
.

Then V is a left module over the n× n-matrix ring R = Mn(F ), where A · v = Av.

Similarly, the set of length n row vectors with entries in F is a right Mn(F )-module by right

matrix multiplication.

Example 12.6. Let M be any abelian group. Given n ∈ Z, recall that for m ∈M we have defined

the nth multple of m by

(12.7) nm =



n︷ ︸︸ ︷
m+m+ · · ·+m n > 0

0 n = 0

|n|︷ ︸︸ ︷
(−m) + (−m) + · · ·+ (−m) n < 0

where these integer multiples of m are the additive analogs of the powers of an elements in a group.

This defines a natural action of Z on M , and one can easily check that the module axioms hold.

Conversely, given a Z-module M , of course the underlying set of M is an abelian group, and the

module axioms easily imply that the action of n ∈ Z on m must be given by (12.7).

In conclusion, a Z-module is nothing more than an abelian group; the Z-action comes for free and

is uniquely determined. This is very useful because the theory of abelian groups will be subsumed

into module theory, and our theorems about modules will have interesting applications to abelian

groups.

Example 12.8. Let φ : R → S be any ring homomorphism. Suppose that M is a left S-module.

Then we can make M into an R-module by “restriction of scalars”: for m ∈ M , r ∈ R, define

r ·m = φ(r)m. The module axioms are immediate. This is called restriction of scalars since in the

common special case where φ is the inclusion homomomorphism of a subring R into a ring S, then

we really are just restricting the action to a smaller ring.

This raises the question of whether given a left R-module, there is a natural way to make it into

an S-module using the homomorphism φ. The answer is yes, but this is not nearly so simple to

define—it will require the theory of tensor products we develop later.

12.2. Basic module technology. As with any new algebraic structure, we want to have a basic

theory of functions that preserve the structure, definitions of substructures and factor structures,

and so on. We make these definitions for left modules, but there are obvious counterparts for right

modules.
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Definition 12.9. Let M and N be left R-modules. A function f : M → N is a homomorphism of

modules if f is a homomorphism of abelian groups, and f(rm) = rf(m) for all r ∈ R and m ∈M .

If a homomorphism f is bijective it is called an isomorphism.

Example 12.10. Let R = F be a field. If V and W are F -modules, that is vector spaces over

F , then a function f : V → W is a homomorphism of F -modules if and only if it is a linear

transformation of vector spaces over F .

Example 12.11. Let R be a left module over itself by left multiplication. For any fixed x ∈ R,

the function φx : R → R given by φx(r) = rx is a homomorphism of left R-modules. It is a

homomorphism of abelian groups by one of the distributive laws in R, and for s ∈ R, φx(sr) =

(sr)x = s(rx) = sφx(r), so φx preserves the left R-action.

The map φx is called “right multiplication by x” for obvious reasons. Note that left multiplication

by x will not be a left module homomorphism in general (unless R is commutative, or more generally

if x is in the center of the ring R).

Example 12.12. We saw above that a Z-module is just an abelian group with its canonical Z-

action. If f : M → P is a homomorphism of abelian groups, it is automatically a homomorphism

of Z-modules. For n ∈ Z and m ∈M , the fact that f(nm) = nf(m) follows from the properties of

homomorphisms of groups.

Definition 12.13. Let M be a left R-module. A subset N ⊆ M is a submodule of M is N is a

subgroup of M under +, and for all r ∈ R, x ∈ N , we have rx ∈ N .

Thus a submodule of M is closed under + and under the left R-action. Clearly a submodule N

of M is an R-module in its own right under the same R-action restricted to N . Also, the inclusion

map i : N →M is an R-module homomorphism.

Example 12.14. Let M be a left R-module. Then both {0} and M are submodules of M . {0} is

called the trivial submodule and may be written as 0 for simplicity.

Example 12.15. Let f : M → P be a homomorphism of left R-modules. Then it is a homomor-

phism of groups and so we have the kernel defined as ker f = {m ∈M |f(m) = 0} like usual. Then

ker f is a submodule of M : it is an additive subgroup of M by group theory, and if m ∈ ker f and

r ∈ R, then f(rm) = rf(m) = r0 = 0, so rm ∈ ker f .

The image of f , f(M) = {x ∈ P |x = f(m) for some m ∈ M} is a submodule of P , since if

x = f(m), then rx = rf(m) = f(rm).
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Example 12.16. Let R be a left module over itself by left multiplication. Then a submodule of

R is an additive subgroup I of R such that rx ∈ I for all r ∈ R and x ∈ I. This is what we called

a left ideal when we studied rings. So left ideals of R are the same as submodules of R as a left

module over itself.

Example 12.17. If F is a field and V is an F -module, in other words a vector space over F , then

a submodule of V is the same as a subspace of V as defined in linear algebra.

Example 12.18. Let V = Fn be the set of length n column vectors over the field F , considered

as a left module over the ring R = Mn(F ) by left matrix multiplication. We claim that the only

R-submodules of V are 0 and V . To see this, suppose that 0 6= v ∈ V . It is a standard result of

linear algebra that given any vector w ∈ V , there is some matrix A ∈ Mn(F ) such that Av = w.

Indeed, if the ith entry of v is nonzero we can find such an A which is 0 except along its ith

column. It follows that any submodule of V which contains v will be all of V . Since v was an

arbitary nonzero vector, this proves the claim.

Definition 12.19. A left R-module M is called simple or irreducible if its only submodules are 0

and M .

We just saw an example of a simple module over Mn(F ), where F is a field.

Definition 12.20. Let N be a submodule of a left R-module M . Then the quotient of abelian

groups M/N is an R-module via the action r · (m+N) = rm+N . M/N is called a quotient module

or factor module.

As usual, one must check that the definition of the R-action on M/N makes sense. We know

that every subgroup of an abelian group is normal, so M/N is certainly a well-defined additive

abelian group. Now if m + N = m′ + N , then (m − m′) ∈ N , so r(m − m′) ∈ N since N is a

submodule. But then rm− rm′ ∈ N and so rm+N = rm′+N . Thus the R-action is well-defined.

Once one has well-definedness the module axioms follow routinely.

We also note that the quotient map π : M →M/N given by π(m) = m+N is a homomorphism

of modules with kernel N .

One nice aspect of module theory is that the substructures of a modules which are modules in

their own right, submodules, are also the same things that you can mod out by to get a factor

module.

Example 12.21. Let R be a ring with a left ideal I. Then I is a submodule of R, considered as a

left module via multiplication. Thus we have a factor module R/I with action r · (s+ I) = rs+ I.
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Note if I is just a left ideal (not an ideal), then R/I is not in general a ring, it is only a left

R-module.

There are versions for modules of all of the basic homomorphism theorems. Here is the 1st

isomorphism theorem.

Theorem 12.22. Let f : M → N be a homomorphism of left R-modules, and let P = ker f . Then

there is an isomorphism of R-modules f : M/P → f(M) given by f(m+ P ) = f(m).

Proof. The 1st isomorphism theorem for groups tells us that f is well-defined and an isomorphism

of abelian groups. We just need to check that f is a homomorphism of modules. But this is easy,

since f(r(m+ P )) = f(rm+ P ) = f(rm) = rf(m) = rf(m+ P ). �

Similarly, there are versions of the 2nd, 3rd, and 4th isomorphism theorems. For each one, one

takes the corresponding isomorphism theorem for abelian groups and simply notes that everything

works at the level of R-modules. We omit the statements here but will freely use these results when

we need them.

12.3. Additional structures on Hom.

Definition 12.23. Let R be a ring and let M and N be left R-modules. We define

HomR(M,N) = {f : M → N |f is a homomorphism of modules over R}.

A priori, HomR(M,N) is just a set of functions. However, it naturally has additional structure,

and this is very useful.

First, we note that HomR(M,N) is always again an abelian group. For this, given f, g ∈

HomR(M,N) we define a function f + g ∈ HomR(M,N) by [f + g](m) = f(m) + g(m). This is

sometimes called pointwise addition of functions, since for each element m ∈ M (a “point”) we

simply define the sum of functions at that point by summing the images of that point under the two

functions, using that N is an abelian group. Note that f +g is again an R-module homomorphism,

since

[f + g](m1 +m2) = f(m1 +m2) + g(m1 +m2) = f(m1) + f(m2) + g(m1) + g(m2)

= f(m1) + g(m1) + f(m2) + g(m2) = [f + g](m1) + [f + g](m2)

and

[f + g](rm) = f(rm) + g(rm) = rf(m) + rg(m) = r(f(m) + g(m)) = r[f + g](m).
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The identity element of HomR(M,N) is the identically zero function 0, and −f is the function with

[−f ](m) = −f(m). The group axioms for HomR(M,N) are immediate, and HomR(M,N) is again

abelian since N is.

Now suppose that R is commutative. We claim that in this case HomR(M,N) even has an R-

module structure. It is an abelian group as above, and we define for r ∈ R, f ∈ HomR(M,N) the

function rf ∈ HomR(M,N) by [rf ](m) = rf(m), using the R-module structure of N . It is routine

to check that rf respects addition, and note that [rf ](sm) = rf(sm) = rsf(m) = srf(m) =

s[rf ](m), so rf ∈ HomR(M,N). We have used here that R is commutative. The module axioms

for HomR(M,N) are routine to check.

When R is not commutative, in general HomR(M,N) has no natural additional structure beyond

being an abelian group. There are ways to give it a module structure when M or N is a bimodule;

we will explore this in a homework exercise.

Suppose now that R is an arbitrary ring again. When M = N we call a homomorphism of

R-modules f : M → M an endomorphism. We may write HomR(M,M) as EndR(M). In this

special case EndR(M) again has additional structure besides its abelian group structure: it is

naturally a ring, called the endomorphism ring of M . The product is defined by composition: for

f, g ∈ EndR(M) we let fg = f ◦ g. It is obvious that a composition of two module endomorphisms

of M is again an endomorphism. The ring axioms follow routinely. For the sake of example, let’s

check one of the distributive laws (f + g)h = fh + gh for f, g, h ∈ EndR(M). Since it is two

functions that are being claimed equal, we check by applying them to an arbitrary element of M .

We have

[(f + g)h](m) = [(f + g) ◦ h](m) = (f + g)(h(m)) = f(h(m)) + g(h(m))

= (f ◦ h)(m) + (g ◦ h)(m) = [f ◦ h+ g ◦ h](m) = [fh+ gh](m)

and so (f + g)h = fh+ gh. The reader should check the other ring axioms to convince themselves

that nothing complicated is going on.

If R is commutative and M is an R-module, then EndR(M) is both an R-module and a ring, by

the constructions above. This is a structure called an R-algebra which will be defined later.

Example 12.24. Let F be a field and let V be an n-dimensional vector space over F . Then

EndF (V ) consists of all F -linear transformations from V to itself. As we saw above, EndF (V )

is a ring. Suppose we fix a basis v1, v2, . . . , vn for V . Given any f ∈ EndF (V ), we have scalars

afij ∈ F defined by f(vj) =
∑n

i=1 a
f
ijvi. These form a matrix (afij) ∈ Mn(F ). This gives a map

ψ : EndF (V ) → Mn(F ), where ψ(f) = (afij). One may check that ψ is an isomorphism of rings.
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This isomorphism does depend on the choice of fixed basis; there is no canonical or preferred

isomorphism between the two rings.

Example 12.25. Let R be a left module over itself by left multiplication. We will show that

EndR(R) is isomorphic as a ring to the ring Rop.

Define a map φ : EndR(R) → Rop by φ(f) = f(1), where we identify the underlying sets of R

and Rop, so that f(1) ∈ R = Rop.

Then we claim that φ is a homomorphism of rings. The map φ is clearly additive, since φ(f+g) =

[f + g](1) = f(1) + g(1) = φ(f) + φ(g). Now φ(fg) = [f ◦ g](1) = f(g(1)). Since f is a module

homomorphism, f(r) = f(r·1) = rf(1) for all r. Thus f(g(1)) = g(1)f(1) = φ(g)φ(f) = φ(f)∗φ(g),

where ∗ is the multiplication in Rop. This proves the claim.

Finally, if φ(f) = 0, then f(1) = 0 and so f(r) = rf(1) = 0 for all r, and f = 0, so φ is injective.

If r ∈ R, then we have the “right multiplication by r” map f : s 7→ sr which we have seen is an

element of EndR(R); and φ(f) = f(1) = r. So φ is surjective. Thus φ is an isomorphism of rings.

12.4. Modules as maps to endomorphism rings. Recall from our study of groups that there

were two ways of thinking about a (left) action of a group on a set X. In the definition, one

focuses on the action of g ∈ G on one element x ∈ X at a time. The other point of view thinks of

how g acts on all of X at once as a permutation of X, and puts the whole action together into a

homomorphism of groups G→ Sym(X).

A module is like a linearization of a group action, and in fact a module can also be thought of

in terms of a single homomorphism (of rings, in this case).

Theorem 12.26. Let R be a ring and let M be a fixed abelian group. There is a bijective corre-

spondence

{left R−module structures on M} Φ→ {(unital) ring homomorphisms θ : R→ EndZ(M)}

where given an R-module structure on M , Φ sends it to the map θ : R → EndZ(M) where

[θ(r)](m) = r ·m.

We hope the reader sees the similarity between this result and the corresponding result for group

actions. The main difference is that the ring R has an underlying abelian group structure, the

set M to be acted on is assumed to already be an abelian group, and the action is assumed to

be compatible with these linear structures. Note that because an abelian group is automatically a

Z-module, it does make sense to consider the endomorphism ring EndZ(M).
161



Proof. There are many details to check in this result, but they are all routine steps that follow

from definitions. We will check that the function Φ makes sense, but leave the rest for the reader

to verify.

Assume that M is an R-module, where the action of r on m is written as r ·m. Then as in the

statement we define θ : R→ EndZ(M) where [θ(r)](m) = r ·m.

First, why is does θ land in EndZ(M)? For this we need θ(r) to be a Z-module homomorphism

from M to itself, in other words a homomorphism of abelian groups. But [θ(r)](m1 + m2) =

r · (m1 +m2) = r ·m1 + r ·m2 = [θ(r)](m1) + [θ(r)](m2) by module axiom (iii), so this is fine.

Next, why is θ a unital homomorphism of rings? First, to see that θ respects addition, we want

θ(r + s) = θ(r) + θ(s). We check this by applying to an arbitrary m ∈ M . So [θ(r + s)](m) =

(r + s) ·m = r ·m+ s ·m = [θ(r)](m) + [θ(s)](m) = [θ(r) + θ(s)](m), where we have used module

axiom (iv) and the pointwise definition of addition in the endomorphism ring.

To see that θ respects multiplication, we want θ(rs) = θ(r) ◦ θ(s), since the multiplication in

EndZ(M) is composition. Using module axiom (i), we check that [θ(rs)](m) = (rs) ·m = r ·(s ·m) =

r · [θ(s)](m) = [θ(r)]([θ(s)](m)) = [θ(r) ◦ θ(s)](m), as required.

Finally, to see that θ is unital, we want θ(1) to be the identity element of EndZ(M), which is

the identity function. We have [θ(1)](m) = 1 ·m = m for all m ∈M , by module axiom (ii).

We have checked that Φ makes sense; i.e. given a module M there is a homomorphism of rings

θ : R → EndZ(M) defined by [θ(r)](m) = r · m. Notice that we used all of the module axioms

(i)-(iv).

To show that Φ is a bijection, one may directly construct an inverse function Ψ. Given a

homomorphism of rings θ : R → EndZ(M), we let Ψ(θ) be the R-module struture on M , where

r · m = [θ(r)](m). We leave it to the reader to check the axioms of a module; the argument is

basically already contained in the work above, which related each module axiom to some aspect of

the homomorphism θ.

The fact that Ψ and Φ are inverse functions is then clear from their definitions. �

Next, we show how one may describe the structure of a module over a polynomial ring over a

field. Fix a field F , and let R = F [x] be the ring of polynomials in one variable over F . Suppose

that V is a left R-module. Since we can identify F with the subring of F [x] given by constant

polynomials, by restricting scalars the F [x]-module module V is also an F -module. Now define

φ : V → V by φ(v) = x · v, where · is the action of R on V . Clearly φ respects sums. Note that

ax = xa in F [x] for all scalars a ∈ F . Thus φ(av) = x · (a · v) = xa · v = ax · v = a · (x · v) = aφ(v).

In other words, φ : V → V is a linear transformation, or alternatively an element of EndF (V ).
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The argument above shows that an F [x]-module V leads to an F -vector space and a choice of

linear transformation of V . In fact, conversely, a vector space together with a choice of linear

transformation uniquely determines an F [x]-module. We formalize this as follows.

Proposition 12.27. Let F be a field. An F [x]-module is the same thing as an F -vector space V

together with a choice of F -linear transformation φ : V → V .

Proof. Let V be an F [x]-module with action ·. We saw above that V is an F -vector space by

restriction of scalars, and that φ : V → V defined by φ(v) = x · v is a linear transformation of V .

Now by the module axioms, x2 ·v = x ·(x ·v) = φ(φ(v)) = φ2(v). By induction we get xn ·v = φn(v)

for all n ≥ 0 (where we define φ0 = 1V .) It follows that the action of F [x] on V can be described

by the formula

(12.28) (
∑
i≥0

aix
i) · v =

∑
i≥0

aiφ
i(v).

Conversely, suppose we are given a vector space V and a linear transformation φ : V → V . Then

we define an action of F [x] on V by (12.28). It is routine to check the module axioms, so that this

does make V into an F [x]-module.

If we start with an F [x]-module V , it determines a vector space structure on V and a linear

transformation φ. If we use this data to define an F [x] action on V using (12.28), we have already

seen that the original F [x]-module action must be given by this formula. Conversely, if we start

with a V and a φ and use it to determine an F [x] action on V via (12.28), clearly restricting the

action to F gives the original V , and (12.28) gives x · v = φ(v), so we recover V and φ. Thus we

have proved there is a bijection between F [x] modules and choices of (V, φ) where V is an F -vector

space and φ : V → V is linear. �

There is another point of view on Proposition 12.27 that uses Theorem 12.26, which we would

like to describe. We first note the following result about homomorphisms from a polynomial ring.

We leave the proof as an exercise.

Lemma 12.29. Let φ : R → T be a homomorphism of rings. Suppose that t ∈ T commutes with

every element of φ(R). Then there exists a unique homomorphism of rings φ̃ : R[x]→ T such that

φ̃(r) = φ(r) for r ∈ R and φ̃(x) = t. Conversely, given any homomorphism ψ : R[x] → T , ψ(x)

commutes with every element of ψ(R).

The result shows that to define a homomorphism from R[x] to another ring T , it is equivalent

to define a homomorphism from R to T , and choose any element in T which commutes with the
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image of R to send x to. This is a freeness property of the polynomial ring with respect to ring

homomorphisms.

Now let us consider F [x]-modules again, where F is a field. We know that an F [x]-module

action on an abelian group V can be described by a ring homomorphism θ̃ : F [x] → EndZ(V ),

using Theorem 12.26. By Lemma 12.29, such a homomorphism is equivalent to a choice of ring

homomorphism θ : F → EndZ(V ) and a choice of φ ∈ EndZ(V ) which commutes with θ(F ). By

Theorem 12.26 again, θ corresponds to an F -module action, i.e. vector space structure, on V . The

fact that φ commutes with θ(F ) means that [φ◦θ(a)](v) = φ(av) is the same as [θ(a)◦φ](v) = aφ(v),

in other words that φ respects the scalar multiplication. We see from this that an F [x]-module

amounts to a choice of F -vector space V and an F -linear transformation φ : V → V , recovering

Proposition 12.27.

Because an F [x]-module encodes a choice of linear transformation of a vector space, we are going

to derive applications to linear algebra by proving later that modules over PIDs such as F [x] have

a tightly restricted struture.

Example 12.30. Let F be a field. Define an F [x]-module structure on the vector space V = F 2

of length-2 column vectors, where x acts by the linear transformation φ given by left multiplication

by the matrix ( 1 1
0 1 ). Explicitly, we have x · [ ab ] =

[
a+b
b

]
. What are the F [x]-submodules of V ?

To answer this question, a little thought shows that an F [x]-submodule of V is a subset closed

under the action of both F and x, in other words an F -subspace W such that x · W ⊆ W , or

φ(W ) ⊆ W . So F [x]-submodules are subspaces which are stable under the action of the linear

transformation φ. In this case, it is not hard to work out that the only such subspaces are 0, V ,

and the 1-dimensional F -subspace W = {[ a0 ]|a ∈ F}.

12.5. Generation of modules and cyclic modules.

Definition 12.31. Let M be an R-module. Given a subset X ⊆ M , the R-submodule generated

by X is the unique smallest R-submodule of M containing X. Since the intersection of an arbitrary

collection of submodules is again a submodule, it can be described as the intersection of all R-

submodules of M containing X. We say that M is finitely generated if there is some finite subset of

M which generates M ; otherwise we say that M is infinitely generated. M is cyclic if it is generated

by a subset with one element.

More explicitly, if we define RX = {r1x1 + . . . rnxn|n ≥ 0, ri ∈ R, xi ∈ X} to be the set of

all finite sums of elements of R acting on elements in X, then it is easy to see that RX is the
164



submodule of M generated by X. If X = {x1, . . . , xn} is finite, we also write this submodule as

Rx1 + · · ·+Rxn. So M is cyclic if M = Rx for some x ∈M . We also call any submodule of M of

the form Rx a cyclic submodule, as it is cyclic considered as a module in its own right.

Example 12.32. If M is a Z-module, we have seen this is the just the canonical Z-action on the

abelian group M . Then Z-submodules are the same as subgroups, so the submodule generated by

a subset X is the same as the subgroup generated by the subset. Thus a Z-module is cyclic if and

only if it is cyclic as a group, i.e. either isomorphic to Z or to Zn for some n ≥ 1.

Example 12.33. Let R be a commutative ring, and let R be a left R-module by left multiplication.

The R-submodule generated by x ∈ R is Rx, in other words the principal ideal generated by x. If

R is a PID, then we know that every ideal is principal, and so every submodule of R is a cyclic

submodule of R. The ring R is a noetherian ring if and only if every ideal is finitely generated as

an ideal, i.e. if and only if every submodule of R is finitely generated as an R-module.

Example 12.34. If R = F is a field, then the submodule of an F -module (i.e. vector space) V

generated by a subset X is just the span of X. So V is finitely generated as an F -module if and

only if it is spanned by a finite subset, i.e. if and only if V is finite dimensional as a vector space.

The cyclic submodules of V are the 1-dimensional subspaces (and the 0-subspace).

Example 12.35. Let R be an arbitrary ring, and let M be a cyclic left R-module, which is

generated by x ∈ M . Then we can define a homomorphism f : R → M by f(r) = rx, where R is

the usual left R-module structure on R. It is easy to see that f is an R-module homomorphism.

The image of f is Rx, which is M by assumption, so f is surjective. Let I = ker f . Then I is a left

ideal of R, since kernels of homomorphisms are submodules. The 1st isomorphism theorem now

tells us that R/I ∼= M as R-modules.

Conversely, for any left ideal I of R, we can form the factor module R/I, and this is a cyclic

module generated by the element (1 + I), since r + I = r(1 + I) for all r ∈ R.

We see that the cyclic left R-modules are exactly the factor modules R/I for left ideals I, up to

isomorphism.

Example 12.36. (Q,+) is an example of an infinitely generated Z-module (i.e, abelian group).

We will see in a few lectures that finitely generated abelian groups are easy to completely describe

and classify. Infinite abelian groups are much more complicated, and there are still many open

questions about their structure, many of which involve sensitive set-theoretic issues.
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12.6. Free modules.

Definition 12.37. Given an indexed family {Mα|α ∈ I} of left R-modules, the direct product is

the cartesian product
∏
α∈IMα, which is again an R-module under the coordinate-wise operations;

in other words it is the direct product of abelian groups, with R-action r · (mα) = (r ·mα).

The direct sum of the family is the submodule of the direct product given by
⊕

α∈IMα =

{(mα) ∈
∏
Mα|mα = 0 for all but finitely many α}. As an abelian group, we called this the

restricted product of the groups Mα earlier, but the term direct sum is the standard one in the

context of modules.

Note that when we have a finite family M1,M2, . . . ,Mn of R-modules, the direct product and

direct sum of this family are the same. We usually preference the direct sum notation and write

this as M1 ⊕M2 · · · ⊕Mn.

Free modules are the modules over a ring which are the most like vector spaces over a field.

In general, a structure that is called “free” on a subset satisfies a certain universal property; we

already saw the example of the free group when we studied group theory. For this reason we will

take the universal property as our definition of a free module, and then show what they look like

more explicitly.

Definition 12.38. Let F be a left R-module. Let X be a subset of F , and let i : X → F be the

inclusion function. The module F is called free on a subset X if given any R-module M and a

function f : X → M , there is a unique R-module homomorphism g : F → M such that g ◦ i = f .

The rank of the free module F is the cardinality |X| of the set X.

This universal property can be represented by the following commutative diagram:

X
i //

f

  

F

∃!g
��
M

In other words, given the inclusion function i and the homomorphism f , there exists a unique

homomorphism g that completes the diagram to a commutative diagram (so g ◦ i = f). Here the

dashed arrow indicates that that homomorphism exists as a consequence of the property, and the

! indicates uniqueness.

The term “free” is used for properties like this because we may freely choose any elements of

M whatsoever to send the elements in X to; then there is a unique homomorphism from F to M

which does this to the elements in X.
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Free objects are always determined uniquely up to isomorphism as a consequence of their uni-

versal properties, and the argument is always basically the same. Here is the result for reference,

but it is really no different from our proof in group theory that the free group on a set is uniquely

determined up to isomorphism by the cardinality of the set.

Proposition 12.39. Let F be a free R-module on a subset X, and let G be a free R-module on a

subset Y . If |X| = |Y |, then F ∼= G as R-modules.

Proof. Let i : X → F and j : Y → G be the inclusion functions. Choose a set bijection h :

X → Y . Then the function j ◦ h : X → G extends uniquely to a homomorphism f : F → G,

i.e. a homomorphism f such that f |X = h. Similarly, i ◦ h−1 : Y → F extends uniquely to a

homomorphism g : G → F . Now g ◦ f : F → F is a homomorphism which restricts on X to the

identity function; the identity homomorphism 1F : F → F is also such a homomorphism, so by the

uniqueness property of the free module F , g ◦ f = 1F . Similarly, f ◦ g = 1G since G is free. Thus

f is an isomorphism with inverse g. �

Example 12.40. Let R be an R-module by left multiplication. Then R is free on the set {1}. To

see this, let M be any R-module. Given m ∈ M , then f : R → M defined by f(r) = rm is an

R-module homomorphism such that f(1) = m. Moreover, it is the unique homomorphism sending

1 to m because f(1) = m forces f(r) = f(r1) = rf(1) = rm.

We show now that it is easy to construct free modules explicitly, by extending Example 12.40 to

a direct sum of copies of the module R.

Theorem 12.41. Let I be any index set. Then F =
⊕

α∈I R is a free left R-module on the subset

X = {eβ|β ∈ I}, where eβ = (rα)α∈I with rα = 0 for α 6= β and rα = 1.

You can think of the elements eβ as like “standard basis vectors” in a Euclidean space—they are

1 in exactly one coordinate and 0 elsewhere.

Proof. Let M be a module and let f : X → M be a function. We define g : F → M by g((rα)) =∑
α rαf(eα). Note that this sum makes sense because rα = 0 for all but finitely many α. It is easy

to see that g is an R-module homomorphism. Moreover, g(eα) = f(eα) for all α, so g extends f .

To see that g is unique, note that (rα) =
∑

α rαeα, and so since g is an R-module homomorphism

the formula g((rα)) =
∑

α rαf(eα) is forced. �

The theorem shows that for any set I, there is a free module on a subset X with cardinality

|I|; and the free module is uniquely determined up to isomorphism by the cardinality of that set
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by Proposition 12.39. So up to isomorphism, there is exactly one free module of any given rank,

namely a direct sum of copies of the module R, over an index set of that rank.

There is another important way of thinking about free modules in terms of the concept of a

basis.

Definition 12.42. Let F be an R-module. a subset X of F is called a basis of F if (i) X generates

F as an R-module, so every m ∈ F has an expression m = r1x1 + · · · + rnxn with ri ∈ R and

xi ∈ X; and (ii) whenever r1x1 + · · · + rnxn = 0 for ri ∈ R and distinct x1, x2, . . . , xn ∈ X, then

ri = 0 for all i.

Example 12.43. Let V be a K-module, where K is a field, in other words a vector space over K.

Then a subset X of V is a basis in the sense of the definition above if and only if X is a basis in

the usual sense in linear algebra—(i) is the property that X spans V , and (ii) is the property that

X is linearly independent.

We see that the idea of a basis of an R-module is modelled on the basis concept from linear

algebra. We now show that it is precisely free modules that have a basis. So free modules are the

objects in general module theory that behave most like vector spaces over a field.

Theorem 12.44. An R-module F is free on a subset X if and only if X is a basis for F .

Proof. Suppose that X is a basis for F . Property (i) of the definition of basis shows that an arbitrary

m ∈ F is an R-linear combination of elements in X. Thus m has an expression m =
∑

x∈X rxx

with rx ∈ R, where of course all but finitely many of the rx are zero. But this expression is uniquely

determined, for if also m =
∑

x∈X r
′
xx, then

∑
x∈X(rx − r′x)x = 0, which shows that a finite R-

linear combination of distinct elements in X is 0; by property (ii) of the definition of basis we get

rx − r′x = 0 for all x, so rx = r′x for all x.

We have seen that
⊕

x∈X R is free on the set {ex} of standard basis vectos, where ex is the

element of the direct sum which is 1 in coordinate x and 0 elsewhere. By the universal property

of this module there is a unique R-module homomorphism g :
∑

x∈X R → F such that g(ex) = x.

Explicitly, g(
∑

x∈X rxex) =
∑

x∈X rxx. The fact that every m ∈ F has a unique expression of the

latter form shows that g is bijective. Thus g is an isomorphism of modules. Since
∑

x∈X R is free

on the subset {ex|x ∈ X} by Theorem 12.41, F is free on the subset {g(ex)|x ∈ X} = X.

Conversely, if F is free on a subset X, then by Proposition 12.39 there is an R-module isomor-

phism F →
∑

x∈X R which sends x ∈ X to the standard basis vector ex of the direct sum. Since

this is an R-module isomorphism, it is easy to see that X is a basis of F if and only if {ex|x ∈ X} is
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a basis of
∑

x∈X R. But it is trivial to see that the latter subset satisfies (i) and (ii) of the definition

of a basis. �

It is well-known that every vector space has a basis, so one consequence of the preceding result

is that all F -vector spaces are free as modules over F . This is just saying something that should

already be familiar to you about vector spaces, which is that to define a linear transformation from

one vector space V to another W , it suffices to choose arbitrary destinations in W for the elements

in a basis of V .

The reader may well have never seen a completely general proof of the fact that every vector

space has a basis, however. Since we have Zorn’s Lemma in our toolbox, this is not difficult.

Theorem 12.45. Let V be a vector space over a field K. Then V has a basis X. Moreover V is

a free K-module on X.

Proof. If V = {0} is a vector space of dimension 0, then by convention we consider the empty set

as a basis. So this case is fine, and from now on we assume that V is a nonzero vector space.

Let S be the collection of all K-linearly independent subsets of V . S is nonempty since any

single nonzero vector is an independent set, and we are assuming that V 6= 0. Order S by inclusion.

Consider a chain {Xα} of elements of S. Let X be the union of all of the sets in the chain. We

claim that X ∈ S. To see this, take distinct v1, . . . , vn ∈ X, and suppose that a1v1 + · · ·+anvn = 0.

Now each vi belongs to some set in the chain. Since it is a chain, there is a single α such that

v1, . . . , vn ∈ Xα. By definition then the set {v1, . . . , vn} is linearly independent. This forces ai = 0

for all i. Thus X is also linearly independent. So X ∈ S as claimed, and clearly X is an upper

bound for the chain.

Now by Zorn’s Lemma, S has a maximal element X, which is by definition a linearly independent

set. Suppose that X does not span V , and let W be the span of X. Then we can pick some

v ∈ V \W . Now consider Y = X ∪ {v}. We claim that Y is again linearly independent. Suppose

that a1x1 + · · · + anxn = 0 where xi ∈ Y are all distinct. If xi ∈ X for all i, then ai = 0 for all i

since X is independent. Otherwise we can assume that xn = v, with an 6= 0, and xi ∈ X for i < n.

Then v = −(an)−1(a1x1 + · · ·+ an−1xn−1) ∈ W , a contradiction. so Y is independent as claimed,

but this contradicts the maximality of X. Thus X must span V , and so X is a basis of V . �

The key step in the proof above is the ability to invert the coefficient an 6= 0, since K is a field.

The same proof would show that for an arbitrary ring R, given a module M , there exists a subset

(possibly empty) which is maximal among subsets which are R-linearly independent in the sense
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of condition (ii) in the definition of basis. The submodule generated by this subset will be a free

R-module, but there is no reason for it to equal M .

Free R-modules are certainly useful, but from the point of view of module theory perhaps not

the most interesting. For each cardinality, there is a uniquely determined free module of that rank,

which is a direct sum of copies of R over an index set of that cardinality. This is a very simple

kind of classification result, since we know what they all look like up to isomorphism. We will work

starting in the next section on the classification of finitely generated modules over PIDs, and that

classification will be harder-earned and will have deeper consequences.

On the other hand, free modules over arbitrary rings R can behave in curious ways that defy the

intuition we have from vector spaces. While there exists a unique free module up to isomorphism

of each rank, there is no obvious reason that free modules of different ranks cannot be isomorphic.

In fact, one can find a ring R such that R ∼= R ⊕ R as left R-modules, and thus the free modules

of rank 1 and rank 2 are isomorphic! For many rings R, however, it is true that two free modules

are isomorphic if and only if they have the same rank. This is true for all commutative rings R,

for example, which we leave as an exercise.

12.7. Internal direct sums. In our study of group theory, we gave conditions for a group G to

be an internal direct product of a finite set of subgroups H1, . . . ,Hn. This result, applied in the

case of abelian groups, extends immediately to modules, as we see in the next theorem.

Definition 12.46. Let M be an R-module and let {Nα|α ∈ I} be an arbitrary collection of

submodules of M . The sum of these submodules, N =
∑

α∈I Nα, is the submodule of M generated

by all of the elements in the submodules Nα. More explicitly, N consists of all elements of the form∑
α∈I nα such that nα ∈ Nα and nα = 0 for all but finitely many α.

Note that a direct sum
⊕

α∈I Nα is the sum of its submodules Nα (identifying Nα with its image

under the αeth injection iα). But in general the sum of some collection of submodules of a module

is not direct. The case where this does happen is called an internal direct sum.

Because it is the main case we will be concerned with below, we state the theorem on internal

direct sums for finite sums only, just as we did for groups. The general case is not really more

difficult, it is just notationally more awkward.

Theorem 12.47. Let M be an R-module. Suppose that M has R-submodules N1, . . . , Nm with the

properties that (i) N1+N2+· · ·+Nm = M and (ii) Ni∩(N1+N2+· · ·+Ni−1+Ni+1+· · ·+Nm) = 0

for all 0 ≤ i ≤ m. Then M ∼= N1 ⊕N2 ⊕ · · · ⊕Nm as R-modules.
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Proof. Conditions (i) and (ii) are precisely the conditions for M to be an internal direct product

as groups of the subgroups Ni (when written in additive form). Thus by our earlier study of such

internal direct products, conditions (i) and (ii) force the natural map φ : N1 ⊕N2 ⊕ . . . Nm → M

given by φ(n1, n2, . . . , nm) = n1 + n2 + · · ·+ nm to be an isomorphism of abelian groups. Now one

just notices that φ also preserves the R-action and so is an isomorphism of R-modules. �

Here is an application of internal direct sums.

Definition 12.48. Let f : M → N be a homomorphism of left R-modules. Then f is called a split

surjection if there is a homomorphism g : N →M such that f ◦ g = 1N .

Lemma 12.49. Suppose that f : M → N is a split surjection, where g : N → M is a homomor-

phism with f ◦ g = 1N . Then f is surjective, g is injective, and M ∼= N ⊕K as R-modules, where

K = ker(f).

Proof. The fact that f ◦ g = 1N immediately forces f to be surjective and g to be injective. We

claim that M is the internal direct sum of its submodules N ′ = g(N) and K = ker(f). Since g is

injective, N ′ ∼= N as R-modules, so this will imply the result.

By Theorem 12.47 applied to two submodules, we just have to show that N ′ + K = M and

N ′ ∩K = 0. If m ∈ N ′ ∩K, then since m ∈ N ′, m = g(x) for some x ∈ N , so f(m) = f(g(x)) = x.

But m ∈ K, so x = f(m) = 0. thus m = g(x) = 0. So N ′ ∩ K = 0. For any m ∈ M , consider

y = m − g(f(m)). Now f(y) = f(m) − f(g(f(m))) = f(m) − f(m) = 0 since f ◦ g = 1N . So

y ∈ ker(f) = K. But certainly g(f(m)) ∈ g(N) = N ′. Thus m = g(f(m)) + y ∈ N ′ + K. So

N ′ +K = M . �

There is a dual notion of split injection which also leads to a direct sum decomposition; we don’t

need it at the moment, so we postpone it until a later section where we examine results like this in

the context of exact sequences.

One very useful consequence of this result is that surjections onto free modules are split.

Corollary 12.50. Let f : M → F be a surjective homomorphism of R-modules, where F is a free

R-module. Then f is a split surjection and hence M ∼= F ⊕K where K = ker(f).

Proof. We just need to find g : F →M such that f ◦g = 1F . Let F be free on the basis {xα|α ∈ I}.

Since f is surjective, for each α we can find an element mα ∈M such that f(mα) = xα. Now since

F is free, there is a unique module homomorphism g : F → M such that g(xα) = mα. We have

f(g(xα)) = xα by definition, for all α. But since F is generated by the elements xα, and f ◦ g is

the identity on this subset, f ◦ g = 1F . �
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13. Classification of modules over PIDs

13.1. Torsion. In this section, for simplicity we will only consider modules over commutative rings

R.

We have seen that when K is a field, then K-modules are vector spaces V . If V is a finitely

generated K-module, this is just a finite dimensional vector space. This is a free K-module, and is

very easy to describe and understand using a basis.

After fields, the commutative rings which are simplest in some sense are the principal ideal

domains (PIDs). The goal of this section is to show that we can completely understand finitely

generated modules over a PID R.

Let us first study some definitions that are useful for modules over general integral domains.

Definition 13.1. Let R be an integral domain, and let M be an R-module. An element m ∈ M

is called torsion if there is 0 6= r such that rm = 0. The subset Tors(M) = {m ∈M |m is torsion}

is called the torsion submodule of M . The module M is called a torsion module if M = Tors(M),

and M is torsionfree if Tors(M) = 0.

Lemma 13.2. Let R be an integral domain and let M be an R-module.

(1) Tors(M) is an R-submodule of M .

(2) M/Tors(M) is a torsionfree module.

Proof. (1) If rm = 0 and sm′ = 0 with 0 6= r, 0 6= s and m,m′ ∈ Tors(M), then rs(m − m′) =

s(rm) − r(sm′) = 0 and rs 6= 0 since R is a domain, so m −m′ ∈ Tors(M). Also, for any t ∈ R,

r(tm) = t(rm) = 0, so tm ∈ Tors(M).

(2) Let N = Tors(M). Suppose that m + N ∈ M/N is a torsion element of M/N . Then there

is r 6= 0 such that r(m+N) = 0. This means that rm ∈ N . Then rm is torsion, so there is s 6= 0

with s(rm) = 0. Since sr 6= 0, m is torsion and so m ∈ N . Thus m+N = 0 in M/N and so M/N

is torsionfree. �

Notice that the proof above works only because R is a domain. One could define torsion elements

and modules in the same way over an arbitrary commutative ring, but one typically does not because

Lemma 13.2 is what makes these definitions useful.

If M is an R-module, where R is commutative, then for any m ∈ M we define the annihilator

of m to be annR(m) = {r ∈ R|rm = 0}. It is easy to see that annR(m) is an ideal of R. If R

is an integral domain, then clearly m is torsion if and only if annR(m) 6= 0. We can also define
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the annihilator of M to be annR(M) = {r ∈ R|rm = 0 for all m ∈ M} which is also equal to⋂
m∈M annR(m).

Lemma 13.3. Let M be a finitely generated module over an integral domain R. Then M is torsion

if and only if annR(M) 6= 0.

Proof. Suppose that M is generated by m1, . . . ,mn, so M = Rm1 + · · · + Rmn. Suppose that M

is torsion, and choose 0 6= ri such that rimi = 0. Then (r1r2 . . . rn)(s1m1 + · · ·+ snmn) = 0 for all

si ∈ R (since R is commutative). So 0 6= r1r2 . . . rn ∈ annR(M). Conversely, if I = annR(M) 6= 0,

then for any 0 6= r ∈ I we have rm = 0 for all m ∈M , so M is torsion. �

Lemma 13.3 does not necessarily hold for infinitely generated modules. In this case such a module

M can be torsion and yet have annR(M) = 0.

Example 13.4. Let R be an integral domain. Any free R-module is torsionfree. A cylic R-module

is of the form R/I for some ideal I; we have annR(R/I) = I and so R/I is torsionfree if I = 0 and

otherwise is torsion.

Example 13.5. Let R = Z. A Z-module is torsion if and only if as a group of all of its elements

have finite order. A Z-module is torsionfree if and only if every nonzero element of the abelian

group has infinite order. A finitely generated torsion Z-module is just a finite abelian group.

13.2. Classification of modules over PIDs. Our main goal is prove the following classification

theorem.

Theorem 13.6. Let R be a PID. Let M be a finitely generated R-module. Then

(1)

M ∼=
r︷ ︸︸ ︷

R⊕R⊕ · · · ⊕R⊕R/(pe11 )⊕R/(pe22 )⊕ · · · ⊕R/(pemm )

as R-modules, where the pi are (not necessarily distinct) primes and ei ≥ 1. The number r

is called the rank of M and the prime powers pe11 , . . . , p
em
m are called the elementary divisors

of M .

(2) The rank and elementary divisors are uniquely determined by M (up to reordering the

elementary divisors or replacing the primes by associates). Two modules M and N are

isomorphic if and only if they have the same rank and elementary divisors (up to order and

associates).
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The theorem shows that every finitely generated module over a PID is a direct sum of finitely

many cyclic modules, where the torsion cyclic modules appearing have annihilators which are

ideals generated by prime powers. Moreover, this decomposition is unique. It is a very strong

structure theorem. If we determine the rank and elementary divisors of a module we essentially

know everything we need to know about it.

Let us make some more comments about the theorem before working towards the proof. First,

the hypothesis that the module M is finitely generated is essential to Theorem 13.6.

Example 13.7. Consider Q as a Z-module. It is easy to show that given nonzero p, q ∈ Q, there

are a, b ∈ Z such that ap = bq. It follows that any two nonzero subgroups of Q have nonzero

intersection. Because of this Q cannot be an internal direct sum of two Z-submodules. Moreover,

Q is clearly not a cyclic Z-module itself. Thus Q cannot be expressed as a direct sum of cyclic

Z-modules. In particular, Q is not a free Z-module.

Second, the classification theorem should not be expected to hold for integral domains that are

not PIDs.

Example 13.8. Let K be a field and let R = K[x, y] = (K[x])[y] be polynomials in two variables

over K. We have seen that R is a UFD but not a PID. Consider the ideal I = Rx+Ry of R as a

module over R by left multiplication. As a module, I cannot be written as an internal direct sum

of two nonzero modules; if I = J ⊕L for nonzero ideals J and L, then in particular J ∩L = 0, but

if 0 6= a ∈ J and 0 6= b ∈ L then 0 6= ab ∈ J ∩L, a contradiction. Moreover, I is not a cyclic module

itself, as it is not a principal ideal. (If I = (z) then z|x and z|y, but x and y are non-associate

irreducibles in R so this forces z to be a unit, and I = (z) = R, but this is absurd.)

We see that I cannot be expressed as a direct sum of cyclic modules, even though I is finitely

generated as a module. In particular, I is not a free module.

13.3. The torsionfree case. Now we start to work towards the proof of the theorem, which will

be accomplished through a series of subsidiary results.

The first step is to handle the torsionfree case.

Proposition 13.9. Let R be a PID. Let M be a torsionfree R-module which is finitely generated

by n elements. Then M is free of finite rank ≤ n.

Proof. Suppose that M is generated by n elements as an R-module, say M = Rm1 + . . . Rmn for

mi ∈ M . The prove the result we induct on n. The base case is where M has 0 generators, in
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which case M = 0 and the result is trivial. Now assume that n ≥ 1 and that the result is true for

fewer than n generators.

Consider the factor module M/Rm1. Let Tors(M/Rm1) be its torsion submodule. By the

correspondence theorem for modules, Tors(M/Rm1) = K/Rm1 where K is a submodule of M con-

taining Rm1. Explicitly, K = {m ∈M |rm ∈ Rm1 for some nonzero r ∈ R}. Now by Lemma 13.2,

(M/Rm1)/(K/Rm1) is torsionfree, but also by the 4th isomorphism theorem for modules, this

module is isomorphic to M/K.

Now M/K is torsionfree and since m1 ∈ K, M/K is generated by the n − 1 elements m2 +

K, . . . ,mn + K. By the induction hypothesis, M/K is free of rank at most n − 1. This implies

that the natural surjection π : M → M/K is a split surjection, by Corollary 12.50. Then by

Lemma 12.49, M ∼= M/K ⊕ ker(π) ∼= M/K
⊕
K. To complete the proof, it now suffices to show

that K is free of rank at most 1.

Since K is isomorphic to a summand of M , K is a surjective image of M and so K is also

finitely generated. Then K/Rm1 is a finitely generated torsion module, so by Lemma 13.3, it has

nonzero annhilator. Say 0 6= x ∈ annR(K/Rm1). Then xK ⊆ Rm1. Now f : K → xK given by

f(k) = xk is an isomorphism of modules, since M and hence K is torsionfree. Similarly, there is

an isomorphism of modules R → Rm1 given by r 7→ rm1. Now we just need to show that every

submodule of R is free of rank ≤ 1. But this is obvious, since a submodule is a principal ideal Ry,

which is either 0 or free of rank 1. �

The hypothesis of finite generation is essential in Proposition 13.9. As we saw earlier in Exam-

ple 13.7, Q is not a free Z-module, but it is clearly a torsionfree Z-module. The preceding result

also certainly need not be true for integral domains that are not PIDs; Example 13.8 already gave

the example of the finitely generated submodule xR+ yR of R = K[x, y] which is not free.

Corollary 13.10. Let R be a PID. If F is a free R-module of finite rank n, then every submodule

of F is free of rank at most n.

Proof. In particular, F is torsionfree and n-generated, so the result is imemdiate from Proposi-

tion 13.9. �

Unlike Proposition 13.9, it is possible to remove the finite rank assumption from Corollary 13.10;

it is true that submodules of arbitrary free modules are free, for modules over a PID. We omit the

proof of this result, which is not relevant for the classification of finitely generated modules over

PIDs. On the other hand, the example I = xR + yR ⊆ R = K[x, y] for a field K is a non-free
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submodule of the rank one free module R itself, so again for non-PIDs we don’t have a result like

Corollary 13.10.

13.4. The torsion case. The remaining work is to analyze the torsion part in more detail. Recall

that a PID is a UFD, and the prime and irreducible elements are the same. We will use the term

prime below.

Definition 13.11. Let R be a PID and let p ∈ R be prime. An R-module M is called p-primary

if for all m ∈M , there exists n ≥ 1 such that pnm = 0.

If M is a p-primary module, then for every m ∈ M , (pn) ⊆ annR(m) for some n, and so

annR(M) = (pi) for some i since every ideal containing (pn) is generated by a divisor of pn and

hence a power of p. Similarly, if M is a finitely generated p-primary module, then annR(M) = (pi)

for some i.

The first step in understanding finitely generated torsion modules over a PID is to show that

such a module decomposes as a direct sum of p-primary submodules.

Definition 13.12. Let R be a PID and let M be an R-module. If p is a prime element of R, the

p-primary component of M is Mp = {m ∈M | pnm = 0 for some n ≥ 1}.

It is easy to see that Mp is the unique largest p-primary R-submodule of M .

Proposition 13.13. let M be a finitely generated torsion module over a PID R. Then there are

pairwise non-associate primes p1, . . . , pk of R such that M ∼= Mp1 ⊕ · · · ⊕Mpk .

Proof. Since M is finitely generated torsion, annR(M) 6= 0, say annR(M) = (a) with a 6= 0. By

unique factorization we can write a = pe11 p
e2
2 . . . pekk for some pairwise non-associate primes pi and

integers ei ≥ 1. We claim that M is the internal direct sum of the submodules Mp1 , . . .Mpk , where

Mpi is the pi-th primary component of M .

First, define qi = pe11 . . . p
ei−1

i−1 p
ei+1

i+1 . . . p
ek
k , i.e. qi is the prime factorization of a with the peii

term removed. It is clear that gcd(q1, . . . , qk) = 1, since the only primes (up to associates) that

divide any qj are the primes pi, but pi does not divide qi. Since R is a PID, this means that

1 = b1q1 + · · · + bkqk for some bi ∈ R. Now if m ∈ M , then m = 1m = b1q1m + · · · + bkqkm. By

definition peii biqim = biam = 0. Thus biqim ∈Mpi for all i. It follows that M = Mp1 + · · ·+Mpk .

Next, suppose that m ∈Mp1 ∩ (Mp2 + · · ·+Mpk), then ps1 kills m for some s since m ∈Mp1 , and

pn1
2 . . . pnkk kills m for some ni ≥ 1, since m ∈ Mp2 + · · ·+Mpk . But gcd(ps1, p

n1
2 . . . pnkk ) = 1. Since

every R-linear combination of these elements will also kill m, we have 1m = 0 and so m = 0. By
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relabeling the primes, the same argument shows thatMpi∩(Mp1+· · ·+Mpi−1+Mpi+1+· · ·+Mpk) = 0

for all i. We have checked both conditions for an internal direct sum, so we see that M is an internal

direct sum M = Mp1 ⊕ · · · ⊕Mpk as claimed. �

The last and perhaps most sensitive step is to show that a p-primary module is a direct sum of

cyclic modules. We first make an observation about modules that are killed by an actual prime

(not just a prime power).

Example 13.14. Let R be a PID and let p ∈ R be a prime element. Then we claim that an R-

module M such that (p) ⊆ annR(M) is the same thing as a vector space over the field K = R/(p).

In fact this is just a special case of a general phenomenon. If I is an ideal of a commutative

ring R, and M is an R-module such that IM = 0, i.e. I ⊆ annR(M), then M is naturally an

R/I-module defined by (r + I) ·m = rm; the fact that IM = 0 is used to show that this action is

well-defined. Conversely, any R/I-module N is also an R-module, by pulling back along the ring

homomorphism φ : R→ R/I, in other words defining r ·x = (r+I)x, and the resulting R-module is

certainly killed by I. It is easy to see that in this way R/I-modules are in bijective correspondence

with R-modules that are annihilated by I.

Apply this to R and R/(p), noting that R/(p) = K is a field since in a PID a prime element

generates a maximal ideal, and that a K-module is the same as a vector space over K.

Lemma 13.15. Let M be a finitely generated p-primary module. Suppose that we have elements 0 6=

gi ∈M such that the sum
∑n

i=1Rgi is the internal direct sum of its cyclic submodules Rg1, . . . , Rgn.

Assume that there are h1, . . . , hn ∈ M such that gi = phi for all i. Then
∑n

i=1Rhi is also the

internal direct sum of its cyclic submodules Rh1, . . . , Rhn.

Proof. The reader may easily check that condition (ii) of Theorem 12.47 for the submodules

Rh1, . . . , Rhn is equivalent to the following statement: if x1 + · · · + xn = 0 for xi ∈ Rhi, then

xi = 0 for all i.

Suppose that r1h1 + · · ·+ rnhn = 0. Acting by p, we have r1g1 + · · ·+ rngn = 0. Since
∑n

i=1Rgi

is the internal direct sum of its submodules Rg1, . . . , Rgn, we must have rigi = 0 for all i. Since

M is p-primary, annR(gi) = pmi for some mi ≥ 1 (since g1 6= 0). So each ri is a multiple of p.

But then rihi ∈ Rgi for all i. Again since
∑n

i=1Rgi is the internal direct sum of its submodules

Rg1, . . . , Rgn, this forces rihi = 0 for all i. �

177



Proposition 13.16. Let R be a PID with prime p, and let M be a finitely generated p-primary

R-module. Then M ∼= R/(ps1) ⊕ R/(ps2) ⊕ · · · ⊕ R/(psk) as R-modules, for some list of positive

integers s1, s2, . . . , sk.

Proof. We have annR(M) = pn for some n ≥ 0. The proof is by induction on n. We take n = 0 as

the base case; this is when M = 0 and the result holds trivially with the empty list of integers.

Now assume that n ≥ 1 and that the result holds for all smaller n. Let N = pM = {pm|m ∈M}.

Then N is a submodule of M for which pn−1N = pnM = 0. By the induction hypothesis, we have

an internal direct sum N ∼=
⊕l

i=1Ci for some cyclic submodules Ci, where Ci ∼= R/(pj1) for

some j1, . . . , jl (it could be that N = 0 and the list is empty). Let gi be a generator of Ci, so

annR(gi) = annR(Ci) = (pji). Then gi = phi for some hi ∈ M , since N = pM . It follows that

annR(hi) = (pji+1). By Lemma 13.15, the submodule H =
∑l

i=1Rhi is also the direct sum of its

cyclic submodules Rh1, . . . , Rhl.

Now consider the submodule M [p] = {m ∈ M |pm = 0} of M . As discussed in Example 13.14,

this can be thought of as a vector space over K = R/(p). In particular, (M [p]∩H) is a K-subpace

of M [p] and so we can choose a complement in M [p], that is, a K-subspace V of M [p] such that

M [p] = (M [p] ∩H)⊕ V as K-modules (it is a standard result for vector spaces that any subspace

has a complement; or use that all K-modules are free and apply Corollary 12.50).

We now claim that we have an internal direct sum M = H⊕V . First, by the choice of V ⊆M [p]

we have V ∩ H ⊆ V ∩ (M [p] ∩ H) = 0. Next, if m ∈ M then pm ∈ N . By the definition of

H, pH = N = pM , so there is h ∈ H such that ph = pm and hence p(h − m) = 0. Then

h−m ∈M [p] = (M [p] ∩H) + V ⊆ H + V . So m ∈ H + V . Hence M = H ⊕ V as claimed.

Finally, now V is a summand of M and so is also finitely generated as an R-module (and so

also as a K-space). If v1, . . . , vs is a K-basis of V , then V = Rv1 ⊕ . . . Rvs where Rvi ∼= R/(p)

as an R-module, for all i. Since H = Rh1 ⊕ · · · ⊕ Rhl where Rhi ∼= R/(pji+1) for all i, we have

M ∼= R/(ps1)⊕ · · · ⊕R/(psk) for some positive integers s1, . . . , sk. �

13.5. Proof of the classification theorem. We now put together all of the results we have

proved to give the proof of the classification of finitely generated modules over PIDs.

Proof of Theorem 13.6. (1) Let M be a finitely generated module over the PID R. Let T =

Tors(M). Of course T is torsion, and we know that M/T is torsionfree, by Lemma 13.2. Now M/T

is finitely generated, since M is. It follows that M/T is free of finite rank, by Proposition 13.9.

But then the quotient homomorphism π : M → M/T is a split surjection, and hence there is an

internal direct sum decomposition M ∼= T
⊕
F , where F ∼= M/T is free of finite rank, say r. This
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implies also that M/F ∼= T , so T is also isomorphic to a factor module of M and thus T is also

finitely generated. Now by Proposition 13.13, T ∼= Tp1 ⊕ · · · ⊕ Tpk for some pairwise nonassociate

primes pi, where Tpi is pi-primary and is finitely generated since it is a summand of T . Finally,

each Tpi is isomorphic to a direct sum Tpi
∼= R/(p

si,1
i )⊕ · · · ⊕R/(psi,kii ), by Proposition 13.16.

This proves that M is a direct sum of a rank r free module and a finite number of cyclic modules

with annihilators generated by prime powers.

(2). Note that it is obvious that if two modules have the same rank and the same elementary

divisors, then the modules are isomorphic. To prove the converse, we take two modules

M =

r︷ ︸︸ ︷
R⊕R⊕ · · · ⊕R⊕R/(pe11 )⊕R/(pe22 )⊕ · · · ⊕R/(pemm )

and

M ′ =

s︷ ︸︸ ︷
R⊕R⊕ · · · ⊕R⊕R/(qf11 )⊕R/(qf22 )⊕ · · · ⊕R/(qfnn )

where pi, qi are primes and ei, fi ≥ 1. It suffices to prove that if M ∼= M ′, then r = s, m = n, and

after renumbering one of the sequences of prime powers we have ei = fi and pi and qi are associates

for all i.

Let f : M →M ′ be an isomorphism. It is clear that f restricts to an isomorphism of the torsion

submodules f : T = Tors(M) → T ′ = Tors(M ′). Then f induces an isomorphism of the factor

modules F = M/T → F ′ = M ′/T ′. Thus M and M ′ have isomorphic free and torsion parts. It is

clear that T = R/(pe11 )⊕R/(pe22 )⊕· · ·⊕R/(pemm ) and T ′ = R/(qf11 )⊕R/(qf22 )⊕· · ·⊕R/(qfnn ). Thus

F ∼= Rr and F ′ ∼= Rs. A free module over a commutative ring has a uniquely determined rank by

a homework exercise. Thus r = s and the ranks are the same.

We have the isomorphism f : T → T ′ which we still call f . For any isomorphism of torsion

modules and for any prime p, it restricts to an isomorphism f : Tp → T ′p between the p-primary

components, by the definition of these components. Now notice that Tp is the direct sum of all of

the summands R/(peii ) (if any) such that (pi) = (p), i.e. such that pi is an associate of p. A similar

comment holds for T ′.

It now suffices to work one primary component at a time and show that if f is an isomorphism

from Tp = R/(ps1)⊕· · ·⊕R/(psk) to T ′p = R/(pt1)⊕· · ·⊕R/(ptl), then k = l and after renumbering

the ti we have si = ti for all i. Equivalently, we just need that for each positive integer b, the

number of si which is equal to b is the same as the number of ti which is equal to b.

For each b ≥ 1, if N is a p-primary module we can define N [b] = {x ∈ N |pbx = 0}. By convention

we put N [0] = 0. These are submodules of N with 0 = N [1] ⊆ N [1] ⊆ N [2] ⊆ . . . . Also, each

factor module N [b]/N [b− 1] is killed by p and so is a vector space over K = R/(p). In particular, a
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short calculation shows that Tp[b]/Tp[b− 1] is a K-vector space of dimension equal to the number

of sj which are greater than or equal to b.

Now the isomorphism f : Tp → T ′p restricts to an isomorphism Tp[b]→ T ′p[b] for all b, and hence

induces an isomorphism Tp[b]/Tp[b − 1] → T ′p[b]/T
′
p[b − 1] for all b as R-modules, hence also as

K-vector spaces. It follows that the number of si which are greater than or equal to b is the same

as the number of ti which are greater than or equal to b, for all b. But this implies that the number

of si which are equal to b is the same as the number of ti which are equal to b. �

13.6. The invariant factor form. There is another form of the classification theorem in which

the torsion part is written as a direct sum of cyclic modules in a different way. For completeness

we restate the theorem in its entirety in this version.

Theorem 13.17. Let R be a PID. Let M be a finitely generated R-module. Then

(1)

M ∼=
r︷ ︸︸ ︷

R⊕R⊕ · · · ⊕R⊕R/(a1)⊕R/(a2)⊕ · · · ⊕R/(an)

as R-modules, where the ai ∈ R are nonzero, nonunit elements such that ai|ai+1 in R for all

i. The number r is called the rank of M and the elements a1, . . . , an are called the invariant

factors of M .

(2) The rank and invariant factors are uniquely determined by M (up to replacing the ai by

associates). Two modules M and N are isomorphic if and only if they have the same rank

and invariant factors (up to associates).

There are a few reasons why sometimes one might prefer the version of the classification in terms

of invariant factors. In this version the torsion part is typically given as a direct sum of fewer cyclic

modules. Also, the invariant factors occur in a specific order, unlike the ambiguity of the order in

which the elementary divisors appear. We will see later how this leads to the uniqueness of the

rational canonical form of a matrix, which has important applications.

In practice, if one is given the torsion part of a finitely generated module over a PID in elementary

divisor form or in invariant factor form, it is routine to change to the other form. The reason is

the following application of the Chinese remainder theorem.

Lemma 13.18. Let R be a PID and let a = pe11 p
e2
2 . . . penn , where the pi are pairwise non-associate

primes. Then

R/(a) ∼= R/(pe11 )⊕R/(pe22 )⊕ . . . R/(penn )

as both rings and as R-modules.
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Proof. The fact that the primes are pairwise non-associate implies that gcd(peii , p
ej
j ) = 1 for i 6= j,

and so the ideals (peii ) and (p
ej
j ) are comaximal. The Chinese remainder theorem now gives that

the natural map φ : R/(a)→ R/(pe11 )⊕R/(pe22 )⊕ . . . R/(penn ) defined by the formula φ(r + (a)) =

(r+ (pe11 ), . . . , r+ (penn )) is an isomorphism of rings. But it is clear that φ is also a homomorphism

of R-modules. �

We give a proof of the invariant factor version of the fundamental theorem, but really seeing

some examples in action may make this as clear as the rather technical proof. The reader might

just skip this proof and move on to the examples we present afterwards.

Proof of Theorem 13.17. We only need to show that a finitely generated torsion module M over a

PID can be expressed in invariant factor form and that the invariant factors are uniquely determined

up to associates. The other parts of the theorem are the same as for Theorem 13.6.

We apply Theorem 13.6 to express M in terms of cyclic modules whose annihilators are the

elementary divisors. Group together those elementary divisors which are associates of the same

prime and change them if necessary so they are powers of exactly the same prime (which doesn’t

change the ideals they generate). We see that there are pairwise non-associate primes p1, . . . , pm

and exponents ei,1, . . . , ei,si for each i such that M is a direct sum M ∼=
⊕m

i=1

⊕si
j=1R/(p

ei,j
i ). We

can order the exponents so that ei,1 ≥ ei,2 ≥ · · · ≥ ei,si . We also define ei,j = 0 for j > si.

Now define bj = p
e1,j
1 . . . p

e1,j
m for each j ≥ 1, where as usual p0

i = 1 by convention. Then bi|bi−1

for all i ≥ 1, with bj = 1 for j > n = max{si|1 ≤ i ≤ m}. Define ai = bn+1−i for 1 ≤ i ≤ n. Then

it is clear that ai|ai+1 for all 1 ≤ i ≤ n. By Lemma 13.18,

n⊕
j=1

R/(aj) =
n⊕
j=1

R/(bj) =
n⊕
j=1

m⊕
i=1

R/(p
ei,j
i )

which is equal to the elementary divisor decomposition of M we started with if we ignore any zero

summands. This proves that an invariant factor decomposition M ∼= R/(a1) ⊕ · · · ⊕ R/(an) with

ai|ai+1 for all i exists.

Conversely, suppose that M ∼= R/(c1) ⊕ · · · ⊕ R/(ct) is an invariant factor decomposition, with

ci|ci+1 for all i. By using Lemma 13.18, we can break up each R/(ci) as a direct sum of cyclic

modules with prime power annihilators. In this way we get an elementary factor decomposition. By

the uniqueness of the elementary factor decomposition, the list of all of the prime powers occurring

in the prime power decompositions of the ci is the same as the list of all of the prime powers

occuring in the prime power decompositions of the ai. Now using the divisibility conditions, we see

that the power of pj occurring in ci (possibly 0) is less than or equal to the power of pj occurring
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in ci+1 for all i. The same is true of the ai. There is only one way to arrange a sequence of prime

powers in nondecreasing order of exponents. It is straightforward to see now that (ci) = (ai) for

all i and t = n. �

13.7. Examples. Applying the fundamental classification theorem in the case R = Z immediately

gives us a classification theorem for finitely generated abelian groups. We did not discuss this when

we studied group theory, since it is more convenient to obtain it as a consequence of module theory.

There is no proof for Abelian groups that doesn’t have to do more or less the same steps as a proof

for modules over general PID’s.

We restate the fundamental theorem for the case R = Z for convenience.

Theorem 13.19. Let G be a finitely generated abelian group. Then G ∼= Zr⊕H for some uniquely

determined free abelian group Zr of rank r and finite abelian group H. The group H is isomorphic

to
⊕m

i=1 Z/(p
ei
i ) for some prime powers peii (elementary divisors) uniquely determined up to their

order. H is also isomorphic to
⊕n

i=1 Z/(ai) for some uniquely determined integers ai ≥ 2 (invariant

factors) satisfying ai|ai+1 for all i.

Example 13.20. Here are some explicit examples of going between invariant factor form and

elementary divisor form for a finite abelian group.

Suppose that G = Z/(3)⊕Z/(12)⊕Z/(60)⊕Z/(360) is a group given in invariant factor form. To

find the elementary divisor form, we simply factor each invariant factor into prime powers, and take

the list of all of those prime powers. We have 3 = 31, 12 = 2231, 60 = 223151, and 360 = 233251.

Thus the elementary divisors are 22, 22, 23, 3, 3, 3, 32, 5, 5 and

G ∼= Z/(22)⊕ Z/(22)⊕ Z/(23)⊕ Z/(3)⊕ Z/(3)⊕ Z/(3)⊕ Z/(32)⊕ Z/(5)⊕ Z/(5)

as Z-modules and hence abelian groups. This is justified by Lemma 13.18.

For an example of the reverse process, consider the abelian group given in elementary divisor

form by

G ∼= Z/(5)⊕ Z/(52)⊕ Z/(52)⊕ Z/(72)⊕ Z(73)⊕ Z/(11).

The elementary divisors are 5, 52, 52, 72, 73, 11.

To find the invariant factors, it is easiest to find them in reverse order, as in the proof of

Theorem 13.17. Take the product of the largest powers of each prime among the elementary

divisors, then the product of the largest powers of the primes among the remaining elementary

divisors, etc. In this case we have b1 = (52)(73)(11), b2 = (52)(72), b3 = 5. The invariant factors
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are these integers in the reverse order: a1 = 5, a2 = (52)(72) = 1715, a3 = (52)(73)(11) = 94325.

So G ∼= Z/(5)⊕ Z/(1715)⊕ Z/(94325).

In the next section we will explore the consequences of the fundamental theorem when applied to

modules over a polynomial ring K[x] for a field K. Here is an example of moving between invariant

factors and elementary divisors in that context.

Example 13.21. Let R = Q[x]. Consider the module M = Q[x]/(x3 − 1)⊕Q[x]/(x6 − 1), which

is in invariant factor form, since x3 − 1|x6 − 1 (as x6 − 1 = (x3 − 1)(x3 + 1)).

To put this in elementary divisor form requires factorizing x3−1 and x6−1 as products of powers

of prime (i.e. irreducible) polynomials in Q[x]. We will discuss irreducibility for polynomials in

more detail later (we ran out of time in the ring theory part last quarter, so we will do it in the

field theory part this quarter). The only thing we use here is that a degree 2 polynomial over Q is

irreducible if and only if it does not have a root in Q.

By the standard formula for a difference of cubes, x3 − 1 = (x− 1)(x2 + x+ 1). It is easy to see

that x2 + x+ 1 has no root in Q, so it is irreducible over Q. Similarly, x6 − 1 = (x3 − 1)(x3 + 1) =

(x− 1)(x2 + x+ 1)(x+ 1)(x2− x+ 1), and (x2− x+ 1) is irreducible over Q. We conclude that the

elementary divisor form of M is

M ∼= Q[x]/(x−1)⊕Q[x]/(x−1)⊕Q[x]/(x+1)⊕Q[x]/(x2+x+1)⊕Q[x]/(x2+x+1)⊕Q[x]/(x2−x+1).

It happens that all primes occur to the first power in this case.

14. Canonical Forms

In this section we will use the classification theorem of finitely generated modules over PIDs to

develop the theory of canonical forms for linear transformations. These forms have many theoretical

as well as practical uses in linear algebra.

14.1. Linear algebra review. Let V be a f.d. vector space over a field F . Suppose that φ : V → V

is an F -linear transformation. Fix an F -basis {v1, . . . , vn} = B for V . Although we just use set

bracket notation for the basis, we always assume that the order of the basis vectors is fixed as well.

We can define the matrix of φ relative to B to be MBB (φ) = (aij) ∈Mn(F ) where φ(vj) =
∑

i aijvi.
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Then if we identify v ∈ V with the column vector vB =

[
b1
...
bn

]
∈ Fn, where v =

∑
j bjvj , then

φ(v) =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

an1 an2 . . . ann




b1

b2
...

bn

 ,

that is, φ is given by left multiplication by the matrix MBB (φ). For each fixed basis B, this association

of matrices to linear transformations gives a ring isomorphism Ψ : EndF (V ) → Mn(F ) defined by

Ψ(φ) = MBB (φ), such that φ(v)B = MBB (φ)vB for all v.

Let us recall what happens to the matrix when we change the basis. If B′ = {w1, . . . , wn} is

also a basis, then we let P = (pij) be the change of basis matrix whose coordinates are defined

by wj =
∑

i pijvi. Similarly, we can define Q = (qij) to be the change of basis matrix defined by

vj =
∑

i qijwi. Then vj =
∑

i qij
∑

k pkivk and so
∑

k(
∑

i pkiqij)vk = vj forces
∑

i pkiqij = δkj ,

where this is the Kronecker δ symbol defined by δkj =

0 k 6= j

1 k = j
. This implies that PQ = I

where I is the n× n identity matrix, so P is invertible with Q = P−1.

Now we calculate

φ(wj) =
∑
i

pijφ(vi) =
∑
k

∑
i

pijakivk =
∑
k

∑
i

∑
l

qlkpijakiwl

which implies that

MB
′
B′ (φ)lj =

∑
k

∑
i

qlkakipij = [P−1MBB (φ)P ]lj .

Thus the matrix with respect to the new basis, MB
′
B′ (φ) = P−1MBB (φ)P , is a conjugate of the matrix

associated to the old basis.

Definition 14.1. Matrices A,B ∈Mn(F ) are similar if there is an invertible matrix P ∈ GLn(F )

such that P−1AP = B.

Similarity is obviously an equivalence relation on the set of all n × n matrices. The above

calculations showed that if two matrices represent the same linear transformation with respect to

two different bases, then the matrices are similar. It is easy to see that the converse also holds.

Given that similarity is an equivalence relation, we can consider equivalence classes of matrices

in Mn(F ) with respect to this relation, which we call similarity classes. The idea of canonical forms

is to choose a representative of each similarity class with a particularly nice form. Then in proofs
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or calculations involving properties which are independent of similarity, one can reduce to the case

of these canonical forms.

Definition 14.2. A matrix A ∈ Mn(F ) is diagonal if A = (aij) with aij = 0 for all i 6= j.

Then B ∈ Mn(F ) is diagonalizable if B is similar to a diagonal matrix. A linear transformation

φ ∈ EndF (V ) is called diagonalizable if there is a basis B of V such that MBB (φ) is diagonal.

Diagonalizable matrices are usually the simplest ones to deal with when it comes to calculations.

The first canonical form we study, the Jordan canonical form, will give a matrix in each similarity

class which is as close to diagonal as possible in some sense. The Jordan form is also closely related

to the theory of eignenvectors.

Definition 14.3. If V is a vector space over F and φ ∈ EndF (V ), then a nonzero vector v ∈ V is

an eigenvector of φ with eigenvalue λ if φ(v) = λv. Similarly, if A ∈Mn(F ) and 0 6= w ∈ Fn where

the elements of Fn are written as column vectors, then w is an eigenvector of A with eigenvector

λ if Aw = λw.

It should be clear that 0 6= v is an eigenvector of φ ∈ EndF (V ) if and only if vB is an eigenvector

of the matrix MBB (φ) for all choices of basis B.

The following familiar result follows immediately from the definitions reviewed above.

Lemma 14.4. A linear transformation φ ∈ EndF (V ) is diagonalizable if and only if V has a basis B

consisting of eigenvectors of φ (in which case MBB (φ) is diagonal). Similarly, a matrix A ∈Mn(F )

is diagonalizable if and only if Fn has a basis of eigenvectors for A.

Definition 14.5. Let A ∈Mn(F ). The characteristic polynomial of A is charpoly(A) = det(xI −

A) ∈ F [x]. If V is a vector space over F of dimension n and φ ∈ EndF (V ), then the characteristic

polynomial of φ is charpoly(φ) = det(xI −A) where A = MBB (φ) for any basis B of V .

Note that the choice of basis B in the definition above doesn’t matter, because if matrices A and

B are similar, they have the same characteristic polynomial, as

det(xI − P−1AP ) = det(P−1(xI)P − P−1AP ) = det(P−1(xI −A)P )

= det(P−1) det(xI −A) det(P ) = det(xI −A).

If v is an eigenvector of A, then Av = λv implies (A−λI)v = 0 and so v is a nonzero vector in the

nullspace of (A−λI). Thus (A−λI) is singular. Conversely if (A−λI) is singular, then a nonzero

element in its nullspace will be an eigenvector of A with eigenvalue λ. It follows that the eigenvalues
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of A are precisely the scalars λ such that A−λI is singular, or equivalently det(A−λI) = 0. These

are the roots of the characteristic polynomial det(A − xI). We have proved that the eigenvalues

of A are the roots of the characteristic polynomial of A. Similarly, for an endomorphism φ of an

n-dimensional vector space V , the eigenvalues of φ are the roots of the characteristic polynomial

of φ.

In the next section we will want to focus on the case of matrices whose elementary divisors are

powers of degree one primes. The next definitions are useful for this purpose.

Definition 14.6. Let 0 6= f(x) ∈ F [x] for a field F with d = deg f . We say that f splits over F if

f factors as f = c(x− r1)(x− r2) . . . (x− rd) in F [x] (i.e., with c, r1, . . . , rd ∈ F ).

If a polynomial f of degree d splits over F , then it has d roots r1, . . . , rd in F (counted with

multiplicity).

Definition 14.7. A field F is algebraically closed if every nonzero polynomial f ∈ F [x] splits over

F .

The Fundamental Theorem of Algebra is the statement that the field C of complex numbers is

algebraically closed. We will give a proof of this at the end of our study of field theory, but we

simply assume it now for convenience. We will also prove later that any field is contained in an

algebraically closed one.

Note that if a field F is algebraically closed, then every nonzero polynomial in F [x] factors as

a product of degree 1 factors in F [x] and a unit. This implies that the irreducible polynomials in

F [x] are precisely the polynomials of degree 1. Recall that a polynomial is monic if its leading

coefficient is 1. The monic irreducibles in F [x] are just the polynomals (x− r) with r ∈ F .

14.2. Jordan canonical form. Let F be a field. Consider a finite dimensional vector space V

over F , and an F -linear transformation φ ∈ EndF (V ). Recall that given any vector space with a

choice of linear endomorphism, we can encode this information by making V into a module over

the ring F [x], where the constant polynomials in F act by the existing scalar multiplication and x

acts by x · v = φ(v). The action by a general element of F [x] then follows the rule (
∑n

i=0 aix
i) · v =∑n

i=0 aiφ
n(v), where we take φ0 = 1V .

Now since V is finite-dimensional over F , it is finitely generated over F (by a basis) and so it is

certainly finitely generated as a module over the larger ring F [x]. Since F [x] is a PID, we can apply

the classification of finitely generated modules over a PID to the module V . Here we apply the
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elementary divisor version; in the next section we show how to get somewhat different information

by applying the invariant factor version.

Note that a nonzero free F [x]-module has infinite dimension as an F -vector space. Thus applying

the classification to our module V , we see that the free part of V is zero and V is a torsion F [x]-

module. The theorem tells us that there is an F [x]-module isomorphism

V ∼= F [x]/(fe11 )⊕ F [x]/(fe22 )⊕ · · · ⊕ F [x]/(fess )

where the f1, . . . , fs are prime, i.e. irreducible, polynomials in F [x] and the ei ≥ 1. The prime

powers feii are unique up to the order in which they appear, and possibly replacing fi with associates.

In this case by multiplying each by a nonzero scalar we can insist that the fi be monic and then

there is no ambiguity up to associates.

The Jordan canonical form we want to develop exists only under an additional condition: we

assume now that the all of the irreducible polynomials fi appearing in the elementary divisors

have degree 1. By the comments in the previous section, this is always the case if we assume that

F is algebraically closed. When we study fields we will see that every field is contained in an

algebraically closed one, so this is not a huge restriction.

With our new assumption, we have that we can write fi = (x − λi) for some λi ∈ F . So as

F [x]-modules we have an isomorphism

V ∼= F [x]/((x− λ1)e1)⊕ F [x]/((x− λ2)e2)⊕ · · · ⊕ F [x]/((x− λs)es).

The λi are not necessarily distinct.

For the moment, consider the case where s = 1, that is where V has only one elementary divisor.

For convenience, drop the indexing and write V ∼= F [x]/(x− λ)e as F [x]-modules. Now we choose

a F -basis of F [x]/(x − λ)e for which the multiplication by x map will have a simple form. Let

I = ((x− λ)e) be the ideal of R = F [x] generated by (x− λ)e, so V ∼= R/I as R-modules.

Now notice that {w1 = (x−λ)e−1 + I, w2 = (x−λ)e−2 + I, . . . , we−1 = (x−λ) + I, we = 1 + I} is

an F -basis of R/I. This follows just since I is generated by a polynomial of degree e, and (x− λ)i

has degree i, so we have coset representatives of degrees 1, 2, . . . , e− 1.

In the R = F [x]-module action on R/I, we have

(x− λ) · wi = (x− λ)[(x− λ)e−i + I] = (x− λ)e−i+1 + I =

wi−1 2 ≤ i ≤ e

0 i = 1.
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We can rewrite (x − λ) · wi = wi−1 as x · wi = λwi + wi−1 for 2 ≤ i ≤ e, while (x − λ) · w1 = 0

becomes x ·w1 = λw1. In other words, w1 is an eigenvector for the linear transformation of F [x]/I

given by action by x.

Now let θ : V → F [x]/I be a F [x]-module isomorphism. Then define vi = θ−1(wi) for all i. Since

θ is an F [x]-module isomorphism, it is also an F -vector space isomorphism. Thus B = {v1, . . . , ve}

is an F -basis of V . Moreover, we have θ(x · vi) = x · θ(vi) = x · wi for all i. But by definition

x · vi = φ(vi) for all i. Given the rules above for how x acts on the basis {wi} of R/I, we have

φ(vi) =

λvi + vi−1 2 ≤ i ≤ e

λv1 i = 1.

This shows that the matrix of φ with respect to the basis B has an especially simple form:

MBB (φ) =



λ 1 0

λ 1
...

. . .
. . .

...
...

. . .
. . .

...

λ 1

0 λ


More precisely,

[MBB (φ)]ij =


λ i = j

1 j = i+ 1

0 otherwise.

This matrix is called the Jordan block of size e associated to the eigenvalue λ. Its only nonzero

entries are along the main diagonal (all λs) and the diagonal just above it (all 1’s). We also write

this e× e matrix as Jλ,e.

Now we pass to the general case where there is more than one elementary divisor and an isomor-

phism

θ : V ∼= F [x]/((x− λ1)e1)⊕ F [x]/((x− λ2)e2)⊕ · · · ⊕ F [x]/((x− λs)es).

We can choose a special basis {wi,1, . . . , wi,ei} of each summand F [x]/((x−λi)ei) of the right hand

side, as above, where wi,j = (x − λi)ei−j + ((x − λi)ei). Then stringing these together gives as a

basis {w1,1, . . . , w1,e1 , w2,1, . . . , w2,e2 , . . . , ws,1, . . . ws,es} of the right hand side. Applying θ−1 gives
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us a basis B of V . The matrix of φ with respect to B is then a block matrix

MBB (φ) =



Jλ1,e1 0

Jλ2,e2
. . .

. . .

0 Jλs,es


Here, this is a matrix of size n×n where n = e1 + · · ·+ es. The diagonal blocks are Jordan blocks,

and all other blocks are 0. A matrix of this type is said to be in Jordan canonical form.

Theorem 14.8. Let φ : V → V be a linear transformation of the n-dimensional vector space V

over F . Make V into an F [x]-module via φ, and assume the that elementary divisors of the F [x]-

module V are of the form (x− λ1)e1 , . . . , (x− λs)es. Then there is a basis B of V s.t. MBB (φ) is in

Jordan canonical form, with Jordan blocks Jλ1,e1 , . . . , Jλs,es.

If there is another basis B′ such that MB
′
B′ (φ) is also in Jordan canonical form, then this matrix

is the same as MBB (φ) after possibly reordering the Jordan blocks.

Proof. The existence of the basis B was proved in the preceding discussion.

Conversely, suppose that B′ is another basis for which MB
′
B′ (φ) is in Jordan form. The fact that

this is a block matrix with only the blocks along the main diagonal nonzero, say with blocks of size

f1, f2, . . . , ft, means that V ∼= V1⊕V2⊕· · ·⊕Vt with φ(Vi) ⊆ Vi, where Vi is spanned by fi elements

of the basis, and with f1 + · · ·+ ft = n. Since the matrix of φ|Vi with respect to the corresponding

fi basis elements is a Jordan block Jµi,fi , as an F [x]-module x acts on the basis v1, . . . , vfi of Vi

via the rules

φ(vi) =

µivi + vi−1 2 ≤ i ≤ fi

µiv1 i = 1.

This easily implies that Vi ∼= F [x]/(x−µi)fi as an F [x]-module, by reversing the steps in the earlier

argument. We conclude that

V ∼= F [x]/((x− µ1)f1)⊕ F [x]/((x− µ2)f2)⊕ · · · ⊕ F [x]/((x− µt)ft).

as F [x]-modules. But now (x− µ1)f1 , . . . , (x− µt)ft are elementary divisors for the module V . By

the uniqueness of elementary divisors, s = t, and possibly after renumbering, we have µi = λi and

ei = fi for all i. In other words, the Jordan form MB
′
B′ (φ) is the same as MBB (φ) after reordering

the Jordan blocks. �
189



Corollary 14.9. Let F be an algebraically closed field. Then every matrix A ∈Mn(F ) is similar to

a matrix in Jordan canonical form. The Jordan form is uniquely determined up to rearrangement

of the Jordan blocks.

One reason that the Jordan form is useful is that calculation of the powers of a matrix in this

form is especially simple.

Example 14.10. Let J = Jλ,3 be a Jordan block of size 3. Then for all n ≥ 1 we have

Jn =


λn nλn−1

(
n
2

)
λn−2

0 λn nλn−1

0 0 λn

 ,

by an easy inductive proof.

Similarly, a Jordan block of any size has an explicit formula for its powers involving binomial

coefficients. Then the powers of any Jordan form may also be explicitly determined, simply by

taking powers of the blocks. Finally, if A is an arbitrary matrix which is similar to a Jordan form

J , if we calculate explicitly the matrix P such that A = P−1JP , then the powers of A may be

explicitly determined as An = P−1JnP .

If we are trying to understand all elements of Mn(F ) with a certain property that is invariant

under similarity, then if F is algebraically closed we can reduce to the case of a Jordan form, where

the calculation is usually much easier.

Example 14.11. Suppose we would like to find all elements of GL2(C) which have order dividing

3 in this group. In other words we want all matrices A such that A3 = I.

Since we are working over the algebraically closed field C, all matrices have a Jordan form. Note

that A3 = I if and only if B3 = I, for any matrix B similar to A. Thus if we find all nonsingular

matrices A in Jordan form which have A3 = I, then the answer will simply be the union of all

similarity classes containing those Jordan forms.

Jordan forms of 2×2 matrices are either diagonal, say

λ1 0

0 λ2

 for λ1, λ2 ∈ C, or else a Jordan

block of size 2,

λ 1

0 λ

. The formula for powers of a 2× 2 Jordan block, which is even easier than

Example 14.10, is λ 1

0 λ

n

=

λn nλn−1

0 λn

 .
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In particular no positive power of such a Jordan block can be the identity matrix I. We conclude

that the Jordan form of an invertible matrix of order dividing 3 is a diagonal matrix. Sinceλ1 0

0 λ2

3

=

λ3
1 0

0 λ3
2

, The Jordan forms with multiplicative order dividing 3 are

S =

{λ1 0

0 λ2

∣∣∣∣λ3
1 = λ3

2 = 1

}
.

C has three cube roots of 1, {1, e2πi/3, e4πi/3}. There are thus 9 distinct diagonal matrices in S,

and the set of matrices with multiplicative order dividing 3 is equal to the set of all conjugates of

S, i.e. the union of the similarity classes containing elements of S.

Suppose we want to know how many distinct similarity classes there are of such matrices. Then

we need to determine whether any of the elements in S are similar. We know the Jordan form is

determined only up to rearranging the Jordan blocks; thus two diagonal matrices with the same

diagonal elements in some order are similar. It is now easy to see that there are only 6 distinct

similarity classes containing the invertible matrices A such that A3 = I.

14.3. Rational canonical form. The rational canonical form is developed in a very similar way

to the Jordan canonical form, except using the invariant factor form instead of the elementary

divisor form of the fundamental theorem.

Again let F be any field, let V be a finite dimensional F -space, and choose an F -linear trans-

formation φ ∈ EndF (V ). Make V into an F [x]-module where x acts by φ. Then V is a torsion

F [x]-module, as we have already argued earlier. Theorem 13.17 tells us that there is an F [x]-module

isomorphism

V ∼= F [x]/(f1)⊕ F [x]/(f2)⊕ · · · ⊕ F [x]/(fm)

where the invariant factors f1, . . . , fm ∈ F [x] satisfy fi|fi+1 for all 1 ≤ i ≤ m − 1. The invariant

factors are uniquely determined up to associates. We will insist that the fi are monic polynomials,

and then they are completely unique.

Consider first the case where n = 1, so there is one invariant factor. Then V ∼= F [x]/(f) for

some monic polyomial f(x) = xn + bn−1x
n−1 + · · ·+ b1x+ b0 ∈ F [x], some n ≥ 1. In other words,

V is essentially an arbitrary nonzero torsion cyclic F [x]-module.
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Let I = (f) for convenience of notation. Now {w1 = 1 + I, w2 = x+ I, . . . , wn = xn−1 + I} is an

F -basis of F [x]/I. In the F [x]-module action on R/I, we have

x · wi = x(xi−1 + I) = xi + I =

wi+1 1 ≤ i ≤ n− 1

−bn−1wn − bn−2wn−1 − · · · − b1w2 − b0w1 i = n;

the second case follows since f ∈ I and so

xn + I = −(bn−1x
n−1 + · · ·+ b1x+ b0) + I = −bn−1(xn−1 + I)− · · · − b1(x+ I)− b0(1 + I).

Now if we fix an F [x]-module isomorphism θ : V → F [x]/I and define vi = θ−1(wi), then

B = {v1, . . . , vn} is an F -basis of V for which

φ(vi) =

vi+1 1 ≤ i ≤ n− 1

−bn−1vn − bn−2vn−1 − · · · − b1v2 − b0v1 i = n.

We conclude that

MBB (φ) =



0 0 −b0
1 0 −b1
0 1 −b2

. . .
...

. . .
...

1 0 −bn−2

1 −bn−1


.

More precisely,

[MBB (φ)]ij =


1 i = j + 1

−bi−1 j = n

0 otherwise.

This matrix is called the companion matrix of the monic polynomial f(x) = xn + bn−1x
n−1 + · · ·+

b1x+ b0. We also write it as Cf .

In the general case where we have more than one invariant factor, we proceed exactly as we did

with the Jordan form. Fixing an isomorphism

θ : V ∼= F [x]/(f1)⊕ F [x]/(f2)⊕ · · · ⊕ F [x]/(fm)

we choose a basis B of V which is the preimage under θ of the basis of the right hand side obtained

by stringing together the special bases of the modules F [x]/(fi) we picked above. The matrix of φ
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with respect to B is then a block matrix

MBB (φ) =



Cf1 . . . . . . 0

Cf2
...

. . .

...
. . .

0 Cfm


A matrix of this type is said to be in rational canonical form. Note that there is no ambiguity in

the order of the blocks of a matrix in rational canonical form. The blocks must be the companion

matrices of polynomials each of which divides the next as we go down the diagonal from the top

left to the bottom right.

Theorem 14.12. Let φ : V → V be a linear transformation of the n-dimensional vector space V

over F . Make V into an F [x]-module via φ, and assume that the invariant factors of the F [x]-

module V are f1, . . . , fm. Then there is a basis B of V such that MBB (φ) is in rational canonical

form, with blocks Cf1 , . . . , Cfm.

If B′ is a basis such that MB
′
B′ (φ) is also in rational canonical form, then MB

′
B′ (φ) = MBB (φ).

Proof. The proof is completely analogous to the proof of Theorem 14.8, but using the uniqueness

of the invariant factor decomposition of a torsion module instead. We leave the details to the

reader. �

Corollary 14.13. Let F be an arbitrary field. Then every matrix A ∈ Mn(F ) is similar to a

unique matrix in Mn(F ) which is in rational canonical form.

We have emphasized the Jordan canonical form since this is the form which is most useful in

calculations and in applications. There is no nice formula for the powers of a companion matrix,

in contrast. The rational canonical form is useful for theoretical reasons, however, because it is

defined over an arbitrary field, and it is absolutely unique. The Jordan canonical form, by contrast,

only exists over certain fields, and is unique only up to permutation of the blocks.

Here is a useful theorem whose proof becomes nearly trivial with the use of the rational canonical

form. Recall that F ⊆ K is called a field extension if F and K are fields, and F is a subring of K.

Theorem 14.14. Let F ⊆ K be a field extension. Let A,B ∈Mn(F ). Then we can also consider

A,B ∈ Mn(K). If A and B are similar in the ring Mn(K) (i.e. A = P−1BP for some P ∈

GLn(K)) then A and B are similar in Mn(F ).
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Proof. Let C be the rational canonical form of A over F , and let C ′ be the rational canonical form

of B over F . Thus C,C ′ ∈Mn(F ).

Now A and C are similar in Mn(F ), so A and C are certainly similar in Mn(K) as well. But the

matrix C is in rational canonical form, that is it is block diagonal with companion matrices Cfi

along the diagonal, for fi ∈ F [x] with fi|fi+1 for all i. Clearly then C is also in rational canonical

form when considered as a matrix in Mn(K). By the uniqueness of the rational canonical form, C

is the rational canonical form of A in Mn(K). We have in the same way that C ′ is the rational

canonical form of B in Mn(K). But by assumption A and B are similar in Mn(K). Thus C = C ′

by the uniqueness of the rational canonical form in Mn(K). But then A is similar to B in Mn(F )

by the uniqueness of the rational canonical form in Mn(F ). �

The preceding result is highly non-obvious without introducing forms. If A = P−1BP for some

P ∈ GLn(K), there is no obvious way to adjust P to obtain a Q ∈ GLn(F ) such that A = Q−1BQ

also.

14.4. Characteristic and minimal polynomials. We now relate canonical forms of a matrix to

its characteristic and minimal polynomials (we will define the minimal polynomial shortly). Because

the rational canonical form is defined over any field we use this form in our initial approach.

Lemma 14.15. Let Cf ∈ Mn(F ) be a companion matrix for a monic polynomial f ∈ F [x]. Then

charpoly(Cf ) = f [x].

Proof. Let f(x) = xn + bn−1x
n−1 + · · ·+ b1x+ b0. We have

charpoly(Cf ) = det



x 0 b0

−1 x b1

0 −1 x b2
. . .

...

. . .
...

−1 x bn−2

−1 x+ bn−1


.
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Expanding by minors along the first row gives

x det



x 0 b1

−1 x b2

0 −1 x b3
. . .

...

. . .
...

−1 x bn−2

−1 x+ bn−1


+ (−1)n−1b0 det



−1 x

0 −1 x

. . .
...

. . .
...

−1 x

−1


= x det(Cg) + (−1)n−1(−1)n−1b0 = x det(Cg) + b0,

where g(x) = xn−1 + bn−1x
n−2 + · · ·+ b2x+ b1.

By induction on the size of the companion matrix, we have det(Cg) = g, and so we get det(Cf ) =

xg + b0 = f . �

Corollary 14.16. Let φ : V → V be a F -linear transformation of a finite dimensional F -space

V . Suppose the corresponding F [x]-module structure on V has invariant factors f1, . . . , fn. Then

charpoly(φ) = f1f2 . . . fn.

Proof. charpoly(φ) is the same as charpoly(C) for a rational canonical form C of φ. The result

follows from Lemma 14.15 and the fact that the determinant of a block diagonal matrix is the

product of the determinants of the blocks. �

Let us also now discuss the minimal polynomial of a matrix or a linear transformation.

Definition 14.17. Let f =
∑n

i=0 aix
i ∈ F [x]. Given a matrix A ∈Mn(F ) we define the evaluation

of f at A to be f(A) =
∑n

i=0 aiA
i ∈Mn(F ) (where A0 = I).

Note that for a fixed matrix A, the “evaulation at A” map εA : F [x] → Mn(F ) given by

εA(f) = f(A) is a ring homomorphism. Thus ker εA is an ideal of F [x] and ker εA = (g) for

some g ∈ F [x] since F [x] is a PID. The map εA is also a linear transformation over F ; since

dimF F [x] =∞ while dimF Mn(F ) = n2, we have ker εA 6= 0 and so g 6= 0.

Definition 14.18. The unique monic polynomial g ∈ F [x] such that ker εA = (g) is called the

minimal polynomial of A and denoted minpoly(A).

Recall that a monic generator of a nonzero ideal I of F [x] is the monic polynomial of uniquely

smallest degree among nonzero elements of I. Thus minpoly(A) is the monic polynomial of smallest

degree which when evaluated at A gives 0. This justifies the terminology.
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Of course we can make this definition for linear transformations as well. If dimF V < ∞ and

φ ∈ EndF (V ), then we can define an evaluation map εφ : F [x] → EndF (V ) by εφ(
∑n

i=0 aix
i) =∑n

i=0 aiφ
i (where φ0 = 1V ) and define minpoly(φ) to be the unique monic generator of ker εφ. It is

easy to see that minpoly(φ) = minpoly(MBB (φ)) for any basis B of V .

Proposition 14.19. Let φ : V → V be a F -linear transformation of a finite dimensional F -vector

space V . Let f1, f2, . . . , fn be the invariant factors of V considered as an F [x]-module where x acts

as φ. Then fn = minpoly(φ).

Proof. For any commutative ring R and ideal I, annR(R/I) = I. Thus annF [x] F [x]/(fi) = (fi).

Also, it is clear that annR(M1 ⊕ · · · ⊕Mn) =
⋂n
i=1 annR(Mi) for any direct sum of R-modules Mi.

Since we have V ∼= F [x]/(f1)⊕· · ·⊕F [x]/(fn), we conclude that annF [x] V =
⋂n
i=1(fi) = (fn) since

fi|fn for 1 ≤ i ≤ n.

We also claim that for h ∈ F [x], h ∈ annF [x] V if and only if h(φ) = 0. Writing h =
∑n

i=0 aix
n,

we have

h · v = 0 for all v ∈ V

⇐⇒ (
n∑
i=0

aix
n) · v = 0 for all v ∈ V

⇐⇒
n∑
i=0

aiφ
n(v) = 0 for all v ∈ V

⇐⇒ [h(φ)](v) = 0 for all v ∈ V

⇐⇒ h(φ) = 0

as claimed.

Thus annF [x] V = ker εφ for the evaluation map εφ : F [x] → EndF (V ) and we conclude that

ker εφ = (fn). By definition, fn = minpoly(φ). �

Proposition 14.20. Let φ ∈ EndF (V ), where V is a finite dimensional F -vector space.

(1) minpoly(φ)| charpoly(φ).

(2) If p(x) is irreducible in F [x] and p| charpoly(φ), then p|minpoly(φ).

Proof. (1) Let V be an F [x]-module where x acts as φ, and let f1, . . . , fn be the invariant factors of

this module. We have seen that minpoly(φ) = fn is the largest invariant factor by Proposition 14.19,

and charpoly(φ) = f1f2 . . . fn is the product of the invariant factors by Corollary 14.16. The result

follows.
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(2) If p is irreducible and p|f1f2 . . . fn, then p|fi for some i since p is prime. Since fi|fn for all i

we get that p|fn. �

An immediate consequence of the results above is the following pretty result known as the

Cayley-Hamilton Theorem. There are various tricky proofs of this result that may be considered

more elementary since they do not rely on the theory of forms, but it is striking how the result just

falls out from the simple properties of the rational canonical form we have developed.

Theorem 14.21. Let A ∈ Mn(F ) for a field F . If f = charpoly(A), then f(A) = 0. In other

words, any matrix satisfies its own characteristic polynomial.

Proof. We have seen in Proposition 14.20 that g = minpoly(A) divides f = charpoly(A) in F [x];

say f = gh. But g(A) = 0 by definition. So f(A) = g(A)h(A) = 0 as well. �

Since the elementary divisors are related to the invariant factors in a simple way, we can also

relate the characteristic polynomial and minimal polynomial to these.

Lemma 14.22. Let φ : V → V be a F -linear transformation of a finite dimensional F -vector space

V . Consider V as an F [x]-module where x acts as φ. We can write the elementary divisors of V

in the form {pei,ji |1 ≤ i ≤ m, 1 ≤ j ≤ si} where the pi are monic and pairwise distinct primes in

F [x], and where ei,1 ≥ ei,2 ≥ · · · ≥ ei,si for each i. Then charpoly(φ) is the product of all of the

elementary divisors, and minpoly(φ) = p
e1,1
1 p

e2,1
2 . . . p

em,1
m is the product of the largest powers of the

distinct primes occurring among the elementary divisors.

Proof. This follows from now the invariant factors are related to elementary divisors, as in the proof

of Theorem 13.17. In particular, since the product of the elementary divisors is the product of the

invariant factors, charpoly(φ) is the product of all elementary divisors. Since the largest invariant

factor is the product of the largest powers of the distinct primes occurring among the elementary

divisors, we get minpoly(φ) = p
e1,1
1 p

e2,1
2 . . . p

em,1
m . �

We can use this to give an easy to understand condition for when a particular linear transfor-

mation has a Jordan canonical form over a field F .

Corollary 14.23. Let φ : V → V be an F -linear transformation of a finite dimensional F -vector

space V . Then φ has a Jordan canonical form in Mn(F ) if and only if charpoly(φ) splits over F .

Proof. Consider the elementary divisors of V as an F [x]-module via φ. Then φ has a Jordan form

if and only if those elementary divisors are all powers of degree 1 irreducibles (x−λ) in F [x]. Since
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charpoly(φ) is the product of the elementary divisors, this is if and only if charpoly(φ) is a product

of degree 1 irreducibles, i.e. it splits over F . �

For a small matrix, often knowledge of the characteristic and minimal polynomials is enough to

determine what the Jordan and rational forms must be. We illustrate this in the following simple

example.

Example 14.24. Consider A =


2 0 1

0 1 0

0 0 2

.

Since A is upper triangular, clearly charpoly(A) = (x − 2)2(x − 1). Recall from Proposi-

tion 14.20(b) that every prime dividing the characteristic polynomial divides the minimal poly-

nomial, so minpoly(A) is either (x− 2)(x− 1) or (x− 2)2(x− 1).

We can calculate

(A− 2I)(A− I) =


0 0 1

0 −1 0

0 0 0




1 0 1

0 0 0

0 0 1

 =


0 0 1

0 0 0

0 0 0

 6= 0

and thus we must have minpoly(A) = (x − 2)2(x − 1) = charpoly(A). This implies that A has a

single invariant factor f1 = (x− 2)2(x− 1) = x3− 5x2 + 8x− 4. The rational canonical form of A is
0 0 4

1 0 −8

0 1 5

 .

Because charpoly(A) is a product of linear factors in F [x], A also has a Jordan form over F , no

matter what the field F is. The elementary divisors are (x− 2)2 and (x− 1) (note that in any field

F , 1 6= 2).

So the Jordan form is 
2 1 0

0 2 0

0 0 1

 .

14.5. Generalized eigenspaces and the Jordan form. For convenience, let us assume now

that the field F is algebraically closed, so that every matrix in Mn(F ) has a Jordan canonical form.

In applications of the Jordan form it is useful to relate it to the theory of generalized eigenvalues

and eigenvectors.

Let V be a vector space with dimF V = n and let φ ∈ EndF (V ).
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Definition 14.25. Given λ ∈ F , we say that v ∈ V is a generalized eigenvector with eigenvalue λ

if (φ− λ1V )n(v) = 0 for some n ≥ 1.

Thinking of V as an F [x]-module where x acts as φ, it is equivalent to define a generalized

eigenvector to be v ∈ V such that (x− λ)n · v = 0. It is easy to see that

Vλ = {v ∈ V |v is a generalized eigenvector with eigenvalue λ}

is an F [x]-submodule of V ; in other words it is an F -subspace such that φ(Vλ) = Vλ. Vλ is called a

generalized eigenspace. If (x− λ)n · v = 0 and n is the minimal exponent for which this holds, then

0 6= w = (x− λ)n−1 · v and (x− λ) · w = 0, so w is a genuine eigenvector for φ with eigenvalue λ.

Thus the λ such that the generalized eigenspace Vλ is nonzero are exactly the eigenvalues of φ.

Since F is algebraically closed, the monic irreducible polynomials in F [x] are just the polynomials

(x−λ) for λ ∈ F . We see that by definition Vλ is precisely the (x−λ)-primary component of V as

defined earlier. By Proposition 13.13, V ∼= Vλ1 ⊕ · · · ⊕ Vλm for some distinct λi, as F [x]-modules.

In other words, V is the direct sum of finitely many generalized eigenspaces for φ.

Moreover, by Proposition 13.16, each primary component Vλ is a direct sum of cyclic modules,

say Vλ ∼= F [x]/(x− λ)e1 · · · ⊕ . . . F [x]/(x− λ)es . In other words, (x− λ)e1 , . . . , (x− λ)es are those

elementary divisors of φ which are powers of the prime (x− λ). By the proof of Theorem 13.6, we

can determine the list of positive integers ei as follows: the number of ei ≥ b is the dimension over

F of Vλ[b]/Vλ[b− 1], where Vλ[b] = {v ∈ Vλ|(x− λ)b · v = 0}. Thus it suffices to find dimF Vλ[b] for

each b.

Note that Vλ[1] is precisely the space of eigenvectors for φ with eigenvalue λ, and dimF Vλ[1]

is equal to the number of the ei, which is all of them. dimF Vλ[1] is the same as the number of

elementary divisors which are powers of (x−λ). Thus the number of independent eigenvectors with

eigenvalue λ is the same as the number of Jordan blocks of the Jordan form which are associated

to the eigenvalue λ.

This also makes sense because a Jordan block only has a 1-dimensional space of eigenvectors; it

is useful for intuition to see what is going on directly in that case:

Example 14.26. Suppose that φ : V → V has a basis B = {v1, . . . , vn} with respect to which

MBB (φ) is a single Jordan block Jλ,e. Then φ(vi) = λvi + vi−1 for i ≥ 1, and φ(v1) = λv1, as we

have seen. By definition (φ − λ1V )(vi) = vi−1 for i ≥ 1, and (φ − λ1V )(v1) = 0. From this one

sees that (φ− λ1V )i(vi) = 0 while (φ− λ1V )i−1(vi) = v1 6= 0, for 1 ≤ i ≤ n. It easily follows that

vi + Vλ[i − 1] is a basis of Vλ[i]/Vλ[i − 1] and so all of these factor spaces are 1-dimensional, for

1 ≤ i ≤ n. This is consistent with the fact that the corresponding F [x]-module structure on V
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is isomorphic to F [x]/(x− λ)n and there is only one elementary divisor (x− λ)n. The eigenspace

of φ is 1-dimensional, so φ is highly defective in the sense that V is far from being spanned by

eigenvectors (but every element of V is a generalized eignevector for the eigenvalue λ).

We can use the generalized eigenvector point of view to help determine the Jordan form of a

matrix. We give a simple example next.

Example 14.27. Let A =


1 0 0 0

0 1 0 0

−2 −2 0 1

−2 0 −1 2

.

We would like to find the Jordan form of A over C. To put this explicitly in the context of the

previous discussion, we can let V = C4 be a space column vectors and make it an F [x]-module

where x acts by the linear transformation φ : V → V determined by left multiplication by A.

The first step is to calculate the characteristic polynomial of A:

det


x− 1 0 0 0

0 x− 1 0 0

2 2 x −1

2 0 1 x− 2

 = (x− 1)2 det

x −1

1 x− 2

 = (x− 1)2(x2 − 2x− 1) = (x− 1)4.

We see that A has only one eigenvalue, λ = 1. Thus the elementary divisors of A must all be of

the form (x− 1)i. Moreover, by Lemma 14.22, the product of the elementary divisors is (x− 1)4.

Let the elementary divisors be (x − 1)e1 , (x − 1)e2 , (x − 1)e3 , . . . (we don’t know how many there

are yet, though there are at most 4).

We first calculate the dimension of the 1-eigenspace of A. Since

(A− I) =


0 0 0 0

0 0 0 0

−2 −2 −1 1

−2 0 −1 1


is clearly a matrix of rank 2, its nullspace has dimension 2. This means we have two linearly

independent eigenvectors and the Jordan form has two Jordan blocks.
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We still don’t know if those blocks have size 1 and 3 or size 2 and 2. For this we can easily

calculate that

(A− I)2 =


0 0 0 0

0 0 0 0

0 2 0 0

0 2 0 0

 .

This matrix as rank 1, so nullspace of dimension 3.

We have V = V1, that is, V is the 1-generalized eigenspace. In the notation above, dimF V1[1] = 2,

and dimF V1[2] = 3. This says that there are 2 ei’s with ei ≥ 1, and dimF V1[2]/V1[1] = 3− 2 = 1

of the ei’s with ei ≥ 2. The only possibility is that e1 = 3, e2 = 1 and the elementary divisors are

(x− 1)3, (x− 1)1. Thus the Jordan form of A is

J =


1 1 0 0

0 1 1 0

0 0 1 0

0 0 0 1

 .

It is also easy to determine the rational canonical form. Clearly the invariant factors are also

f1 = (x − 1), f2 = (x − 1)3. The minimal polynomial is thus f2 = (x − 1)3 = x3 − 3x2 + 3x − 1.

The rational form is

C =


1 0 0 0

0 0 0 1

0 1 0 −3

0 0 1 3

 .

We did an example above with only one eigenvalue to demonstrate the method; in general, one

would need to calculate the dimensions of the nullspaces of (A − λiI)j for each of the eigenvalues

λi and each j ≥ 1 until one had enough information to determine the sizes of the Jordan blocks

associated to λi.

Throughout this section, we have concentrated on the theoretical aspects of canonical forms

rather than methods of calculation. The reader interested in computations can find more details

in Chapter 12 of Dummit and Foote’s book.

15. Tensor products

15.1. Balanced maps. Tensor products are very important gadgets, but they take a while to get

comfortable with and see why they are so useful. It is natural the first time you learn about them
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to understand the basics of how to manipulate them, but feel like you still don’t quite ”get” them. I

think once they appear in your later classes and you see them in action they tend to sink in better.

For a little motivation we consider the case of vector spaces (i.e. modules over a field F )

where tensor products are already interesting. Let V and W be F -vector spaces. As we know,

we have the direct sum of vector spaces V ⊕ W which as a set is just the cartesian product

V ×W = {(v, w)|v ∈ V,w ∈ W}. There may be natural functions from V ×W to another vector

space U which are not F -linear maps, but rather F -linear in each coordinate separately. Here is a

very common example.

Example 15.1. Let V be a vector space over F and define V ∗ = HomF (V, F ). Since F is a

commutative ring, V ∗ is again an F -module, i.e. vector space, as we have seen. It is called the dual

vector space, or the space of linear functionals on V . There is a very natural function θ : V ∗×V → F

defined by θ(ψ, v) = ψ(v). (Note that for notational convenience we write θ(ψ, v) instead of

θ((ψ, v)), which would be more technically correct.) This function satisfies θ(ψ+φ, v) = [ψ+φ](v) =

ψ(v)+φ(v) = θ(ψ, v)+θ(φ, v) as well as θ(ψ, v+w) = ψ(v+w) = ψ(v)+ψ(w) = θ(ψ, v)+θ(ψ,w).

Thus θ is linear in each coordinate and we say that θ is bilinear. However, θ is not an F -linear

transformation from V ∗ ⊕ V to F . This would require θ((ψ, v) + (φ,w)) = θ(ψ, v) + θ(φ,w). But

the left hand side of this equation is θ(ψ+φ, v+w) = [ψ+φ](v+w) = ψ(v) +φ(v) +ψ(w) +φ(w),

while the right hand side is ψ(v) + φ(w). These are certainly not equal in general.

On the other hand, when doing linear algebra one would really like to work with linear maps.

We are going to define a vector space V ∗ ⊗F V , the tensor product of V ∗ and V over F , and an

F -linear map θ̃ : V ∗ ⊗F V → F which contains the same information as the map θ. In some sense

V ∗⊗F V is the vector space where bilinear functions like θ naturally live. We will see that to make

this work V ∗ ⊗F V will have to be a bigger vector space than V ∗ ⊕ V .

Let us begin the technical work to define tensor products. We are going to make the main

definitions for modules over an arbitrary, possibly noncommutative ring R.

Definition 15.2. Let R be a ring. Let M be a right R-module and N a left R-module. Let P be

any abelian group. A function φ : M ×N → P is called R-balanced if

(1) φ(m1 +m2, n) = φ(m1, n) + φ(m2, n) for all m1,m2 ∈M and n ∈ N .

(2) φ(m,n1 + n2) = φ(m,n1) + φ(m,n2) for all m ∈M and n1, n2 ∈ N .

(3) φ(mr, n) = φ(m, rn) for all m ∈M , r ∈ R, and n ∈ N .

Note that the first two conditions say that an R-balanced map respects addition separately in

each coordinate. It may seem awkward that this definition is made for one right module and one left
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module; this will also appear in the definition of tensor product to come shortly and it is essential

to make the theory work properly. In the applications to modules over commutative rings R, of

course, we can identify left and right modules and one can stick to modules over one side. We will

make more comments about this later.

Example 15.3. Consider again the map θ : V ∗×V → F defined by θ(φ, v) = φ(v) that was defined

in Example 15.1. Since F is commutative, we can think of V ∗ as a right F -module just as well,

where φ · a = aφ for a ∈ F , φ ∈ V ∗. With this convention we claim that the map θ is F -balanced.

We have already seen that it respects sums separately in each coordinate. Moreover

θ(φ · a, v) = [φ · a](v) = [aφ](v) = aφ(v) = φ(av) = θ(φ, av),

for all φ ∈ V ∗, a ∈ F , and v ∈ V .

Example 15.4. Let M be a left R-module. Note that R is naturally a right R-module by right

multiplication. Then the map ψ : R×M →M defined by ψ(r,m) = rm is R-balanced.

We now define a tensor product as a universal object for R-balanced maps from M ×N to any

abelian group.

Definition 15.5. Let M be a right R-module, and N a left R-module. A tensor product for M

and N (over R) is an abelian group T together with an R-balanced map θ : M ×N → T with the

following universal property: for any abelian group P and R-balanced map φ : M ×N → P , there

exists a unique homomorphism of abelian groups ψ : T → P such that θψ = φ.

Here is the commutative diagram which represents the universal propery of the tensor product:

M ×N
θ //

φ

##

T

∃ !ψ
��
P

The important thing is that φ is not a homomorphism of abelian groups (it does not respect

addition), while ψ is. Moreover, since θ is a given part of the structure of the tensor product, the

homomorphism ψ contains all of the information in the map φ (as we can recover φ by φ = θψ). So

the tensor product allows one to replace balanced maps by actual homomorphisms, without losing

information.

As a warmup, let us give an example of a tensor product in a special case where we can check

directly that the definition holds.
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Example 15.6. Let R be a right R-module by right multiplication, and let M be a left R-module.

Then the R-balanced map θ : R ×M → M from Example 15.4, where θ(r,m) = rm, is a tensor

product of R and M over R.

Proof. Suppose we have an abelian group P and an R-balanced map φ : R×M → P . We need to

find a group homomorphism ψ : M → P such that ψθ = φ, and show that ψ is unique with this

property.

Define ψ : M → P by ψ(m) = φ(1,m). Then since φ is R-balanced, for all r ∈ R and m ∈ M

we have

φ(r,m) = φ(1r,m) = φ(1, rm) = ψ(rm) = ψθ(r,m).

Thus ψθ = φ. ψ is certainly uniquely determined, since if ψ′θ = φ then ψ′(m) = ψ′θ(1,m) = φ(1,m)

and so ψ′ = ψ.

Finally, ψ is a group homomorphism since ψ(m1 +m2) = φ(1,m1 +m2) = φ(1,m1) +φ(1,m2) =

ψ(m1) + ψ(m2), using that φ is R-balanced. �

15.2. Existence and uniqueness. Let us first state the uniqueness of tensor products up to

isomorphism. This follows by exactly the same argument as we have already seen for other universal

properties, and so we leave the proof to the reader.

Proposition 15.7. Let M be a right R-module and N a left R-module. Suppose that θ1 : M×N →

T1 and θ2 : M × N → T2 are both tensor products of M and N over R. Then there is a unique

isomorphism of abelian groups θ : ψ : T1 → T2 such that ψθ1 = θ2.

The proposition shows that there is essentially only one tensor product of M and N over R (if

there is any). Now let us show that the tensor product always exists.

Theorem 15.8. Let M be a right R-module and N a left R-module. Then there is an abelian

group T and an R-balanced map θ : M ×N → T which is a tensor product of M and N over R.

Proof. Consider S = M × N = {(m,n)|m ∈ M,n ∈ N} as a set. Construct a free Z-module (i.e.

abelian group) indexed by S, in other words F =
⊕

s∈S Z. We introduce a new formal symbol

m⊗n to represent the standard basis element which is 1 in the (m,n)-spot and 0 elsewhere. Then

a general element of F looks like a1(m1 ⊗ n1) + · · ·+ ak(mk ⊗ nk) for ai ∈ Z, mi ∈M , ni ∈ N .
204



Now let T = F/I where I is the subgroup of F generated by all elements of the form

(m1 +m2)⊗ n−m1 ⊗ n−m2 ⊗ n, m1,m2 ∈M, n ∈ N ;

m⊗ (n1 + n2)−m⊗ n1 −m⊗ n2 m ∈M, n1, n2 ∈ N ;

mr ⊗ n−m⊗ rn m ∈M, r ∈ R, n ∈ N.

We claim that θ : M ×N → T = F/I defined by θ(m,n) = (m ⊗ n) + I is a tensor product of

M and N over R.

First we need that θ is R-balanced. This is immediate from the “relations” we threw into the

subgroup I. For example, let us check the third condition of the R-balanced property:

θ(mr, n) = (mr ⊗ n) + I = (m⊗ rn) + I = θ(m, rn) for all m ∈M, r ∈ R,n ∈ N,

where we have used that the cosets (mr⊗n)+I and (m⊗rn)+I are equal becausemr⊗n−m⊗rn ∈ I

by definition. The other two conditions of the balanced property, that sums are respected in each

coordinate, follow immediately in the same way.

Next, we need that if φ : M × N → P is R-balanced, for some abelian group P , there there is

a unique linear map ψ : T → P such that φ = ψθ. This also follows very formally from the fact

that F is free, and that to produce T we have modded out the subgroup generated exactly those

relations that represent being R-balanced.

More precisely, we first get that there is a unique homomorphism of Z-modules (i.e. abelian

groups) ψ̂ : F → P such that ψ̂(m⊗ n) = φ(m,n) for all m ∈M , n ∈ N . This is just because F is

a free Z-module on the basis {m⊗ n|m ∈ M,n ∈ N}. Second, because φ is R-balanced, it is easy

to check that every element in the generating set of I must be in the kernel of ψ̂. Since ker ψ̂ is

a subgroup of F , it must contain all of I. This implies that ψ̂ factors through I to give a group

homomorphism ψ : T = F/I → P such that ψ((m ⊗ n) + I) = φ(m,n). The fact that φ = ψθ is

immediate.

Finally, if ψ′ were another homomorphism such that φ = ψ′θ, we would have ψ((m⊗ n) + I) =

φ(m,n) = ψ′θ(m,n) = ψ′((m⊗n)+I) for all m ∈M , n ∈ N . Since the basis elements {(m⊗n)|m ∈

M,n ∈ N} generate F as an abelian group, their images {(m ⊗ n) + I|m ∈ M,n ∈ N} generate

T = F/I as an abelian group. Thus ψ′ and ψ agree on a generating set of T . Since they are group

homomorphisms, ψ′ = ψ. �

Remark 15.9. From now on we use the following standard notation. Given a right R-module M

and a left R-module N , we now know from Theorem 15.8 that there exists a tensor product of M

and N over R, given by a group homomorphism θ : M × N → T for some abelian group T . By
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Proposition 15.7, this tensor product is unique up to isomorphism. The standard notation for the

abelian group T is M ⊗R N , and we will adopt this notation from now on.

Technically the tensor product of M and N over R is the abelian group M ⊗RN together with a

R-balanced map θ : M ×N →M ⊗RN . In practice, we refer to the abelian group M ⊗RN as the

tensor product and suppress the map θ. Instead θ is remembered by writing the element θ(m,n)

as m⊗ n for each m ∈M,n ∈ N (this notation was already suggested by the notation used in the

proof of Theorem 15.8). These elements m ⊗ n in M ⊗R N are referred to as pure tensors. The

fact that θ is R-balanced means that we have the following rules for manipulating pure tensors:

(m1 +m2)⊗ n = m1 ⊗ n+m2 ⊗ n for all m1,m2 ∈M,n ∈ N ;

m⊗ (n1 + n2) = m⊗ n1 +m⊗ n2 for all m ∈M,n1, n2 ∈ N ; and

mr ⊗ n = m⊗ rn for all m ∈M, r ∈ R,n ∈ N.

As we will see shortly, θ is not surjective in general, and so it is important to realize that not all

elements of M ⊗R N are equal to pure tensors. Rather, by the construction in Theorem 15.8, an

arbitrary element of M⊗RN has the form
∑d

i=1 ai(mi⊗ni) for ai ∈ Z, mi ∈M , and ni ∈ N . Using

that the map θ is additive in the first coordinate, this is the same as
∑d

i=1(aimi⊗ni) =
∑d

i=1(m′i⊗ni)

for some m′i ∈M . We conclude that every element of M ⊗R N is a finite sum of pure tensors. Of

course in general an element can be written as a sum of pure tensors in many different ways.

We have seen that the tensor product M ⊗R N always exists and is unique up to isomorphism.

The proof of existence in Theorem 15.8 is very formal, and unfortunately it does not really give any

intuition for what a particular tensor product looks like. For example, the tensor product of R and

M over R is given by the natural multiplication map R×M →M , as we saw in Example 15.6. The

proof of Theorem 15.8 also constructs a tensor product of R and M over R as a factor group of a

massive free abelian group. This must be isomorphic to M as an abelian group in this case; but this

is certainly not obvious. In practice, when working with tensor products, it is usually best to try

to understand them using their defining universal property and to forget the formal construction

as a factor group of a free abelian group which appeared in the proof of Theorem 15.8.

The tensor product can behave in ways that are quite unintuitive at first. For example, it can

easily happen that the tensor product of two nonzero modules is 0.

Lemma 15.10. In any tensor product M ⊗RN , we have 0⊗n = 0 = m⊗ 0 for all m ∈M,n ∈ N .

Proof. We have (0 ⊗ n) = (0 + 0) ⊗ n = 0 ⊗ n + 0 ⊗ n. Subtracting, we get 0 ⊗ n = 0. Similarly,

0 = m⊗ 0. �
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Example 15.11. Let G be a torsion abelian group, thought of as a right Z-module. Consider Q

as a left Z-module as usual. Then we claim that G⊗Z Q = 0.

Consider a pure tensor in G ⊗Z Q. It has the form g ⊗ a/b for a, b ∈ Z with b 6= 0. Since G is

torsion, g · n = ng = 0 for some n ≥ 1. Then

g ⊗ a/b = g ⊗ an/bn = gn⊗ a/bn = 0⊗ a/bn = 0,

using Lemma 15.10. Thus all pure tensors are equal to 0. Since every element of G⊗Z Q is a finite

sum of pure tensors, G⊗Z Q = 0 as claimed.

15.3. Functoriality; module structure on the tensor product. It is important that the

formation of tensor products is functorial : this means that the operation − ⊗R N of tensoring

modules with N respects homomorphisms (and similarly in the other coordinate). Here is what we

mean precisely.

Lemma 15.12. Let R be a ring, let M,M ′ be right R-modules, and let N,N ′ be left R-modules.

(1) Let f : M → M ′ be a homomorphism of right R-modules. Then there is a homomorphism

of abelian groups f ⊗ 1 : M ⊗R N →M ′ ⊗R N given by [f ⊗ 1](m⊗ n) = f(m)⊗ n.

(2) Let g : N → N ′ be a homomorphism of left R-modules. Then there is a homomorphism of

abelian groups 1⊗ g : M ⊗R N →M ⊗R N ′ given by [1⊗ g](m⊗ n) = m⊗ g(n).

Before beginning the proof we make some comments about statements like this. It is not at all

clear that a formula such as [f ⊗ 1](m⊗ n) = f(m)⊗ n defines a function. The problem is that it

is not clear it is well-defined, as there are many relations among the pure tensors; for example, two

pure tensors might well be equal. (Remember that m ⊗ n means θ(m,n) for the underlying map

θ : M ×N →M ⊗RN of the tensor product, and there is no reason why θ should be injective.) So

we need to make sure those relations are respected. The best way to do this is to use the universal

property of the tensor product, as we will see in the proof.

Note also that the formula [f ⊗ 1](m⊗n) = f(m)⊗n, even once we show it is well-defined, only

gives the action of the function on pure tensors. But since we require f ⊗ 1 to be a homomorphism

of groups, the action on an arbitrary element, i.e. a sum of pure tensors, is uniquely determined.

For this reason it is standard to use only pure tensors in the formulas for functions and actions,

and often one only verifies these formulas for pure tensors in proofs. You should be careful not to

let the appearance of those formulas seduce you into forgetting that not every element of the tensor

product is a pure tensor.
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Proof. (1) We define a function φ : M ×N →M ′ ⊗N by φ(m,n) = f(m)⊗ n. Using the rules for

manipulating the tensor product symbol and the fact that f is a homomorphism of right modules,

it is easy to check that φ is R-balanced. It follows from the universal property of the tensor

product that there is a unique group homomorphism f ⊗ 1 : M ⊗R N → M ′ ⊗R N such that

[f ⊗ 1](m⊗ n) = f(m)⊗ n for m ∈M,n ∈ N , as required.

(2) This is proved in a symmetric manner. �

Before studying some more examples we should discuss when M ⊗RN is actually a module and

not just an abelian group.

Definition 15.13. Let M be an abelian group. Then M is called an (R,S)-bimodule if M is both

a left R-module and a right S-module, and the two module structures are compatible in the sense

that (rm)s = r(ms) for all r ∈ R,m ∈M, s ∈ S.

Proposition 15.14. Let M be a right R-module and N a left R-module.

(1) If M is an (S,R)-bimodule, then M ⊗R N is a left S-module, where s · (m⊗ n) = sm⊗ n.

(2) If N is an (R, T )-bimodule, then M ⊗RN is a right T -module, where (m⊗ n) · t = m⊗ nt.

(3) If both (1) and (2) occur then M ⊗R N is an (S, T )-bimodule.

Proof. (1) For any s ∈ S, define `s : M →M by `s(m) = sm. This “left multiplication by s” map

is not a homomorphism of M as a left S-module in general (unless S is commutative) but it is

always a right R-module map, since `s(mr) = s(mr) = (sm)r = `s(m)r for r ∈ R.

By the functoriality of the tensor product given in Lemma 15.12, we get a homomorphism of

abelian groups `s ⊗ 1 : M ⊗R N → M ⊗R N such that [`s ⊗ 1](m ⊗ n) = (sm ⊗ n). Thus there

is in fact a well-defined left action of S on M ⊗R N for which the action on pure tensors is given

by s · (m ⊗ n) = [`s ⊗ 1](m ⊗ n) = sm ⊗ n, and for which left action by s is an abelian group

homomorphism. This also implies one of the module axioms ((s · (x+ y) = s · x+ s · y) for s ∈ S,

x, y ∈M ⊗R N), and the others are easy to check.

(2) This is proved by a completely symmetric proof to the proof of part (1).

(3) On pure tensors we have

[s · (m⊗ n)] · t = (sm⊗ n) · t = (sm⊗ nt) = s · (m⊗ nt) = s · [(m⊗ n) · t]

and this extends immediately to the action on a finite sum of pure tensors, i.e. a general element

of M ⊗R N . �

Proposition 15.14 is analogous to earlier observations we made about HomR(M,N) for two left

R-modules M and N . In general this Hom-space is just an abelian group, but in an exercise on the
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homework you verified that if either M or N is a bimodule then HomR(M,N) obtains a module

structure as well, and it is a bimodule if both M and N are bimodules.

Example 15.15. Let R be a ring with ideal I. Thus R/I is naturally an (R,R)-bimodule. Let

M be a left R-module. We claim that (R/I)⊗RM ∼= M/IM as left R-modules. (This generalizes

Example 15.6.)

Since R/I is an (R,R)-bimodule, R/I ⊗RM is a left R-module by Proposition 15.14. Define a

map φ : R/I ×M → M/IM by φ(r + I,m) = rm + IM . If r + I = r′ + I, then r − r′ ∈ I, so

(r− r′)m ∈ IM and hence rm+ IM = r′m+ IM . Hence φ is well-defined. It is now easy to check

that φ is R-balanced. Thus the universal property of the tensor product gives us a unique group

homomorphism ψ : R/I⊗M →M/IM such that ψ((r+ I)⊗m) = rm+ IM for all r ∈ R,m ∈M .

But from this formula, in fact we see that ψ is an R-module homomorphism, since for x ∈ R we

have ψ(x(r+I⊗m)) = ψ(xr+I⊗m) = (xr)m+IM = x(rm)+IM = x(rm+IM) = xψ(r+I⊗m).

To show that ψ is an isomorphism, one can define an inverse map ρ : M/IM → (R/I)⊗RM by

ρ(m+IM) = (1+I)⊗m. To see that this is well defined, if m+IM = m′+IM , then m−m′ ∈ IM ,

say m−m′ =
∑
ximi with xi ∈ I, mi ∈M . Then

(1 + I)⊗m− (1 + I)⊗m′ = (1 + I)⊗ (m−m′) = (1 + I)⊗
∑

ximi =
∑

(1 + I)xi ⊗mi

=
∑

(xi + I)⊗mi =
∑

(0 + I)⊗mi = 0.

Thus ρ is well defined. It is obvious that ψρ = 1M/IM . On the other hand, ρψ((r + I) ⊗ m) =

ρ(rm+ I) = (1 + I)⊗ rm = (1 + I)r⊗m = (r+ I)⊗m, so ρψ is also the identity and we are done.

15.4. The commutative case. The tensor product over a commutative ring R is often described

in a slightly different way. Recall that any right R-module M is naturally also a left R-module

with r ·m = mr; symmetrically, every left module is also a right module. So there is no need to

use one left and one right module in the definition of a tensor product, and usually the definition

is made in terms of left modules only.

Definition 15.16. Let R be a commutative ring and let M,N , and P be left R-modules. A

function φ : M ×N → P is R-bilinear if

(1) φ(r1m1 + r2m2, n) = r1φ(m1, n) + r2φ(m2, n) for all r1, r2 ∈ R, m1,m2 ∈M , n ∈ N ; and

(2) φ(m, r1n1 + r2n2) = r1φ(m,n1) + r2φ(m,n2) forall r1, r2 ∈ R, m ∈M , n1, n2 ∈ N .

In the commutative case, the universal property for the tensor product can be (and usually is)

phrased in terms of R-bilinear maps, as in part (3) of the next result.
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Proposition 15.17. Let R be a commutative ring and let M and N be left R-modules. Considering

M as a right R-module, we can define T = M ⊗R N . Then

(1) T is naturally a left R-module with r · (m⊗ n) = rm⊗ n = m⊗ rn.

(2) The map θ : M ×N →M ⊗R N given by θ(m,n) = m⊗ n is R-bilinear.

(3) Given any R-module P and an R-bilinear map φ : M ×N → P , there is a unique R-module

homomorphism ψ : M ⊗R N → P such that ψθ = φ.

Proof. (1) Since R is commutative, we can actually think of M as an (R,R)-bimodule with the

same left and right actions: mr = rm for r ∈ R, m ∈ M . (This is a bimodule since s(mr) =

s(rm) = (sr)m = (rs)m = r(sm) = (sm)r.) Then T = M ⊗R N obtains a left R-module structure

by Proposition 15.14, where r · (m⊗ n) = rm⊗ n. We also have rm⊗ n = mr ⊗ n = m⊗ rn.

(2) By the R-module structure on T given in (1), we have

(r1m1 + r2m2)⊗ n = (r1m1 ⊗ n) + (r2m2 + n) = r1(m1 ⊗ n) + r2(m2 ⊗ n)

and

m⊗ (r1n1 + r2n2) = m⊗ r1n1 +m⊗ r2n2 = r1(m⊗ n1) + r2(m⊗ n2).

(3) The map φ is also R-balanced, since mr ⊗ n = rm ⊗ n = m ⊗ rn by (1). Thus there is a

unique group homomorphism ψ : T → P such that ψ(m ⊗ n) = φ(m,n). Then ψ is an R-module

homomorphism because ψ(r(m⊗ n)) = ψ(rm⊗ n) = φ(rm, n) = rφ(m,n) = rψ(m⊗ n). �

An important special case of the tensor product over a commutative ring R is the case where R

is a field F . In this case one can get a very explicit description of the tensor product of two vector

spaces over F .

Theorem 15.18. Let V and W be vector spaces over the field F . Suppose that {vi|i ∈ I} is an

F -basis for V and {wj |j ∈ J} is an F -basis for W .

Then V ⊗FW is an F -vector space with basis {vi⊗wj |i ∈ I, j ∈ J}. In particular, if dimF V = m

and dimF W = n then dimF V ⊗W = mn.

Proof. Given a pure tensor v ⊗ w ∈ V ⊗F W , write v =
∑
aivi and w =

∑
bjwj , where all but

finitely many of the ai and bj are nonzero. Then

v ⊗ w = (
∑
i

aivi)⊗ (
∑
j

bjwj) =
∑
i

∑
j

aibj(vi ⊗ wj).

Thus any pure tensor is in the F -span of {vi⊗wj |i ∈ I, j ∈ J}. We have also seen that an arbitrary

element of V ⊗F W is a finite sum of pure tensors. Hence {vi ⊗ wj |i ∈ I, j ∈ J} spans V ⊗F W .
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Now suppose that we have an independence relation
∑

i,j aij(vi ⊗ wj) = 0, where aij = 0 for all

but finitely many (i, j) ∈ I × J . Then we have

0 =
∑
i

∑
j

(aijvi ⊗ wj) =
∑
j

(
∑
i

aijvi)⊗ wj =
∑
j

v′j ⊗ wj

for some elements v′j ∈ V . For each j ∈ J let w∗j ∈ W ∗ = HomF (W,F ) be the linear functional

with w∗j (wi) = δij =

1 i = j

0 i 6= j
.

For any k ∈ J , the map φ : V ×W → V defined by φ(v, w) = w∗k(w)v is F -bilinear, as is easy

to check. Thus there is an F -linear map ψ : V ⊗F W → V with ψ(v ⊗ w) = w∗k(w)v. Applying

this to our relation above gives 0 = ψ(0) =
∑

j ψ(v′j ⊗wj) =
∑

j w
∗
k(wj)v

′
j = v′k. We conclude that

v′k = 0 for all k. Then v′k =
∑

i aikvi = 0, and by the linear independence of the vi, we get aik = 0

for all i. Since k was arbitrary, aik = 0 for all i ∈ I, k ∈ J , and thus {vi ⊗ wj |i ∈ I, j ∈ J} is also

F -independent. Hence it is an F -basis as claimed. �

15.5. Extension of scalars. Suppose that we have a ring homomorphism φ : R → S. Recall

that if M is a left S-module, there is an easy way to make M into a left R-module: just define

r ·m = φ(r)m for r ∈ R, m ∈ m. This is called restriction of scalars, as we have already mentioned,

since in the case where R is a subring of S and φ : R → S is just the inclusion map, then we

areliterally just restricting the elements that act on M to a smaller set.

Now that we have developed the tensor product, we can easily define a process that goes the

other way.

Definition 15.19. Let φ : R → S be a ring homomorphism. Suppose that M is a left R-module.

Then S ⊗R M is naturally a left S-module, where s · (t ⊗ m) = st ⊗ m. This process is called

extension of scalars.

Again, when R is a subring of S we are extending the ring acting to a larger ring; hence the

name.

The fact that S ⊗R M is a left S-module with action on pure tensors by the given formula is

immediate from the fact that S is an (S,R)-bimodule and Proposition 15.14. Here the bimodule

structure on S is given by the natural S-action by multiplication on the left, and the right R-action

is s · r = sφ(r), for s ∈ S, r ∈ R. In other words, S is a right R-module by restricting the scalars

from the action of S on the right by multiplication.

Let us give several applications of extension by scalars.
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Example 15.20. Suppose that F ⊆ K is an inclusion of fields. If V is an F -vector space, then

K ⊗F V is a K-vector space by extension of scalars.

Suppose that B = {vi|i ∈ I} is an F -basis of V . Then B′ = {1⊗ vi|i ∈ I} is a K-basis of K⊗F V

(we leave this as an exercise). In other words, dimK(K ⊗F V ) = dimF V . Moreover, suppose

that φ : V → V is an F -linear transformation. Then 1 ⊗ φ : K ⊗F V → K ⊗F V is a K-linear

transformation. If dimF V is finite and we consider the matrix MBB (φ) of φ with respect to B, then

one may check that MB
′
B′ (1 ⊗ φ) is the same matrix MBB (φ). So the linear transformation is given

by the same matrix, just working over a larger field.

This is a very useful operation, for example, if we are initially working over a field F and would

like to work over an algebraically closed one K. (We will prove later in the notes that F is always

a subfield of an algebraically closed field K.) By extending V to K ⊗F V and the map φ to 1⊗ φ

we put ourselves in a setting where the Jordan canonical form is defined.

Example 15.21. Suppose that R is an integral domain. Let K be the field of fractions of R. If

M is a left R-module we define the rank of M to be dimK(K ⊗RM).

The point is that by extending scalars to a field K, we have access to the notion of dimension of

a vector space, which was not available over the original ring R. One may check that if R is a PID

and M is a finitely generated R-module, then writing M ∼= Rr ⊕ T where T is torsion, the rank of

M is r. So this notion of rank just recovers the rank of the free part of a finitely generated module

in this case.

The rank is defined over any integral domain however, which makes it more generally applicable.

One may show that in general the rank of a finitely generated module M is equal to the maximum r

such that there is an R-submodule of M isomorphic to Rr. Though we could use this as a definition

of rank instead, the properties of rank are easiest to prove by extending scalars to K.

Example 15.22. Suppose R is any commutative ring. We know that R has some maximal ideal

m. We have the homomorphism φ : R→ R/m where F = R/m is a field.

This gives another way one can sometimes reduce problems about R-modules to problems about

fields. Given an R-module M , when we “extend” scalars using the map φ we get the F -module

F ⊗RM ∼= M/mM , using Example 15.15.

If M is a free R-module, say M ∼=
⊕

i∈I R, then by picking a basis one may show that F ⊗RM ∼=⊕
i∈I F as F -modules; that is, F ⊗RM is a vector space with dimension |I| over F . This can be

used to show that two isomorphic free modules over R must have the same rank, by reducing to

the case of vector spaces.
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As another example, Let R be a local commutative ring with maximal ideal m (that is, m is the

unique maximal ideal of R). In this case F = R/m is called the residue field. If M is a finitely

generated R-module, then dimF (F ⊗RM) = dimF M/mM is equal to the minimum number n such

that M can be generated by n elements as an R-module. This is a consequence of the result known

as Nakayama’s Lemma.

15.6. Tensor products of algebras.

Definition 15.23. Let R be a commutative ring. A ring A is an R-algebra if A is also a left

R-module, and for all r ∈ A, a, b ∈ A we have r · ab = (r · a)b = a(r · b).

A homomorphism of R-algebras is a function f : A → B which is both a ring homomorphism

and a R-module homomorphism. It is an isomorphism of algebras if f is bijective. A subalgebra

of an algebra A is a subset which is both a submodule over R and a subring; so it is naturally an

R-algebra again.

Thus an algebra is both a ring and a module, with those structures being compatible in a certain

way. The compatibility can be framed in the following alternative way which is perhaps more

natural.

Remark 15.24. If A is an R-algebra, then there is a function φ : R→ A given by φ(r) = r ·1. This

is clearly a homomorphism of abelian groups with φ(1) = 1; moreover φ(rs) = (rs) ·1 = r ·(s ·1) (by

module axioms) and r · (s · 1) = r · ((1)(s · 1)) = (r · 1)(s · 1) = φ(r)φ(s). Thus φ is a homomorphism

of rings.

We also check using the axioms of an algebra that (r · 1)a = r · (1a) = r · a = r · (a1) = a(r · 1)

for all r ∈ R, a ∈ A. This shows that φ(R) is contained in the center Z(A) of A.

Conversely, if R and A are arbitrary rings with R commutative and φ : R → A is a ring

homomorphism such that φ(R) ⊆ Z(A), then defining a leftR-module structure on A by r·a = φ(r)a

it is not hard to check that A is an R-algebra.

In this way, one can see that to make a ring A into an R-algebra is equivalent to giving a

homomorphism φ : R→ A such that φ(R) ⊆ Z(A).

Example 15.25. Let R be a commutative ring. The polynomial ring R[x] and the power series

ring R[[x]] are both R-algebras in an obvious way. Similarly, the polynomial ring R[x1, . . . , xn] in

finitely many variables is an R-algebra. A noncommutative example of an R-algebra is the ring

Mn(R) of n× n matrices over R, where R acts by scalar multiplication.
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We are especially interested in algebras over fields. If A is an F -algebra for a field F , then by

the remark above we can think of this via a homomorphism φ : F → A with φ(F ) ⊆ Z(A). Since

F is a field, φ is injective and we usually identify F with its image φ(F ). Thus an algebra over a

field F is just a ring A together with a subring of the center Z(A) which is isomorphic to F , which

gives A an F -module structure (i.e. vector space structure) by restriction.

Example 15.26. Let F be a field. The polynomial ring F [x] and the power series ring F [[x]] are

both F -algebras in an obvious way. Similarly, the polynomial ring F [x1, . . . , xn] in finitely many

variables is an F -algebra. A noncommutative example of an F -algebra is the ring Mn(F ) of n× n

matrices over F , where the copy of F in the center is the subring of scalar matrices {λI|λ ∈ F}.

We do not define the notion of R-algebra when R is not commutative. Remark 15.24 shows why

this wouldn’t be useful: if we just apply the given definition to an arbitrary ring R, then φ(R) must

lie in the center of A and thus be a commutative ring. If I = kerφ then A is an R/I-module where

R/I is commutative, and we might as well just think of A as an algebra over the commutative ring

R/I.

One of the reasons why algebras are useful is that we can take a tensor product of two algebras

and obtain another algebra.

Theorem 15.27. Let A and B be algebras over a (commutative) ring R. Then A⊗RB is again an

R-algebra, where it is an R-module via Proposition 15.17 and the product is given by (a⊗b)(c⊗d) =

ac⊗ bd.

Proof. Since R is commutative, we know that A ⊗R B is again an R-module, where r · (a ⊗ b) =

(ra⊗ b) = (a⊗ rb) for r ∈ R, a ∈ A, b ∈ B.

Now for a ∈ A, b ∈ B, we define a map ψa,b : A⊗R B → A⊗R B by the formula c⊗ d 7→ ac⊗ bd.

This exists from the universal property since the function A×B → A⊗RB given by (c, d) 7→ ac⊗bd

is R-bilinear. So ψa,b ∈ EndR(A⊗R B).

Then define Ψ̂ : A× B → EndR(A⊗R B) by (a, b) 7→ ψa,b. Again this is an R-bilinear map. So

we get an R-module homomorphism Ψ : A⊗R B → EndR(A⊗R B) such that Ψ(a⊗ b) = ψa,b.

In other words, we can think of Ψ(a⊗b) as “left multiplication by a⊗b”. This allows us to define

a product ∗ on A⊗R B, where for x, y ∈ A⊗R B we define x ∗ y = [Ψ(x)](y). On pure tensors this

product has the formula (a⊗ b)(c⊗ d) = ac⊗ bd as claimed. It is now routine to check that with

this product that A⊗R B is a ring, and in fact an R-algebra. �
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While the product operation in A ⊗R B is done just my multiplying “coordinate-wise”, the

tensor product of algebras is a very different operation from the direct product of rings, because

the underlying space A ⊗R B is much different from A × B. The following examples should help

illustrate how the tensor product of algebras behaves.

Example 15.28. Let R be a commutative ring. Then the ring Mn(R) consisting of matrices

with entries in R is an R-algebra. Let A be another R-algebra; for simplicity assume that the

corresponding map φ : R → A defined by φ(r) = r · 1 is injective. We claim that A ⊗R Mn(R) ∼=

Mn(A) as R-algebras.

We can identify R with its image φ(R) and thus think of R as a subring of Z(A). There is an

R-bilinear map A ×Mn(R) → Mn(A) given by (a,B) 7→ aB for a ∈ A,B ∈ Mn(R). (a scalar a

times a matrix B means multiply every entry of the matrix B by a on the left, or in other words

take the matrix product (aI)B.) So we get an R-module homomorphism ψ : A⊗Mn(R)→Mn(A).

Note that for a ∈ A, and any matrix B ∈Mn(R), the matrices aI and B commute (this is because

R ⊆ Z(A)). Thus we have

ψ((a⊗B)(c⊗D)) = ψ(ac⊗BD) = (acI)BD = (aI)B(cI)D = ψ(a⊗B)ψ(c⊗D).

Thus ψ is a homomorphism of R-algebras.

Let eij be the matrix with 1 in the (i, j)-entry and 0 in all other entries (in Mn(R) or in Mn(A)).

These n2 elements are often traditionally called matrix units (but they are not units in the ring).

An arbitrary matrix B ∈ Mn(A), where Bij = aij ∈ A, can be written as B =
∑

i,j aijeij . Now

define ρ : Mn(A)→ A⊗Mn(R) by ρ(
∑

i,j aijeij) =
∑

i,j aij ⊗ eij . It is obvious that ψρ = 1Mn(A).

Conversely, on pure tensors we have ρψ(a ⊗
∑

i,j ri,jei,j) = ρ(
∑

i,j ari,jei,j) =
∑

i,j ari,j ⊗ ei,j =∑
i,j a⊗ ri,jei,j since ri,j ∈ R. It follows that ρψ = 1A⊗Mn(R). Thus ψ is an isomorphism.

Example 15.29. Let R be a commutative ring. Then Mn(R)⊗RMm(R) ∼= Mmn(R) as R-algebras.

The previous example actually gives Mn(R)⊗RMm(R) ∼= Mm(Mn(R)) as R-algebras. We leave

the proof that Mm(Mn(R)) ∼= Mmn(R) as an exercise for the reader (think about multiplication of

matrix blocks).

Example 15.30. For any R-algebra A, A⊗R R[x] ∼= A[x] as R-algebras. This is proved similarly

as in Example 15.28 and left as an exercise.

For example, this gives R[y]⊗RR[x] ∼= (R[y])[x]. By definition this is the polynomial ring in two

variables R[y, x].

Example 15.31. Tensor product of fields over a common subfield can behave in unexpected ways.
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For example, consider C ⊗R C as an R-algebra. We know that C is a vector space over R with

basis {1, i} and so by our description of the tensor product over a field, C ⊗R C is a vector space

over R with basis {1 ⊗ 1, 1 ⊗ i, i ⊗ 1, i ⊗ i}. A pure tensor has the form (a + bi) ⊗ (c + di) =

ac(1⊗ 1) + bc(i⊗ 1) + ad(1⊗ i) + bd(i⊗ i). This is 0 only if ac = bc = ad = bd = 0, which happens

only if a = b = 0 or c = d = 0. Thus a pure tensor (w ⊗ z) is zero only if w = 0 or z = 0. In

particular, since (w ⊗ z)(x⊗ y) = wx⊗ zy, a product of nonzero pure tensors is nonzero.

This is a case where thinking about pure tensors only for intuition can lead one astray, however,

as C⊗R C is not a domain. One may easily check that

[(1⊗ i)− (i⊗ 1)][(1⊗ i) + (i⊗ 1)] = 0.

In fact C⊗R C ∼= C× C as R-algebras, as you will be asked to show on the homework.

16. Some homological algebra

In this section we briefly introduce some of the very basic definitions and ideas in homological

algebra. This material is most naturally explained in the language of category theory, so we start

with an introduction to that subject. We will only be able to scratch the surface here. The reader

can find a more detailed treatment in ”An Introduction to Homological Algebra” by Rotman, or

”An Introduction to Homological Algebra” by Weibel.

16.1. Categories. It is useful to introduce here a few definitions from category theory, concen-

trating on module categories. The homological algebra books mentioned earlier also contain basic

introductions to the notions of categories for the reader that would like to learn more.

Definition 16.1. A category is a class C of objects together with (i) for each pair of objects (X,Y )

in C, a set of morphisms Hom(X,Y ); (ii) for each object X a identity morphism 1X ∈ Hom(X,X);

and (iii) for each triple of objects (X,Y, Z), a composition rule θX,Y,Z : Hom(Y, Z)×Hom(X,Y )→

Hom(X,Z). For f ∈ Hom(Y,Z), g ∈ Hom(X,Y ), one writes θX,Y,Z(f, g) as f ◦ g.

These are subject to the following axioms: (a) g ◦1X = g for any g ∈ Hom(X,Y ) and 1X ◦ f = f

for any f ∈ Hom(Z,X); and (b) composition is associative, that is (f ◦ g) ◦ h = f ◦ (g ◦ h) for

f ∈ Hom(Y,Z), g ∈ Hom(X,Y ), h ∈ Hom(W,X).

A category is often just referred to by the name C for its class of objects, with the other data

being understood. If we need to emphasize the category a set of morphisms belongs to we write

HomC(X,Y ) for Hom(X,Y ).
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Remark 16.2. We refer in the definition to a class of objects because there are many common

and useful categories in which the objects do not form a set. A class is a notion capturing the

usual idea of a set (a collection of objects) but which is not assumed to be subject to the rigorous

axioms of set theory. We take a naive approach here which ignores set-theoretic subtleties for the

most part, as they are not usually relevant for the basic information we want to study.

We are especially interested here in categories of modules.

Example 16.3. Fix a ring R. The category R-Mod has its class of objects all left R-modules.

For each M,N ∈ R-Mod, the set of morphisms from M to N is HomR(M,N), the R-module

homomorphisms from M to N . Composition of morphisms is usual function composition: If

f ∈ HomR(M,N) and g ∈ HomR(N,P ), then g ◦ f ∈ HomR(M,P ). The identity morphism

in HomR(M,M) is the identity function 1M . all axioms are immediate.

Analogously, we have a category Mod-R of all right R-modules, with morphisms being right

module homomorphisms.

Example 16.4. If R and S are rings, there is the category (R,S) -Bimod whose objects are

(R,S)-bimodules, and where Hom(M,N) consists of (R,S)-bimodule homomorphisms, that is,

maps f : M → N such that f(rm) = rf(m) and f(ms) = f(m)s for all m ∈M , r ∈ R, s ∈ S.

In the simplest and most familiar examples of categories, each object of the category is a set

with some additional structure, the morphisms consist of certain functions between these sets

which “preserve the structure”, and composition is given by actual composition of functions. Such

a category is called a concrete category. Further examples include the category Set of sets, with

morphisms being functions; Grp of Groups, with morphisms being group homomorphisms; Ab, the

category of abelian groups, with morphisms being group homomorphisms; the category Rings of

rings, with morphisms being ring homomorphisms; and the category Top of topological spaces, with

morphisms being continuous maps.

In a general category, however, the objects are not necessarily themselves sets, or even if they

are, the morphisms Hom(X,Y ) are not necessarily some subset of the functions from X to Y . So

in a general categorical setting one needs to formulate all properties in ways which do not refer

to the properties of a function. For example, an isomorphism of modules is usually defined to be

a module homomorphism which is injective and surjective, where injective and surjective refer to

properties of the underlying function. But instead we could define it to be a module homomorphism

for which there is an inverse homomorphism. This gives the natural way to define an isomorphism

in a general category:
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Definition 16.5. Let C be a category. A morphism f ∈ Hom(X,Y ) is called an isomorphism if

there is a morphism g ∈ Hom(Y,X) such that f ◦ g = 1Y and g ◦ f = 1X .

We see using this definition that isomorphism reduces to its usual meaning in categories of

groups, modules, and rings. (In the category of topological spaces an isomorphism is called a

homeomorphism.)

Here is an example of a non-concrete category.

Example 16.6. Let M be a fixed monoid. Define a category C with one object {X}, and with

HomC(X,X) = M . For morphisms g, h ∈M , we define g ◦ h = gh, using the product operation in

M . The identity morphism 1X is the identity element 1 in M . The category axioms follow from

the axioms of M .

Here, X is just an abstract object, not a set. The elements in Hom(X,X) are elements in M ,

not functions. “composition” is actually product of monoid elements, which is unrelated to any

notion of actual function composition. The example above shows that given a monoid M , we can

produce an associated category C with one object X such that Hom(X,X) = M . Conversely, given

any category with one object X, Hom(X,X) is a monoid. We see in this way that a category with

one object is the same as a monoid.

A category C is called a groupoid if every morphism in C is an isomorphism.

Example 16.7. Let G be a fixed group. Since G is a monoid, we can define a category C with

one object X and Hom(X,X) = G as in Example 16.6. Because G is a group, we see that C is a

groupoid. Conversely, it is easy to see that given a groupoid with one object X, Hom(X,X) = G

is a group. So a group is the same notion as a groupoid with one object.

In an general category C with objects X,Y , it does not make sense to ask if f ∈ Hom(X,Y )

is injective or surjective, since f is not necessarily a function. However, we do have the following

natural replacements for these notions in a category.

Definition 16.8. Let C be a category and f ∈ HomC(X,Y ) a morphism. We say that f is a

monomorphism if whenever W ∈ C and g, h ∈ Hom(W,X) with f ◦ g = f ◦ h, then g = h. We say

that f is an epimorphism if whenever Z ∈ C and g, h ∈ Hom(Y,Z) with g ◦ f = h ◦ f , them g = h.

The notions of monomorphism and epimorphism give us a way to talk about properties of mor-

phisms in general categories which are roughly analogous to functions being injective or surjective.

In a general category, however, isomorphisms are not necessarily the same as morphisms which
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are both monomorphisms and epimorphisms. Even in a concrete category, though, the notions of

monomorphism and injection do not necessarily coincide, unlike in the case of the category of sets,

and similarly epimorphisms are not necessarily the same as surjections. We give some examples

in the following exercises. Fortunately, in the categories of greatest interest to us (categories of

modules over a ring) there is no issue.

Exercise 16.9. Let C be a concrete category. Show that if f ∈ HomC(X,Y ) is an injective function,

then it is a monomorphism. Similarly, if f is a surjection, it is an epimorphism.

Exercise 16.10. Let C be Set, Grp, R-mod, Rings, or Top. In each of these concrete categories

show that If X ∈ C is an object and x1, x2 ∈ X, there exists an object W ∈ C with an element

w ∈W and morphisms g, h ∈ HomC(W,X) such that g(w) = x1 and h(w) = x2. Conclude that in a

monomorphism in C is an injective function, and thus the notions of injection and monomorphism

coincide.

Exercise 16.11. Let C be Set or R-mod. In each of these concrete categories show that given

f ∈ HomC(X,Y ), if y ∈ Y − f(X) there is an object Z ∈ C and morphisms g, h ∈ HomC(Y, Z) such

that g(y) 6= h(y) while g(y′) = h(y′) for all y′ ∈ f(X). Conclude that an epimorphism in C is a

surjective function, and thus the notions of surjection and epimorphism coincide.

Exercise 16.12. Let C be Top, the category of topological spaces. Show that f is an epimorphism

if and only if f(X) is dense in Y , i.e. every open subset of Y intersects f(X) nontrivially. Give an

explicit example of a morphism f : X → Y which is both a monomorphism and an epimorphism

but is not an isomorphism.

Exercise 16.13. Let C be Rings. Suppose that R is a commutative ring and X a multiplicative

system, let RX−1 be the localization, and let f : R → RX−1 be associated homomorphism of

rings. Thinking of f ∈ HomC(R,RX
−1), show that f is an epimorphism. Conclude that being an

isomorphism in the category C is not the same as being an isomorphism of rings in the usual sense.

Exercise 16.14. Let M be a monoid, and let C be a category with one object X and Hom(X,X) =

M , where composition in C is the product in G, as in Example 16.6. What are the monomorphisms

and epimorphisms in this category? Is is true that a morphism is an isomorphism if and only if it

is both a monomorphism and an epimorphism?

Exercise 16.15. Let S be a set of objects. Show that there is a groupoid whose set of objects is

S, and where Hom(X,Y ) consists of exactly one element for all X,Y ∈ S.
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16.2. Functors. A functor is a map from one category to another that preserves the category

structure. Essentially, these are the “homomorphisms” between categories.

Definition 16.16. Let C and D be categories. A functor F : C → D consists of a choice of object

FX ∈ D for each X ∈ C, and for each X,Y ∈ C a function HomC(X,Y )→ HomD(FX,FY ), written

notationally as f 7→ F (f), such that (i) F (1X) = 1FX for all X ∈ C; and (ii) F (f ◦g) = F (f)◦F (g)

for all X,Y, Z ∈ C and f ∈ HomC(Y, Z), g ∈ HomC(X,Y ).

Some easy examples of functors come from trivial relationships between categories. For example,

since every Abelian group is a group, there is an inclusion functor F : Ab → Grp which simply

takes an abelian group G so F (G) = G, thinking of G as an object in the larger category Grp; here

if G,H are abelian groups then HomAb(G,H) = HomGrp(G,H) and so F also acts as the identity

on morphisms. In an opposite direction, we have forgetful functors which “forget” some part of

the structure. For example, if C is any concrete category, there is a forgetful functor F : C → Set

where for any X ∈ C, F (X) is the underlying set of X, and for f ∈ HomC(X,Y ), F (f) : X → Y is

the underlying map of sets. Similarly, for a ring R, there is a forgetful functor F : R -mod → Ab

which takes an R-module to the underlying abelian group and forgets the R-action. Recall from

our earlier study of modules that a Z-module is the essentially the same concept as an Abelian

group. In other words, the forgetful functor Z -mod → Ab does not actually forget any essential

information. We will simply identify the categories Z-mod and Ab below.

More interesting for us will be certain functors from one module category to another.

Example 16.17. Fix a ring R. Let M ∈ Mod-R be a right R-module. Then there is a functor

F = M ⊗R − : R-Mod → Z-Mod given by “tensoring with M on the left”. On objects we have

F (N) = M ⊗RN ; on morphisms, for f ∈ HomR(N,P ) we have F (f) = 1⊗f : M ⊗RN →M ⊗RP

as defined in Lemma 15.12, which is a homomorphism of abelian groups (i.e. Z-modules). Recall

that [1⊗ f ](m⊗ n) = m⊗ f(n). The axioms of a functor are easy to verify.

Similarly, for a fixed P ∈ R-Mod there is a functor G = − ⊗R P : Mod-R → Z-Mod given by

“tensoring with P on the right”, where G(L) = L⊗R P and for f ∈ HomR(L,X), G(f) = f ⊗ 1 :

L⊗R P → X ⊗R P as in Lemma 15.12.

When the tensor products have additional module structure, so do the functors in Example 16.17.

For example, if M is an (S,R)-bimodule, then M⊗R− is a functor from R-Mod to S-Mod. Similarly,

if P is an (R, T )-bimodule then−⊗RP is a functor from Mod-R to Mod-T . And if R is commutative,

then as usual we define everything in terms of left modules only, and for M ∈ R-Mod, both M⊗R−

and −⊗RM are functors from R-Mod to R-Mod.
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Example 16.18. Fix a ring R and let M ∈ R-Mod. Then there is a functor F = HomR(M,−) :

R-Mod → Z-Mod, where F (N) = HomR(M,N) and for f ∈ HomR(N,P ), we have F (f) :

HomR(M,N)→ Hom(M,P ) given by g 7→ f ◦ g. The axioms of a functor are easy to check.

There is also a kind of functor given by HomR(−, N) for a fixed N , but we need another definition

first. A contravariant functor from a category C to a category D is defined similarly as a usual

functor, except that it reverses the order of composition. So such a functor is given by a choice

of object FX ∈ D for each X ∈ C, and a function on sets of morphisms F (−) : HomC(X,Y ) →

HomD(FY, FX), such that F (f ◦ g) = F (g) ◦ F (f) for f ∈ Hom(Y, Z), g ∈ Hom(X,Y ).

16.3. Exact sequences and flatness.

Definition 16.19. Fix a ring R and let M,N,P be left R-modules. Consider a sequence of R-

module homomorphisms

M
f−→ N

g−→ P.

The sequence is called exact at N if ker g = f(M). More generally, it is called a complex if f ◦g = 0,

i.e. f(M) ⊆ ker g. In this case, the homology group at N is the R-module H = (ker g)/f(M). So

a complex is exact at N if and only if H = 0.

Note that 0 −→ N
g−→ P is automatically a complex, and it is exact at N if and only if

0 = ker(g), that is, g is an injective homomorphism. Dually, M
f−→ N −→ 0 is a complex which is

exact at N if and only if f(M) = N , that is, f is surjective.

A longer sequence of modules and homomorphisms is called an exact sequence if it is exact at

every spot that has an arrow both entering and leaving. In particular we have

Definition 16.20. A sequence of R-modules and maps

0 −→M
f−→ N

g−→ P −→ 0

which is exact (that is, exact at M , N , and P ) is called a short exact sequence.

From the comments above, we see that explicitly the definition of short exact sequence is equiva-

lent to f being injective, g being surjective, and f(M) = ker(g). Given such a short exact sequence,

we also say that N is an extension of P by M . This is because by the first isomorphism theorem

applied to g, N/f(M) = N/(ker g) ∼= P . Also since f is injective, f(M) ∼= M . So N is built out of

the submodule f(M) ∼= M and the factor module N/f(M) ∼= P ; the short exact sequence tells us

precisely how M and P are put together to form N . In this point of view, a short exact sequence

is just a convenient way to represent the information of an extension of two modules.
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Below we will sometimes write im(f) instead of f(M) for the image of a map f : M → N , so

that image and kernel are given similar notations.

If you have taken a course in algebraic topology, you will recognize the definitions above. The

development of Algebraic Topology had a lot of influence on algebra. A whole field of homological

algebra developed from this which abstracts definitions and techniques derived from topology.

These homological techniques have had and continue to have great importance in the study of

algebra. In this short section we will just be able to scratch the surface. We recommend the book

of Weibel, (“An Introduction to Homological Algebra”), or of Rotman (also called “An Introduction

to Homological Algebra”) if you would like to learn more about this interesting subject.

We would like to consider the following question. To what extent does the operation of tensoring

with a module preserve exact sequences? More precisely, suppose that

0 −→M
f−→ N

g−→ P −→ 0

is a short exact sequence where M,N , and P are left R-modules and f and g are R-module

homomorphisms. If Q is a right R-module, then we can apply the operation Q⊗R − to the entire

sequence using the functoriality result of Lemma 15.12, to obtain a sequence

0 −→ Q⊗RM
1⊗f−→ Q⊗R N

1⊗g−→ Q⊗R P −→ 0

in which the maps are homomorphisms of abelian groups. If Q is an (S,R)-bimodule the maps are

even left S-module homomorphisms. This sequence is a complex but it turns out to not always be

a short exact sequence, as we will see next; the problem is at the Q⊗RM spot.

Theorem 16.21. Let 0 −→ M
f−→ N

g−→ P −→ 0 be a short exact sequence of left R-modules.

Let Q be a right R-module. Then

Q⊗RM
1⊗f−→ Q⊗R N

1⊗g−→ Q⊗R P −→ 0

is exact, i.e. exact at the Q⊗R N and Q⊗R P spots.

This result can be described by saying that the operation of tensoring with a module is right

exact. It preserves the exactness at the right two terms of the sequence only.

Proof. Let q⊗p be a pure tensor in Q⊗RP . Since g is surjective, there is n ∈ N such that g(n) = p.

Then [1⊗ g](q ⊗ n) = q ⊗ p. Thus all pure tensors are in the image of 1⊗ g. Since all elements in

Q⊗RP are sums of pure tensors and 1⊗g is a homomorphism of abelian groups, 1⊗g is surjective.

Thus we have exactness at the Q⊗R P spot.
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Now since g ◦ f = 0, note that (1⊗ g) ◦ (1⊗ f) = 0. Thus our supposed right exact sequence is

at least a complex, in other words we have im(1⊗ f) ⊆ ker(1⊗ g). Let L = (Q⊗R N)/ im(1⊗ f),

which is again a left R-module. Note that because we have im(1⊗ f) ⊆ ker(1⊗ g), we can define

a map 1⊗ g : L → Q ⊗R P by 1⊗ g(x + im(1 ⊗ f)) = [1 ⊗ g](x) for x ∈ Q ⊗R N . Since 1 ⊗ g is

surjective, so is 1⊗ g.

Now we claim that there is a homomorphism of abelian groups

ψ : Q⊗ P → L = (Q⊗R N)/ im(1⊗ f)

given by the formula ψ(q⊗ p) = q⊗n+ im(1⊗ f), where n ∈ N is any element such that g(n) = p.

To see that this formula does not depend on the choice of n, note that if g(n) = g(n′) = p then

n−n′ ∈ ker(g) = im(f) and so n′−n = f(m) for some m ∈M . Then q⊗n−q⊗n′ = q⊗ (n−n′) =

q ⊗ f(m) ∈ im(1 ⊗ f). thus q ⊗ n + im(1 ⊗ f) = q ⊗ n′ + im(1 ⊗ f). The existence of the map

ψ is then proved in the usual way by first defining an R-balanced map and applying the universal

property.

Now for (q ⊗ n) + im(1 ⊗ f) ∈ L applying 1⊗ g gives q ⊗ g(n) and then applying ψ gives

q ⊗ n′ + im(1 ⊗ f) for some n′ such that g(n) = g(n′). As we just saw, q ⊗ n + im(1 ⊗ f) =

q ⊗ n′ + im(1⊗ f). Thus ψ ◦ 1⊗ g = 1L.

In particular 1⊗ g must be injective. So 0 = ker(1⊗ g) = ker(1 ⊗ g)/ im(1 ⊗ f) and thus

ker(1⊗ g) = im(1⊗ f). Thus we have exactness at the Q⊗R N spot and we are done. �

It is easy to give an example showing that the result above is the best we can do; the operation

of tensoring with a module does not preserve exactness at the left in general.

Example 16.22. Let R be an integral domain which is not a field. Let x be a nonunit in R.

Consider the module homomorphism f : R → R given by f(a) = ax. Since R is a domain, f is

injective. Thus f is the left map in a short exact sequence 0 → R
f→ R

π→ R/xR → 0 where π is

the natural surjection, and R/xR 6= 0 since x is not a unit.

Now let us tensor this short exact sequence with R/xR, obtaining

0→ (R/xR)⊗R R
1⊗f−→ (R/xR)⊗R R

1⊗π−→ (R/xR)⊗R (R/xR)→ 0.

We know the resulting sequence will be exact at the right by Theorem 16.21. Let us see that it is

not exact at the left; in other words 1⊗ f is not injective.

We have seen that there is an isomorphism (R/xR)⊗RR→ R/xR given by (a+xR)⊗b 7→ ab+xR;

see Example 15.15. In particular, (R/xR)⊗R R 6= 0. On the other hand,

[1⊗ f ]((a+ xR)⊗ b) = (a+ xR)⊗ xb = x(a+ xR)⊗ b = (xa+ xR)⊗ b = (0 + xR)⊗ b = 0
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which implies that 1⊗ f = 0. In particular, 1⊗ f is not injective.

The following definition is made to focus on those modules that do not have the problem of

failure of left exactness as in the previous example.

Definition 16.23. Let R be any ring. A right R-module Q is called flat (over R) if for all short

exact sequences of left R-modules 0 → M
f→ N

g→ P → 0, the sequence obtained by applying

Q⊗R − to this short exact sequence,

0→ Q⊗RM
1⊗f−→ Q⊗R N

1⊗g−→ Q⊗R N → 0,

is again short exact.

Because tensoring with Q always preserves exactness on the right, by Theorem 16.21, it is easy to

see that Q is a flat right R-module if and only if for all injective homomorphisms of left R-modules

f : M → N , then 1⊗ f : Q⊗RM → Q⊗R N is still injective.

In the terminology of category theory, Q⊗R − is what is known as a functor : it is an operation

that sends every left R-module M to an abelian group Q ⊗R M , and comes along with an action

on homomorphisms which sends a module homomorphism f : M → N to an abelian group homo-

morphism 1 ⊗ f : Q ⊗R M → Q ⊗R N . A functor which when applied to a short exact sequence

returns another short exact sequence is called an exact functor. So Q is flat if Q⊗R − is an exact

functor, by definition. We don’t have time here to go more into the details of category theory, but

may occasionally adopt this terminology.

Of course there is nothing special about the side on which we have chosen to make this definition:

a left R-module L is called flat if −⊗RL is an exact functor when applied to short exact sequences

of right R-modules.

Example 16.24. Let R be an integral domain which is not a field. If x is not a unit in R, then

R/xR is an R-module which is not flat, by Example 16.22. In fact, it is possible to show that a

flat module over an integral domain must be torsionfree.

Now let us give examples of modules that are flat by showing that free modules are always flat.

We leave the following result to the reader; it is a good exercise in applying the universal property

of the tensor product.

Lemma 16.25. Let {Mα|α ∈ I} be an indexed family of right R-modules. For any left R-module

N , we have an isomorphism of abelian groups

Φ :
(⊕
α∈I

Mα

)
⊗R N →

⊕
α∈I

(
Mα ⊗R N

)
,
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where Φ((mα)α∈I ⊗ n) = (mα ⊗ n)α∈I .

Of course, there is also a symmetric result showing that a direct sum in the second coordinate

pulls out of a tensor product.

Remark 16.26. The corresponding statement for products is not true in general: there is a natural

homomorphism Ψ : (
∏
α∈IMα)⊗R N →

∏
α∈I(Mα ⊗R N) given by the same formula, but it need

not be an isomorphism when the index set I is infinite.

Proposition 16.27. Let F be a free right R-module. Then F is flat.

The same result holds for left R-modules, as one would expect, by a symmetric proof.

Proof. We know that F ∼=
⊕

α∈I R for some index set I. It is easy to see that flatness is an invariant

of a module up to isomorphism, so we just need to prove that
⊕

α∈I R is flat. Now for any right

module M we have

(
⊕
α∈I

R)⊗RM ∼=
⊕
α∈I

(R⊗RM) ∼=
⊕
α∈I

M

using Lemma 16.25 and the fact that R⊗RM ∼= M , as in Example 15.15.

If f : M → N is an injective homomorphism of right R-modules, using the isomorphisms above

it is straightforward to check that 1 ⊗ f : (
⊕

α∈I R) ⊗R M → (
⊕

α∈I R) ⊗R N can be identified

with the homomorphism
⊕
f :

⊕
α∈IM →

⊕
α∈I N which simply applies f in every coordinate.

But since f is injective, this homomorphism is clearly also injective. �

Another important class of flat modules is given by localization.

Example 16.28. Let R be any commutative ring and let X be a multiplicative system in R. Then

one can define the localization RX−1 as in Section 9.3. The localization comes along with a ring

homomorphism φ : R → RX−1 defined by φ(r) = r/1, and this makes RX−1 into an R-module

by restriction of scalars. Then RX−1 is a flat R-module, as you will check in an exercise on the

homework. For example, if R is an integral domain with field of fractions K, then K is a flat

R-module.

The case where a module Q is flat over R and so Q⊗R− preserves short exact sequences is very

nice, but it is not the usual situation. In general one only has right exactness of the tensor product.

In a further study of homological algebra one develops the theory of Tor functors which can be

used to understand more precisely any failure of exactness of the tensor product on the left. We

refer the reader to either of the books on homological algebra already mentioned for more details.
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16.4. Projective modules. In this optional section we give another class of modules which are

flat, namely projective modules.

Lemma 16.29. Suppose that F is a free right R-module and that F ∼= P⊕Q for right R-submodules

P and Q. Then P is a flat module.

Proof. Let f : M → N be an injective homomorphism of left R-modules. We have seen that free

modules are flat and hence

(P ⊕Q)⊗RM
1⊗f−→ (P ⊕Q)⊗R N

is also injective.

Now we have an injection map i : P → P ⊗Q = F given by i(p) = (p, 0), and a projection map

π : F = P ⊕ Q → P given by π(p, q) = p, where π ◦ i = 1P . Moreover, there is a commutative

diagram

P ⊗RM
1⊗f

//

i⊗1
��

P ⊗R N

i⊗1
��

(P ⊕Q)⊗RM
1⊗f

// (P ⊕Q)⊗R N

Now if x ∈ P ⊗RM satisfies [1⊗f ](x) = 0, then [1⊗f ]◦ [i⊗1](x) = 0; by the flatness of F = P ⊕Q,

we have [i⊗ 1](x) = 0. But since π ◦ i = 1P , [π⊗ 1] ◦ [i⊗ 1] = 1P⊗RM . It follows that x = 0. Hence

1⊗ f : P ⊗RM → P ⊗R N is injective and P is flat. �

We have proved that direct summands of free modules are flat. These modules have a name and

another interesting description.

Definition 16.30. Let P be a right R-module. P is a projective module if given any surjective

homomorphism of right modules g : M → N and a homomorphism of right modules f : P → N ,

there is a homorphism h : P →M such that g ◦ h = f .

This property can be respresented by the following commutative diagram:

P
∃h

~~
f
��

M
g
// N // 0

The additional arrow to the right of N pointing to 0 is to remind one that in this property g is

assumed to be surjective, that is, that the bottom row is exact at N . The property satisfied by P is

not a universal property the way those are usually understood, because the map h is only assumed

to exist, and need not be (in fact almost never is) unique.
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One of the important properties of projective modules is that any surjection onto a projective

module is split.

Lemma 16.31. Let P be a projective right R-module. Suppose g : N → P is a surjective homo-

morphism of right R-modules. Then g is a split surjection.

Recall that for g to be a split surjection means that there is a homomorphism h : P → N such

that g ◦ h = 1P , and that by Lemma 12.49 this has as a consequence that N is an internal direct

sum N = ker(g)⊕ im(h) ∼= ker(g)⊕ P .

Proof. Taking f = 1P : P → P and g : N → P as given, the existence of h : N → P such that

g ◦ h = 1P is immediate from the definition of projective module. �

Let us now relate this definition of projective module to the modules that appeared in Corol-

lary 16.29.

Theorem 16.32. A right R-module P is projective if and only if there exists a right R-module Q

such that P ⊕Q is a free right R-module. In particular, free modules are projective.

As usual, in the definition of projective and this theorem, there exist left-sided versions which are

stated and proved in the analogous way. We have focused on right modules here only because our

primary definition of flatness was for right modules, so we have stayed on that side for consistency.

Proof. First we claim that a free right R-module F is projective. Suppose that f : F → N and

g : M → N are given right module homomorphisms with g surjective. Let {xα|α ∈ I} be a basis

for F as a free right R-module. For each α ∈ I we can choose mα ∈ M such that g(mα) = f(xα),

since g is surjective. We need to find h completing the diagram

F
h

~~
f
��

M
g
// N

By the universal property of a free module, there exists a unique homomorphism h : F →M such

that h(xα) = mα for all α. Then f(xα) = [h ◦ g](xα) for all α. This shows that the diagram

commutes for the basis elements xα. Since the basis generates F as an R-module and all maps are

R-module homomorphisms, h ◦ g = f and the diagram commutes. Thus F is projective as claimed.

Now we need to extend this result to show that a direct summand of a free module F is projective.

Suppose that we have an internal direct sum F = P ⊕ Q. Let i : P → P ⊕ Q = F and π : F =
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P ⊕ Q → P be the injection and projection maps associated to the first coordinate of the direct

sum, as in the proof of Corollary 16.29. Given f and g as above we have a diagram

F = P ⊕Q

ĥ

��

π
��
P

h

yy
f
��

M
g

// N

Now there exists a homomorphism ĥ making the outer triangle commute, i.e. g ◦ ĥ = f ◦ π, since

F is free. Define h = ĥ ◦ i. Then

g ◦ h = g ◦ ĥ ◦ i = f ◦ π ◦ i = f

because π ◦ i = 1P . This proves that P is projective.

For the converse, we need to prove that a projective module is necessarily a direct summand of

a free module. Let P be projective and pick any generating set {pα|α ∈ I} whatsoever for P as

a right R-module. By the universal property of a free module, there is a unique homomorphism

g : F =
⊕

α∈I R→ P such that g(eα) = pα for all α, where {eα} is the standard basis of F . Since

the {pα} are a generating set for P , g is surjective. Now because P is projective, Lemma 16.31

shows that g is split. Thus F ∼= (ker g)⊕ P by lemma 12.49. Taking Q = ker g we see that P ⊕Q

is free as required. �

Corollary 16.33. Projective modules are flat.

Proof. This follows from Theorem 16.32 and Corollary 16.29. �

Note that Corollary 12.50, which showed that a surjective homomorphism onto a free module

splits, can now just be seen as a special case of Lemma 16.31 since free modules are projective. We

needed the fact that surjections onto free modules are split for the theory of modules over a PID,

but did not wish to introduce projective modules at that point.

Let us note that not all projective modules are free.

Example 16.34. Let R = M2(F ) where F is a field. Then R = I ⊕ J as right R-modules, for

right ideals I =

{a b

0 0

∣∣∣∣a, b ∈ F} and J =

{0 0

c d

∣∣∣∣c, d ∈ F}. Thus each of I and J is a

summand of a free module of rank 1 and so I and J are projective right R-modules. Note however

that every right R-module is also an F -vector space, since R is an F -algebra. Since dimF R = 4,
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any free R-module has F -dimension which a multiple of 4 (or infinite). Since dimF I = 2, I cannot

be free. Of course J is also not free for the same reason, but in fact it is easy to see that I ∼= J as

right R-modules.

Example 16.35. We claim that Q is a flat Z-module which is not projective. Q is flat since it is

a localization of Z, as in Example 16.28.

A Z-module M is divisible if for all x ∈ M and positive integer n > 0, there exists y ∈ M such

that ny = x. It is obvious that Q is a divisible Z-module.

On the other hand, for a free Z-module F ∼=
⊕

Z, it is easy to see that no nonzero element

x of F can satisfy the divisibility property above for all n > 0; thus F has no nonzero divisible

submodules. In particular, Q cannot be isomorphic to a summand of a free module and hence it is

not projective.

Example 16.36. If R is a PID, then it is true that all projective R-modules are free. This is easy

to prove for finitely generated projective modules using the classification theorem. In general it

follows from the fact that submodules of free modules over R are free (which is true in general but

we only proved for finitely generated modules).

16.5. Exactness of Hom.

17. Field basics

17.1. Field extensions. Recall that a field F is a commutative ring such that every nonzero

element is a unit. In our study of fields we will sometimes want to refer to auxiliary commutative

rings which are not themselves fields; but we will not have any use for noncommutative rings in

this section. Every ring should be assumed to be commutative unless told otherwise.

There is a short list of fields that arise naturally as fields of numbers appearing throughout

mathematics, and which we have already encountered: Q, R, C, and Z/pZ for a prime p. In this

section we will write the field of integers mod p as Fp = Z/pZ, to emphasize that we are considering

it as a field and not just a group. Actually, how “natural” the field of real numbers R is may be

debatable, since to define it precisely involves a nontrivial limiting process of some kind. But we

will take the existence of R and its basic properties as a given. It is certainly natural in the sense

of its many applications to the physical sciences.

Besides the basic examples above we saw in the ring theory section two ring theoretic construc-

tions which lead to many new examples of fields. Both will be of fundamental importance in our

study of fields.
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First, if R is any commutative ring whatsoever, and I is a maximal ideal of R, then the factor

ring R/I is a field. This gives a way of producing potentially a number of different fields from a

given commutative ring. For example, taking R = Z then the maximal ideals are those of the form

pZ for primes p, and we recover all of the fields Fp = Z/pZ through this construction. Even if we

have a general commutative ring R about which we know nothing, we have seen as an application

of Zorn’s lemma that R must have some maximal ideal I; thus R has at least one factor ring R/I

that is a field.

Second, if R is an integral domain, then we defined the field of fractions K of R to be the set

of formal fractions {r/s|r ∈ R, 0 6= s ∈ R} under a natural equivalence relation that r/s = t/u

if ru = st, with addition and multiplication defined as usual for fractions. We always identify R

with the subring {r/1|r ∈ R} of K, so that R ⊆ K. Thus for any integral domain we can always

produce at least one field by taking the field of fractions. Of course Q can be produced in this way

by taking the field of fractions of Z. Recall also that if F is a field, the field of fractions of the

polynomial ring F [x] is called the field of rational functions F (x). Its elements consists of formal

ratios of polynomials.

Usually field theory does not study a field in isolation but rather its relation to other fields. The

basic object of our study of fields will be the following.

Definition 17.1. A field extension or extension of fields is an inclusion of fields F ⊆ K; that is,

K is a field and F is a subring of K which is also a field, which we also call a subfield.

K is always a left K-module by multiplication, so it is a left F -module by restriction. In other

words, K is a vector space over F . As such it has a dimension and we define the degree of the field

extension F ⊆ K to be the number [K : F ] = dimF K.

It is also common to use the notation K/F for a field extension F ⊆ K; K/F is read as “K over

F” and is meant to emphasize that we are considering K in relation to the subfield F it lies over.

The notation K/F is one whole unit and does not indicate any kind of quotient construction. The

field F is also called the base field.

Example 17.2. R ⊆ C is a field extension and [C : R] = 2 because by construction an R-basis for

C is given by {1, i}.

Example 17.3. In our study of ring theory we introduced for any square-free integer D the ring

Q(
√
D) = {a + b

√
D|a, b ∈ Q}, as a subring of C, and proved this ring is a field. Since D is

squarefree
√
D 6∈ Q, so {1,

√
D} form a basis for Q(

√
D) over Q and [Q(

√
D) : Q] = 2.
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Actually both field extensions R ⊆ C and Q ⊆ Q(
√

2) arise from a general ring-theoretic con-

struction which will be of crucial importance from now on. There is nothing here we haven’t already

seen in our study of rings, but we remind the reader of the details since they are so important.

Lemma 17.4. Let F be a field. Let f ∈ F [x] be an irreducible polynomial.

(1) F [x]/(f) = K is again a field.

(2) The function θ : F → K = F [x]/(f) defined by θ(a) = a + (f) is an injective ring homo-

morphism.

(3) Identifying F with θ(F ) we have a field extension F ⊆ K. As such, [K : F ] = deg f .

Proof. (1) Since F [x] is a PID, we know that an irreducible element generates a maximal ideal (f)

by Lemma 10.27.

(2) This function is obviously a ring homomorphism by the definition of multiplication in

F [x]/(f). Since f is irreducible, by definition it is not a unit and so deg f ≥ 1. Since f has

minimal degree among nonzero elements of (f), the ideal (f) contains no nonzero constant polyno-

mials. Thus ker θ = 0 and θ is injective.

(3) Since θ is injective it gives an isomorphism from F to θ(F ), so we can take this to be an

identification, under which F now consists of the elements in F [x]/(f) whose coset representatives

are constant polynomials. Let deg f = n. If h ∈ F [x], then h = qf+r under polyomial long division,

where deg r < deg f . Hence h+(f) = r+(f) with deg r ≤ n−1. Moreover, if r′+(f) = r+(f), where

deg r ≤ n− 1 as well, then r− r′ ∈ (f) with deg r− r′ ≤ n− 1; since the smallest degree of nonzero

elements of (f) is n, r − r′ = 0 and r = r′. We see that every element of K is of the form r + (f)

for a unique polynomial r of degree at most n− 1. It follows that {1 + (f), x+ (f), . . . , xn−1 + (f)}

is a basis for F [x]/(f) as an F -vector space, and so [K : F ] = deg f = n. �

Whenever we are in the situation of the previous lemma, it is convenient to always identify F

with its image under θ and consider K as an extension of F .

Example 17.5. Let us revisit Example 17.2. Usually the construction of C from R is done by

defining C to a be an R vector space with basis {1, i} made into a ring by defining the multiplication

explicitly using i2 = 1; technically, one needs to check this multiplication is associative and that

the resulting ring is a field.

Lemma 17.4 gives a more abstract but cleaner way to go: It is immediate that x2 + 1 is an

irreducible polynomial in R[x], since it has no real roots. Thus F = R[x]/(x2 + 1) is a field

extension of R such that [F : R] = 2. It is immediate that F contains an element x + (x2 + 1)
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whose square is equal to −1 + (x2 + 1), so abstractly we have found a field extension of R in which

−1 has a square root. Of course, F ∼= C as we already saw in Example 10.11; we have just defined

the usual complex numbers in a different way.

Just as for groups and modules, the notion of a subfield generated by a subset will be important.

Definition 17.6. Let F ⊆ K be a field extension. For any subset X of K, the subfield of K

generated by X over F is the intersection of all subfields of K which contain both F and X. It is

written as F (X). When X = {α1, . . . , αn} is finite we write this as F (α1, . . . , αn). A field generated

by one element over F , F (α), is called a simple extension of E.

It is easy to see that an arbitrary intersection of subfields is again a subfield, so that F (X) is the

unique smallest subfield of K which contains both F and X. Note that this notation only makes

sense when working inside some larger field K that contains the elements in X. The field K is

understood and not part of the notation.

Example 17.7. Let D be a squarefree integer. We have already defined a subfield of C called

Q(
√
D) in Example 17.3, where taking

√
D to be either of the square roots of D in C, we have

Q(
√
D) = Q + Q

√
D ⊆ C. We have seen this is a field, and it obviously contains Q and

√
D.

Conversely, any subfield of C which contains Q and
√
D would contain Q+Q

√
D just because it is

closed under addition and multiplication. Thus Q(
√
D) is indeed the subfield of C generated by

√
D

over Q, so this notation we have used for it agrees with our new notation for subfield generation.

In our study of module theory over a commutative ring R, we saw that R-modules generated by

a single element (cyclic modules) are the modules of the form R/I for an ideal I. Now we will see

that field extensions generated by a single element, or simple extensions as we have named them,

also have a very rigid structure.

Theorem 17.8. Let F ⊆ K be a field extension. Let α ∈ K. There is a canonical homomorphism

of rings

φ : F [x]→ F (α)

f(x) 7→ f(α)

and moreover exactly one of the following two cases occurs:

(i) kerφ = (f) for a unique, monic irreducible polynomial f ∈ F [x]. Moreover, φ is surjective,

F (α) ∼= F [x]/(f) as fields, and [F (α) : F ] = deg f <∞.
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(ii) kerφ = 0. In this case φ extends to an isomorphism F (x)→ F (α), where F (x) is the field

of rational functions in one variable over F . Moreover [F (α) : F ] =∞.

Proof. The map φ is simply the evaluation at α ∈ K, where f(x) =
∑n

i=0 aix
i ∈ F [x] maps to

f(α) =
∑n

i=0 aiα
i (with α0 = 1). We saw in our study of ring theory that such a map is a

homomorphism of rings F [x]→ K. But every element of the image is of the form
∑n

i=0 aiα
i with

ai ∈ F , which is clearly contained in any subfield of K which contains F and α. So im(φ) ⊆ F (α)

and we can think of φ as a map F [x]→ F (α).

Assume that kerφ 6= 0, so we are in case (i). Since F [x] is a PID, kerφ = (f) for some unique

monic polynomial f ∈ F [x]. Now by the 1st isomorphism theorem for rings, F [x]/(f) ∼= im(φ).

Since im(φ) is a subring of K, it is a domain, so F [x]/(f) is a domain. Thus (f) is a prime ideal,

but in a PID, nonzero prime ideals are maximal. So F [x]/(f) is a field and hence so is im(φ).

Now im(φ) is a subfield of K which clearly contains F (the image of the constant polynomials)

and α (the image of x). Thus F (α) ⊆ im(φ) by the definition of subfield generation. On the

other hand, we already saw that im(φ) ⊆ F (α). Thus im(φ) = F (α) and we have an isomorphism

F [x]/(f) → F (α). In a PID maximal ideals are generated by irreducible polynomials, so f is

irreducible. By Lemma 17.4, [F (α) : F ] = dimF (F (α)) = dimF (F [x]/(f)) = deg f since φ is also

an F -vector space isomorphism.

Otherwise, kerφ = 0 and we are in case (ii). Now the homomorphism of rings φ : F [x] → F (α)

has the property that for every nonzero element f ∈ F [x], 0 6= φ(f) is a unit, since F (α) is a field. By

the universal property of the localization in Theorem 9.22, φ extends uniquely to a homomorphism

φ̃ : F (x) → F (α), where F (x) is the field of fractions of F [x], in other words the localization of

F [x] at the set X = F [x] − {0}. The formula for φ̃ is φ̃(f/g) = φ(f)(φ(g))−1 = f(α)g(α)−1 for

all 0 6= g, f ∈ F [x]. Since F (x) is a field, φ̃ must be injective and so F (x) ∼= im(φ̃). Thus im(φ̃)

is a subfield of K containing F and α and since F (α) is the unique smallest such, F (α) ⊆ im(φ̃).

On the other hand, the formula for φ̃ above shows that im(φ̃) ⊆ F (α). Thus im(φ̃) = F (α) and in

this case we have F (x) ∼= F (α) as fields. Since dimF F [x] =∞ already, certainly dimF F (x) =∞.

Thus [F (α) : F ] = dimF F (α) = dimF F (x) =∞. �

Definition 17.9. Let F ⊆ K be a field extension, and let α ∈ K. If case (i) occurs in Theorem 17.8

we say that α is algebraic over F ; the monic irreducible polynomial f with (f) = ker(φ) is called

the minimal polynomial of α over F and is written as minpolyF (α). Otherwise, case (ii) occurs

and we say that α is transcendental over F .
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Note that α is algebraic over F precisely when there is some nonzero polynomial g ∈ F [x] such

that g(α) = 0; the set of all such polynomials is then kerφ = (f) in the notation of Theorem 17.8.

Thus the minimal polynomial of α over F is the monic polynomial f of minimal possible degree

such that f(α) = 0. We also know that f is irreducible, and so clearly f is the unique monic

irreducible polynomial such that f(α) = 0 as well.

Example 17.10. Consider the extension Q ⊆ R. f(x) = x3 − 2 is irreducible in Q[x] since it

has no root in Q, or by the Eisenstein criterion. Since the real cube root α = 3
√

2 ∈ R satisfies

f(α) = 0, f = minpolyQ(α). Thus α is algebraic over Q and Q(α) ∼= Q[x]/(x3 − 2). In particular

[Q(α) : Q] = 3.

On the other hand, it is known that π is a transcendental number over Q, though this is not

particularly easy to prove. Thus Q(π) ∼= Q(x). In general transcendence theory refers to the study

of which particular real or complex numbers are transcendental over Q. This subject tends to

involve sensitive results in analysis. As an example of the difficulty of this theory, the number e

has also been proved to be transcendental over Q, but it is unknown whether e + π and eπ are

transcendental.

We now know how to understand simple extensions F (α) of a field F , in terms of the properties

of α. But in fact, an extension generated by a finite set of elements can be expressed as a series of

simple extensions.

Lemma 17.11. Let F ⊆ K be a field extension. For any elements α1, . . . , αn ∈ K, we have

F (α1, . . . , αn) = F (α1)(α2) . . . (αn).

Proof. Let us argue the case n = 2; the general case follows easily by induction. Note that when

we write F (α1)(α2), we mean [F (α1)](α2); that is we are now applying the definition of generation

to the field extension F (α1) ⊆ K and the element α2. In other words, F (α1)(α2) is the unique

smallest subfield of K which contains the field F (α1) and the element α2. On the other hand, the

field F (α1, α2) is the unique smallest subfield of K which contains F , α1, and α2.

The field F (α1)(α2) contains F (α1) and α2, so it contains F , α1, and α2. Thus F (α1, α2) ⊆

F (α1)(α2). Conversely, the field F (α1, α2) contains F and α1, so it contains F (α1), the unique

smallest such subfield. Thus F (α1, α2) contains F (α1) and α2 and so F (α1)(α2) ⊆ F (α1, α2). �

Note that when we write F (α1, . . . , αn), the order in which we write the elements αi is immaterial;

we are taking the subfield generated by them as a set. On the other hand, when we treat this
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as F (α1)(α2) . . . (αn) we have chosen a specific order, though the end result must be the same

regardless. If we are doing calculations, one order might be easier to handle than another.

Example 17.12. Let Q ⊆ C and consider Q(
√

2, i). Think of this as Q(
√

2)(i). We know that

[Q(
√

2) : Q] = 2, since minpolyQ(
√

2) = x2−2 as x2−2 does not have a root in Q. Now i is a root of

x2 + 1 ∈ Q[x] ⊆ Q(
√

2)[x]. So minpolyQ(
√

2)(i) has degree at most 2. If it has degree 1, that means

that i ∈ Q(
√

2), but this is false since Q(
√

2) consists of real numbers. Hence minpolyQ(
√

2)(i) =

x2 + 1. We conclude that Q(
√

2, i) ∼= Q(
√

2)[x]/(x2 + 1) and [Q(
√

2, i) : Q(
√

2)] = 2. By results we

will see in the next section this means that [Q(
√

2, i) : Q] = [Q(
√

2, i) : Q(
√

2)][Q(
√

2) : Q] = 4.

It is also possible to analyze this extension by considering it as Q(i)(
√

2) instead, but the other

order is a bit easier because we can use the trick of considering real versus complex numbers. In

this order we would have to determine whether or not
√

2 ∈ Q(i); this is not difficult but it is a bit

more work.

17.2. Algebraic extensions.

Definition 17.13. Let F ⊆ K be a field extension. The extension is called algebraic if every α ∈ K

is algebraic over F .

We will explore the properties of algebraic extensions in this section. Note that in an algebraic

extension, for every α ∈ K we have [F (α) : F ] is finite, equal to the degree of minpolyF (α). But

these degrees can vary widely as we range over elements α, and [K : F ] could still be infinite overall,

as we will see.

The key lemma for calculating the degree of an algebraic extension is the following.

Lemma 17.14. Let E ⊆ F ⊆ K be fields.

(1) If either [K : F ] or [F : E] is infinite, then so is [K : E].

(2) If [K : F ] and [F : E] are finite, then so is [K : E] and in fact [K : E] = [K : F ][F : E].

Proof. (1) If [F : E] = ∞, in other words dimE F = ∞, then since the E-vector space K contains

the E-subspace F , dimEK = ∞ also. If instead [K : F ] = ∞, then a basis of K as an F -space

is certainly also still a linearly independent set over E. Since any linearly independent set can be

extended to a basis, dimEK =∞.

(2) The proof will show more than the statement; we will see how to construct, given a basis of

K as an F -space and a basis of F as an E-space, an explicit basis of K as an E-space.

Thus let {α1, . . . , αm} be an E-basis for F and {β1, . . . , βn} an F -basis for K. We claim that

S = {αiβj |1 ≤ i ≤ m, 1 ≤ j ≤ n} is an E-basis for K.
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First, if γ ∈ K, then γ =
∑n

j=1 ajβj for aj ∈ F since {βj} spans K as an F -space. But then

each aj =
∑m

i=1 bijαi for some bij ∈ E since the αi space F as an E-space. We conclude that

γ =
∑

i,j bijαiβj and so the set S spans K over E.

Next, suppose that
∑

i,j bijαiβj = 0 for some bij ∈ E. Then
∑

j(
∑

i bijαi)βj = 0 with
∑

i bijαi ∈

F , since E ⊆ F . Since the βj are independent over F we get
∑

i bijαi = 0 for all i. But then since

the αi are independent over E we get bij = 0 for all j, for all i. This shows that S is independent

over E. We have shown that S is a basis for K over E as claimed.

Now [K : E] = |S| = nm = [K : F ][F : E]. �

Corollary 17.15. If E ⊆ F ⊆ K are fields with [K : E] < ∞, then [F : E] and [K : F ] divide

[K : E].

Corollary 17.16. If E ⊆ K is a field extension with prime degree [K : E] = p, then for any field

F with E ⊆ F ⊆ K, either E = F or E = K.

Lemma 17.14 and its corollaries are reminiscent of Lagrange’s theorem in finite group theory.

This is not an accident; the Fundamental Theorem of Galois Theory which we prove later gives

strong connections between fields and groups.

Many important examples involve considering extensions generated over Q inside the field exten-

sion Q ⊆ C. From now on when we write Q(α1, . . . , αn) for certain complex numbers αi, it should

be assumed that we are taking this extension inside C even if that is not explicitly mentioned.

Lemma 17.14 is very useful for doing calculations of degrees of extensions. Here is one example.

Example 17.17. Consider K = Q( 3
√

2,
√

3) where 3
√

2 is the real cube root of 2. We claim that

[K : Q] = 6. We know that x3 − 2 and x2 − 3 are irreducible over Q, so minpolyQ( 3
√

2) = x3 − 2

and minpolyQ(
√

3) = x2 − 3. Thus [Q( 3
√

2) : Q] = 3 and [Q(
√

3) : Q] = 2. Since of course

x3 − 2 ∈ Q(
√

3)[x] as well, minpolyQ(
√

3)(
3
√

2) has degree at most 3 and

[Q(
3
√

2,
√

3) : Q(
√

3)] = [Q(
√

3)(
3
√

2) : Q(
√

3)] ≤ 3.

By Lemma 17.14, [K : Q] ≤ 6. On the other hand, since Q ⊆ Q(
√

3) ⊆ K we have [K : Q] is

divisible by [Q(
√

3) : Q] = 2 (using Lemma 17.14 again), and since Q ⊆ Q( 3
√

2) ⊆ K it also follows

that [K : Q] is divisible by [Q( 3
√

2) : Q] = 3. The only possibility is [K : Q] = 6.

As a consequence, we conclude that [K : Q(
√

3)] = 3. Since K = Q(
√

3)( 3
√

2), this means that

3
√

2 must have minimal polynomial x3 − 2 over Q(
√

3). It is not obvious that x3 − 2 is irreducible

over Q(
√

3), or equivalently that it has no roots in this field, and this would be more awkward to

prove directly. Similarly, we conclude that the minimal polynomial of
√

3 over Q( 3
√

2) is still x2−3.
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As well as being useful for calculations, Lemma 17.14 leads to a number of interesting general

results about algebraic elements and extensions.

First we see that a finite degree extension is always algebraic.

Lemma 17.18. Let F ⊆ K be a field extension with [K : F ] < ∞. Then K/F is an algebraic

extension.

Proof. Let α ∈ K. We have F ⊆ F (α) ⊆ K. Because [K : F ] < ∞, we have [F (α) : F ] < ∞ by

Lemma 17.14. But then we know that α is algebraic over F by Theorem 17.8. Since α ∈ K was

arbitrary, K/F is algebraic. �

Proposition 17.19. Let F ⊆ K be a field extension and suppose that α, β ∈ K are both algebraic

over F . Then α− β, αβ, and α−1 (if α 6= 0) are also algebraic over F .

Proof. By Theorem 17.8, since α is algebraic over F we have [F (α) : F ] <∞. Since β is algebraic

over F , it is certainly algebraic over F (α); if f(α) = 0 with 0 6= f ∈ F [x] then just consider

f ∈ F (α)[x]. Thus [F (α)(β) : F (α)] < ∞. By Lemma 17.14, [F (α, β) : F ] < ∞. Thus F (α, β)/F

is an algebraic extension, by Lemma 17.18.

Now notice that since F (α, β) is a subfield of K containing α and β, it certainly also contains

α− β, αβ, and α−1 (if α 6= 0). Hence these elements are all algebraic over F . �

Corollary 17.20. Let F ⊆ K be a field extension. Define L = {α ∈ K|α is algebraic over F}.

Then L is a subfield of K containing F and L/F is algebraic.

Proof. Proposition 17.19 shows that L is closed under difference, product, and inverses, which

implies that L is a subfield of K. It is obvious that L/F is algebraic by definition. �

Definition 17.21. The subset

Q = {α ∈ C|α is algebraic over Q}

is called the field of algebraic numbers. It is also called the algebraic closure of Q.

Note that Q really is a subfield of C by Corollary 17.20. For a fixed prime number p, and each

n ≥ 2, note that xn − p is irreducible over Q by the Eisenstein criterion. Thus Q ⊆ Q( n
√
p) ⊆ Q

with [Q( n
√
p) : Q] = n. It follows that [Q : Q] =∞. Thus Q/Q is an example of an infinite degree

algebraic extension.

Proposition 17.19 showed that the algebraic numbers over Q are closed under the field operations.

The proof is abstract, however, and does not show how one can find a polynomial that has a given

difference, product, or inverse of algebraic numbers as a root.
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Example 17.22. Since
√

2 and
√

3 are both algebraic over Q, with minimal polynomials x2 − 2

and x2 − 3 respectively, we know that α =
√

2 +
√

3 is algebraic over Q. Here is a way to find a

polynomial in Q with α as a root (this method is rather special to the case of a sum of two square

roots, though).

Note that α2 = (
√

2 +
√

3)2 = 2 + 2
√

6 + 3 = 5 + 2
√

6. Thus 2
√

6 = α2− 5. Squaring both sides,

24 = (α2 − 5)2. It follows that f(x) = (x2 − 5)2 − 24 = x4 − 10x2 + 1 has α as a root. In fact one

may show that f = minpolyQ(α).

The following definition is similar to what we have defined for generation in other contexts like

groups and modules.

Definition 17.23. Let F ⊆ K be a field extension. We say that the extension K/F is finitely

generated if K = F (α1, α2, . . . , αn) for some α1, α2, . . . , αn ∈ K.

Lemma 17.24. Let F ⊆ K be a field extension. Then [K : F ] <∞ if and only if K/F is finitely

generated and algebraic.

Proof. If [K : F ] < ∞ then we have seen that K/F is algebraic in Lemma 17.18. It is also easy

to see that K/F is finitely generated; for example, if α1, . . . , αn is an F -basis of K then certainly

K = F (α1, . . . , αn) (though likely fewer than n elements suffice).

Conversely, suppose that K = F (α1, α2, . . . , αn) for some elements αi ∈ K, and that K/F is

algebraic. Thus each αi is algebraic over F . Define di = [F (α1, . . . , αi) : F (α1, . . . , αi−1)] for each

1 ≤ i ≤ n. Since F (α1 . . . , αi) = F (α1, . . . , αi−1)(αi), we see that di = deg minpolyF (α1,...,αi−1)(αi).

If ei = deg minpolyF (αi), then di ≤ ei for all i since any polynomial in F [x] with αi as a root is

also a polynomial in F (α1, . . . , αi−1)[x]. Now

[K : F ] = [F (α1, . . . , αn) : F (α1, . . . , αn−1)][F (α1, . . . , αn−1) : F (α1, . . . , αn−2] . . . [F (α1) : F ]

= dndn−1 . . . d1 ≤ enen−1 . . . e1 <∞,

by repeated use of Lemma 17.14. In particular [K : F ] <∞. �

Examining the proof of the lemma, we immediately have the following consquence.

Corollary 17.25. If K = F (α1, . . . , αn) where each αi is algebraic over F with ei = deg minpolyF (αi) =

[F (αi) : F ], then [K : F ] ≤ e1e2 . . . en.

Example 17.17, where K = Q( 3
√

2,
√

3), is an example where the upper bound given by the

corollary is actually acheived. In general it is just an upper bound, as can be seen from silly
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examples like K = Q(
√

2,
√

3,
√

6), where
√

6 ∈ Q(
√

2,
√

3) already, so in fact [K : Q] ≤ 4, while

applying the corollary with the 3 generators blindly gives [K : Q] ≤ 8.

We may now show that an algebraic extension of an algebraic extension is algebraic.

Theorem 17.26. Let E ⊆ F ⊆ K where both F/E and K/F are algebraic extensions. Then K/E

is algebraic.

Proof. Let α ∈ K. We know that α is algebraic over F . Let f = minpolyF (α) = xn + an−1x
n−1 +

· · · + a1x + a0 ∈ F [x]. Now each coefficient ai ∈ F is algebraic over E. By Lemma 17.24,

[E(a0, . . . , an−1) : E] < ∞. Now note that f ∈ E(a0, . . . , an−1)[x]. This means that α is algebraic

over the field E(a0, . . . , an−1). Hence [E(a0, . . . , an−1, α) : E(a0, . . . , an−1)] < ∞. Now applying

Lemma 17.14 gives [E(a0, . . . , an−1, α) : E] < ∞. In particular, since α belongs to the field

E(a0, . . . , an−1, α), α is algebraic over E by Lemma 17.18. �

Example 17.27. Suppose that F ⊆ K is a field extension. We say that F is algebraically closed

in K if given any chain of subfields F ⊆ L ⊆ K with L/F algebraic, then L = F . In other words,

no subfield of K properly containing F is algebraic over F .

Now given an arbitrary extension E ⊆ K, we can define F = {α ∈ K|α is algebraic over E}.

As we have seen, E ⊆ F ⊆ K with F a subfield of K algebraic over E. Now we can see that

F is algebraic closed in K. For if F ⊆ L ⊆ K with L/F algebraic, then L/E is algebraic by

Theorem 17.26. Thus every element of L is algebraic over E, which means L ⊆ F and hence

L = F .

In particular, considering Q ⊆ Q ⊆ C, we see that Q is algebraically closed in C.

17.3. Splitting fields. Let F be a field and let f(x) ∈ F [x] be an irreducible polynomials. Recall

that if deg f ≥ 2, then f has no roots in F (Corollary 11.13). Of course, if we have a field extension

F ⊆ K, then f might well have a root in K.

It is natural to wonder if we just start with a field F and have no prior knowledge about any

extension fields, does there always exist a field extension F ⊆ K such that the irreducible polynomial

f ∈ F [x] has a root in K? The next lemma answers this question. While the proof of the lemma

is easy, the idea behind it is rather subtle.

Lemma 17.28. Let f ∈ F [x] be irreducible. Then K = F [x]/(f) is a field, and identifying F with

a subfield of K as usual, then f has a root α in K.
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Proof. We already know that K is a field and we saw that the natural map θ : F → F [x]/(f) is

an injective homomorphism, allowing us to identify F with the cosets of constant polynomials in

K = F [x]/(f). This was Lemma 17.4.

But now observe that for α = x+ (f) ∈ K, evaluating f =
∑n

i=0 aix
i at α gives

n∑
i=0

(ai + (f))(x+ (f))i =

n∑
i=0

(aix
i + (f)) = (

n∑
i=0

aix
i) + (f) = f + (f) = 0 + (f) = 0.

Thus f has a root in K as we wished. �

Recall that a polynomial f ∈ F [x] splits (over F ) if f factors as a product of degree 1 irreducibles.

Since every degree 1 irreducible is of the form (x − a) up to associates, this is the same as saying

that we can write f = c(x − α) . . . (x − αn) for some c, α1, . . . , αn ∈ F . A field F is algebraically

closed if every polynomial in F [x] splits over F , or equivalently if every irreducible polynomial in

F [x] is of degree 1. We will freely use in examples that C is algebraically closed, though we don’t

prove this until much later.

Definition 17.29. Let F ⊆ K be a field extension and let f ∈ F [x]. We say that K is a splitting

field for f over F if

(i) f = c(x− α1) . . . (x− αn) with c, α1, . . . , αn ∈ K, i.e. f splits over K.

(ii) K = F (α1, . . . , αn).

Roughly, this definition is saying that a splitting field K is a larger field in which f splits, but

where K is no larger than necessary for this to happen. Certainly any field over which f splits

must contain the field generated over F by the roots of f .

We have seen that we can always find a larger field in which any given irreducible polynomial

has a root. We can now extend this to see that any polynomial has a splitting field.

Lemma 17.30. Let F be a field and let f ∈ F [x]. Then there exists a field extension F ⊆ K such

that K is a splitting field for f over F .

Proof. First we prove that there exists a field extension F ⊆ L such that f splits in L[x]. We induct

on deg f . If f already splits in F [x], take L = F . Otherwise, a factorization of f into a product of

irreducibles in F [x] contains at least one irreducible factor, say g, with deg g ≥ 2. By Lemma 17.28,

there is an extension F ⊆ L′ such that g has a root α1 in L′. Then by the factor theorem, in L′[x]

the polynomial f factors as f = (x − α1)f ′ for f ′ ∈ L′[x]. Since deg f ′ < deg f , by the induction

hypothesis there is an extension L′ ⊆ L such that f ′ splits in L[x], say f ′ = c(x− α2) . . . (x− αn).

Then f = c(x− α1)(x− α2) . . . (x− αn) in L[x], so f splits in L[x].
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Finally, define K = F (α1, . . . , αn) ⊆ L. It is clear that K is a splitting field for f over F . �

As we saw in the proof above, to find a splitting field K for a polynomial f ∈ F [x], it suffices to

find a field extension F ⊆ L such that f splits in L[x] with f = c(x− α1) . . . (x− αn) and then let

K = F (α1, . . . , αn) ⊆ L. In particular, since we know any polynomial in C[x] splits, if F ⊆ C we

can find a splitting field for f ∈ F [x] by finding the roots of f in C and adjoining them to F inside

C.

Example 17.31. Let f = xn − 1 ∈ Q[x] for some n ≥ 1. We know that C has n distinct nth

roots of 1, namely αj = e2jπi/n for 1 ≤ j ≤ n. Thus xn − 1 = (x − α1) . . . (x − αn) since both

are monic and have the same distinct n roots in C. So K = Q(α1, . . . , αn) is a splitting field for

xn − 1 over Q. Now note that setting ζ = α1 = e2πi/n, we have αi = ζi for all i. It follows that

K = Q(ζ, ζ2, . . . , ζn) = Q(ζ) and so K is a simple extension of Q. It is called the nth cyclotomic

field.

Consider the special case where n = p is prime. In this case xp − 1 = (x − 1)g(x) where

g(x) = xp−1 + · · ·+ x+ 1 was shown to be irreducible over Q in Example 11.20. Clearly ζ = e2πi/p

is a root of g and therefore g = minpolyQ(ζ). Hence [Q(ζ) : Q] = p− 1 in this case.

We will calculate the degree [Q(ζ) : Q] for arbitrary n later.

Example 17.32. Generalizing the previous example, let us consider the splitting field of f =

xn − a ∈ Q[x] over Q for some n ≥ 1 and a 6= 0. Let α be any nth root of a in C. As in the

previous example, let ζ = e2πi/n so that {1, ζ, . . . , ζn−1} is the set of distinct complex nth roots of

1. Then the set {α, αζ, αζ2, . . . , αζn−1} consists of n distinct complex numbers and they are all

roots of xn − a; thus xn − a = (x− α)(x− αζ) . . . (x− αζn−1) in C[x]. Now a splitting field for f

over Q can be constructed inside C as Q(α, αζ, . . . αζn−1) = Q(α, ζ).

Let us consider the special case where f = xp−q for prime numbers p, q (not necessarily distinct).

The number q has a unique positive pth root α = p
√
q ∈ R. By the Eisenstein criterion applied to

the prime q, f is irreducible over Q. Thus f = minpolyQ(α) and [Q(α) : Q] = p. We have seen

that minpolyQ(ζ) = xp−1 + · · · + x + 1 in this case, so [Q(ζ) : Q] = p − 1. By Corollary 17.25,

d = [Q(α, ζ) : Q] ≤ p(p − 1). On the other hand, [Q(ζ) : Q] = p − 1 and [Q(α) : Q] = p are

both divisors of d by Lemma 17.14. Since gcd(p, p − 1) = 1, we see that this forces d = p(p − 1).

It also means that [Q(α, ζ) : Q(α)] = p − 1 and thus deg minpolyQ(α)(ζ) = p − 1; this forces

minpolyQ(α)(ζ) = xp−1 + · · ·+ x+ 1. It would be rather awkward to prove that this polynomial is

irreducible over Q(α) directly. Similarly, [Q(α, ζ) : Q(ζ)] = p and minpolyQ(ζ)(α) = xp − q.
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It turns out that any two splitting fields of a polynomial f ∈ F [x] are isomorphic as fields. This

is perhaps not too surprising, since by definition, in some sense the splitting field is a “smallest”

field extension over which f splits, and that ought to be determined by f . However, along the way

we will actually show something stronger: if f is irreducible in F [x], then given two splitting fields

K and K ′, we can choose an isomorphism between them which sends a specified root of f in K to

any root of f in K ′ we please. Applying this to a single splitting field will give us a way to produce

automorphisms of a field which move the roots of f around. This will lay the foundation for our

study of Galois theory later.

Before attacking the general case of splitting fields, we first example what happens when we

adjoin to a field F two possibly different roots of the same irreducible polynomial f ∈ F [x]. For

technical reasons, it is necessary to state this result in a generality that at first seems rather

awkward: instead of fixing a base field, we work over two different base fields with an isomorphism

between them. It doesn’t really make the proof harder, and its utility will be seen in the proof of

the proposition to follow.

Lemma 17.33. Let φ : F → F ′ be an isomorphism of fields. This induces an isomorphism of

polynomial rings φ : F [x] → F ′[x] we give the same name, by applying φ to the coefficients. Let

f ∈ F [x] be an irreducible polynomial (over F ) and let f ′ = φ(f) ∈ F ′[x]. Suppose that F ⊆ K

and F ′ ⊆ K ′ are field extensions such that α ∈ K is a root of f and α′ ∈ K ′ is a root of f ′. Then

considering F ⊆ F (α) ⊆ K and F ′ ⊆ F ′(α′) ⊆ K ′, there is an isomorphism θ : F (α) → F ′(α′)

such that θ(α) = α′ and θ|F = φ.

Proof. Since f is irreducible over F , f = minpolyF (α). Since φ : F [x] → F ′[x] is an isomorphism

of rings, f ′ = φ(f) is irreducible over F ′, and so f ′ = minpolyF ′(α
′). Now by our theorem on the

structure of a simple extension, there are isomorphisms σ1, σ2, σ3 forming a chain

F (α)
σ1−→ F [x]/(f)

σ2−→ F ′[x]/(f ′)
σ3−→ F ′(α′)

Where σ−1
1 : F [x]/(f) → F (α), σ3 : F ′[x]/(f ′) → F ′(α′) are the isomorphisms coming from

Theorem 17.8(i), and σ2 is induced by the isomorphism φ : F [x]→ F ′[x] and the fact that φ(f) = f ′.

Now take θ = σ3σ2σ1. Then

θ(α) = [σ3σ2σ1](α) = [σ3σ2](x+ (f)) = σ3(x+ (f ′)) = α′,

and θ|F = φ since σ2|F = φ while σ1|F = 1F and σ3|F ′ = 1F ′ . �
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Corollary 17.34. Let F ⊆ K be a field extension, and let f ∈ F [x] be irreducible over F . Suppose

that α1, α2 ∈ K are roots of f . Then there is an isomorphism σ : F (α1) → F (α2) such that

σ(α1) = α2 and σ|F = 1F .

Proof. This is immediate by applying the lemma to F = F ′, φ = 1F , K ′ = K. �

We see thus that adding two roots of the same irreducible polynomial give isomorphic simple

extensions. All roots of an irreducible polynomial in a larger field are “equal” in this sense.

Example 17.35. Let ζ = e2πi/3 be a primitive 3rd root of 1. Consider the splitting field K of

f(x) = x3 − 2 over Q. As we saw in Example 17.32, f is irreducible over Q. If α = 3
√

2 is the

positive real cube root of 2, then the roots of f in C are { 3
√

2, 3
√

2ζ, 3
√

2ζ2}. By Corollary 17.34,

there is an isomorphism φ : Q( 3
√

2) → Q( 3
√

2ζ) fixing Q and sending 3
√

2 to 3
√

2ζ. The two fields

Q( 3
√

2) and Q( 3
√

2ζ) are certainly different, as one of these fields is contained in R and the other

isn’t. But as abstract fields they are isomorphic and so must have the same structure.

Now we are ready to prove the uniqueness up to isomorphism of splitting fields.

Proposition 17.36. Let φ : F → F ′ be an isomorphism of fields, inducing the isomorphism of

rings φ : F [x]→ F ′[x]. Suppose K is a splitting field of f ∈ F [x] over F , and K ′ is a splitting field

of φ(f) ∈ F ′[x] over F ′.

(1) There is an isomorphism σ : K → K ′ such that σ|F = φ.

(2) If g ∈ F [x] is any irreducible factor of f in F [x], then for any α ∈ K which is a root of g,

and any α′ ∈ K ′ which is a root of φ(g), we can choose a σ in (1) with σ(α) = α′.

Proof. Suppose that we have proved (1) and that g is an irreducible factor of degree 1 in part (2). It

is no loss of generality to assume that g is monic, so g = x−α ∈ F [x]. Then φ(g) = x−φ(α) ∈ F ′[x].

So the only root of g is α and the only root of φ(g) is φ(α), and since σ|F = φ we certainly have

σ(α) = φ(α). So part (2) is automatic for irreducibles of degree 1.

The proof in general is by induction on degree f . If f splits over F already, then K = F . This

also means that f ′ splits over F ′, so K ′ = F ′; thus we take σ = φ in part (1). In this case all

irreducible factors of f have degree 1 so (2) is also clear by the remark above. In particular, if

deg f ≤ 1 then f splits, so the base case holds.

Now we assume that f has some irreducible factor g ∈ F [x] with deg g ≥ 2, and that the result

is true for all polynomials of degree smaller than f . Let g′ = φ(g). Then g′ is irreducible in F ′[x].

Since f and hence g splits in K, we can pick a root α ∈ K of g. Similarly we pick a root α′ ∈ K ′

of g′.
243



By Lemma 17.33, there is an isomorphism θ : F (α) → F ′(α′) such that θ(α) = α′ and θ|F = φ.

Now the key is to treat θ as the new isomorphism of base fields. Since α is a root of g and hence

of f , we have f = (x − α)h for some h ∈ F (α)[x]. Since f splits over K, all of the roots of

f in K other than α, say β1, . . . , βm, are roots of h. It follows that K = F (α)(β1, . . . , βm) is a

splitting field of h ∈ F (α)[x] over F (α). As usual we extend θ to an isomorphism of polynomial rings

θ : F (α)[x]→ F ′(α′)[x], and as such θ(f) = (x−θ(α))θ(h) = (x−α′)h′ where h′ = θ(h) ∈ F ′(α′)[x].

Thus we similarly conclude that K ′ is a splitting field of h′ over F ′(α′).

We thus have an isomorphism θ : F (α) → F ′(α′) and splitting fields K of h ∈ F (α)[x] and K ′

of θ(h) = h′ ∈ F ′(α′)[x]. Since deg h < deg f , by the induction hypothesis there is an isomorphism

σ : K → K ′ such that σ|F (α) = θ (in particular, σ(α) = θ(α) = α′). We also have σ|F = θ|F = φ.

This proves part (1). We have proved part (2) along the way, since we saw that (2) is trivial

if f splits over F , and otherwise to do the proof we chose an arbitrary irreducible factor g of f

with deg g ≥ 2 and constructed a σ with σ(α) = α′, where α and α′ were arbitrary roots of g and

φ(g) = g′, respectively. �

It should be clear now why Lemma 17.33 and Proposition 17.36 were stated using an isomorphism

of base fields φ : F → F ′ rather than a fixed base field. In the proof of the induction step in

Proposition 17.36, even if we had started with F = F ′ and φ = 1F at the beginning, we would be

forced to consider an isomorphism of base fields θ : F (α) → F (α′) at the induction step, where

these fields are isomorphic but different in general. To make the induction work it is necessary for

the statement to be in terms of an isomorphism of base fields from the start.

Nonetheless, we usually apply Proposition 17.36 in the case where F = F ′ and φ = 1F . In this

case, it tells us that if F ⊆ K and F ⊆ K ′ are both splitting fields of f ∈ F [x], then there is

an isomorphism σ : K → K ′ with σ|F = 1F . This tells us that splitting fields are unique up to

isomorphism, as we claimed earlier. The proposition also tells us how to construct automorphisms

of a splitting field which move roots around; this special case is worth singling out:

Corollary 17.37. Let f be a polynomial in F [x] and let K be a splitting field for f over F . If

g is an irreducible factor of f in F [x] and α, α′ ∈ K are both roots of g, then there exists an

automorphism σ : K → K such that σ(α) = α′.

Proof. Just take F = F ′, φ = 1F , and K = K ′ in Proposition 17.36. �

Example 17.38. Let us revisit Example 17.35. A splitting field of x3 − 2 over Q is K = Q(α, ζ)

where α = 3
√

2, ζ = e2πi/3, and [K : Q] = 6. Let us construct 6 different automorphisms of K.
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Since x3 − 2 is irreducible, by Corollary 17.37 we can find automorphisms σ, τ of K such that

σ(α) = αζ and τ(α) = αζ2. We also saw in Example 17.32 that g = x2 + x + 1 = minpolyQ(ζ)

remains irreducible over Q(α). Clearly K is the splitting field of g over Q(α). Thus by the Corollary

again, there is an automorphism ρ of K such that ρ|Q(α) = 1Q(α) but ρ(ζ) = ζ2.

Now it is easy to check that the 6 automorphisms {1K , σ, τ, ρ, σρ, τρ} of K are all different, as

no two act the same way on both α and ζ.

17.4. Separability. Suppose that f ∈ F [x] is a monic polynomial over a field F and that F ⊆ K

is a field extension such that f splits in K[x], say f = (x − α1) . . . (x − αn) ∈ K[x]. Could it be

that some of the αi are equal? Of course there are easy ways to make this happen; for example we

could have f = (x − α)2 with α ∈ F already; or slightly less trivially, f = g2 for some irreducible

polynomial g ∈ F [x] which splits over K, so that each root appears twice when we factor f into

linear factors over K. An example of the latter phenomenon would be f = (x2 + 1)2 ∈ Q[x].

What is less obvious is whether there could be an irreducible polynomial f ∈ F [x] where some

of the αi are equal in the factorization of f over K. In fact this does happen, but only for special

kinds of fields and field extensions which are quite different from the examples given so far. The

goal of this section is to study this phenomenon, and also show that it is something that doesn’t

happen in many of the most common situations.

Definition 17.39. A polynomial f ∈ F [x] is called separable if given a splitting field K for f

over F , f factors as f = c(x − α1) . . . (x − αn) ∈ K[x] with α1, α2, . . . , αn distinct elements of K.

Otherwise we say that the polynomial f is inseparable.

We have seen that if F ⊆ K and F ⊆ K ′ are both splitting fields for f ∈ F [x], then there is an

isomorphism σ : K → K ′ such that σ|F = 1F . Using this it is easy to see that the definition above

is independent of the choice of splitting field; if f splits with distinct roots in one splitting field,

the same will be true in any other. Note that f is separable if and only if f has deg f distinct roots

in a splitting field K.

Example 17.40. (x2 + 1)2 ∈ Q[x] is an inseparable polynomial, as already mentioned; in C[x] it

factors as (x + i)(x + i)(x − i)(x − i). If a 6= 0, the polynomial xn − a ∈ Q[x] is separable over Q

for all n ≥ 1, as we have seen that it has n distinct roots in C in Example 17.32.

Example 17.41. Here is an example of a polynomial which is inseparable and also irreducible.

Let F = F2(y) be the field of rational functions in one variable over the field F2 with two elements.

Note that charF = 2. We claim that f = x2 − y ∈ F [x] is an irreducible polynomial over F . This
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follows from the Eisenstein criterion, thinking of F as the field of fractions of F2[y], since y is prime

in F2[y]. Now let K = F [x]/(x2 − y) and think of F ⊆ K as a field extension as usual. In K there

is a root α = x+ (x2 − y) of the polynomial x2 − y. In other words, α2 = y in K. Now note that

(x − α)2 = x2 − 2α + α2 = x2 + y = x2 − y since we are in characteristic 2. Thus the irreducible

polynomial x2 − y factors in K[x] as the square (x− α)2 and thus has only the single root α in K.

Hence f is inseparable.

The example above may seem complicated at first, but it is in some sense the simplest example

of an inseparable irreducible polynomial. That will become clear from the next results.

A useful technical tool in studying separability is given by the formal derivative of a polynomial.

Definition 17.42. Let F be any field. If f = anx
n + · · ·+ a1x+ a0 ∈ F [x] we define its derivative

as

f ′ = nanx
n + (n− 1)an−1x

n−1 + · · ·+ 2a2x+ a1 =

n∑
i=1

iaix
i−1 ∈ F [x].

Remark 17.43. This definition requires some interpretation. In the formula
∑n

i=0 iaix
i−1 for f ′,

the coefficient iai is the “ith multiple” of ai, which is defined in any field F . In other words,

i really means the ith multiple of 1, or the image of i under the canonical ring homomorphism

Z → F . In particular, if charF = p > 0 then some coefficients of f ′ may become 0; for example

(xp)′ = pxp−1 = 0.

It is also worth pointing out that there is no limiting process involved here as is used in the

definition of the derivative in calculus. We are only defining the derivative of a polynomial, which

is done with an explicit formula. Nonetheless, it is easy to check that this definition satisfies all of the

usual differentation formulas. In particular, if f, g ∈ F [x] then (f + g)′ = f ′+ g′; (fg)′ = fg′+ f ′g;

and (fd)′ = dfd−1f ′ for any positive integer d.

The next result gives an explicit connection between the derivative of a polynomial and separa-

bility.

Lemma 17.44. Let f ∈ F [x]. Then f is separable if and only if gcd(f, f ′) = 1.

Proof. Let F ⊆ K be a splitting field for f over F . In K[x] we have

f = c(x− α1)e1(x− α2)e2 . . . (x− αm)em ,

where α1, α2, . . . , αm are distinct in K; f is separable if and only if ei = 1 for all i.
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Note that the derivative f ′ of f is independent of whether we are thinking of f as a polynomial

over F [x] or over K[x]. Also, the product rule for derivatives extends to more than 2 factors as

(f1f2 . . . fm)′ =
∑m

i=1 f1f2 . . . fi−1(fi)
′fi+1 . . . fm. Thus we have

f ′ =
m∑
i=1

cei(x− α)e1 . . . (x− αi−1)ei−1(x− αi)ei−1(x− αi+1)ei+1 . . . (x− αm)em .

From this we see that if ei ≥ 2, then (x− αi) divides every term of the sum and so (x− αi)|f ′ (in

K[x]). Of course (x − αi)|f also, so (x − αi)| gcdK[x](f, f
′). Conversely, if ei = 1, then (x − αi)

divides every term of the sum except the ith; so (x−αi) does not divide f ′. Since the (x−αi) are

the only irreducible factors of f in K[x], if ei = 1 for all i then we get gcdK[x](f, f
′) = 1.

We have proved that f is separable if and only if gcdK[x](f, f
′) = 1. However, the gcd of two

polynomials in F [x] is the same whether calculated over F [x] or over K[x]; this can be shown by

noting that the steps in the Euclidean algorithm are the same in either case. Thus f is separable

if and only if gcdF [x](f, f
′) = 1. �

The lemma has immediate interesting consequences for what an irreducible inseparable polyno-

mial could possibly look like.

Proposition 17.45. Suppose that f ∈ F [x] is irreducible over F . Then f is inseparable if and

only if

(i) charF = p for some p > 0; and

(ii) f =
∑n

i=0 bix
ip for some bi ∈ F .

Proof. Suppose that f is inseparable. By Lemma 17.44, gcd(f, f ′) 6= 1. However, since f is

irreducible, its only divisors (up to associates) are 1 and f . Thus gcd(f, f ′) = f . But how can this

happen? Note that deg f ′ < deg f always. If f |f ′ this forces f ′ = 0.

Now since f is irreducible, deg f ≥ 1. If f =
∑n

i=0 aix
i then f ′ =

∑n
i=1 iaix

i−1 so iai = 0 for all

i ≥ 1. We can think of this as (i · 1)ai = 0 where i · 1 is the ith multiple of 1. Since F is a domain,

for each i either ai = 0 or else i · 1 = 0; the latter happens if and only if charF = p > 0 and i is

a multiple of p. It follows that if charF = 0 then f can have only a constant term, so deg f = 0

and f is not irreducible, a contradiction. Thus we must have as in (i) that charF = p > 0, and we

see that f is a polynomial whose only nonzero coefficents are the ai where i is a multiple of p. By

reindexing such a polynomial we get one in the form of (ii).

Conversely, if (i) and (ii) hold, a similar argument shows that f ′ = 0, and thus gcd(f, f ′) = f 6= 1.

Thus f is inseparable by Lemma 17.44. �
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The proposition implies the useful fact that for a field of characteristic 0, all irreducible polynomi-

als are separable. In particular, when working over Q, as is the main setting for many investigations

in field theory, separability becomes a non-issue. The characteristic p setting is still very important

to applications, however, and so it is interesting to push our results in this case further. We will see

shortly that certain special fields of characterstic p also have no irreducible inseparable polynomials.

Definition 17.46. Let R be a commutative ring with charR = p > 0. Then the Frobenius

homomorphism is the map φ : R→ R given by φ(a) = ap.

Note that while the pth power map preserves multiplication in any commutative ring, the preser-

vation of addition works here only because we are in characteristic p. This follows from the binomial

formula:

φ(a+ b) = (a+ b)p =

p∑
i=0

(
p

i

)
aib

p−i = ap + bp

because
(
p
i

)
= p!/(i)!(p− i)! is a multiple of p for all 0 < i < p. Thus the Frobenius homomorphism

really is a homomorphism of rings.

Proposition 17.47. Let F be a field with charF = p > 0. If the Frobenius homomorphism

φ : F → F is surjective, then every irreducible polynomial f ∈ F [x] is separable.

Proof. Let f ∈ F [x] be irreducible and suppose that f is inseparable over F . By Proposition 17.45,

f =
∑n

i=0 bix
ip for bi ∈ F . Now since the Frobenius is surjective, every element of F is a pth power.

In particular, bi = (ai)
p for some ai ∈ F . Then

f =

n∑
i=0

bix
ip =

n∑
i=0

(ai)
p(xi)p =

n∑
i=0

(aix
i)p = (

n∑
i=0

aix
i)p.

But now f factors as a product of p copies of the polynomial g =
∑n

i=0 aix
i ∈ F [x], so f is not

irreducible, a contradiction. �

When F is a field, we write the image of the Frobenius map φ : F → F as F p = {ap|a ∈ F}.

Since the Frobenius is a homomorphism of fields, it is injective and so F p is a subfield of F which

is isomorphic to F . The Frobenius need not be surjective, however.

Definition 17.48. A field F is perfect if either charF = 0 or else charF = p > 0 and F p = F .

The following result justifies including these two very different cases in one definition.

Proposition 17.49. A field F is perfect if and only if every irreducible polynomial in F [x] is

separable.
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Proof. We have seen that if either charF = 0 or charF = p and F p = F , then every irreducible

f ∈ F [x] is separable; see Proposition 17.45 and Proposition 17.47.

Conversely, suppose that F is not perfect. Thus there is a prime p such that charF = p > 0

and F p 6= F . thus we can pick a ∈ F such that a is not a pth power of an element in F . Now let

f = xp − a ∈ F [x] and find a field extension F ⊆ K such that f has a root in K, say α ∈ K. This

means that αp − a = 0, so α is a pth root of a in K. Now (x − α)p = xp − αp = xp − a = f , so

f = (x− α)p already splits in K[x] as a pth power. Thus f is inseparable.

On the other hand, we claim that f is irreducible over F . If not, then f = gh with g, h ∈ F [x]

where deg g ≥ 1, deg h ≥ 1. Now because of the factorziation of f in K[x] is a pth power of a

degree 1 irreducible, we must have g = (x − α)i and h = (x − α)j in K[x], where i + j = p and

i, j ≥ 1. But now the constant term of g is ±αi, so αi ∈ F . Since gcd(i, p) = 1 and αp = a ∈ F ,

writing 1 = mi + np we get α1 = (αi)m(αp)n ∈ F , a contradiction since a has no pth root in F .

Thus f is irreducible over F as claimed. �

Example 17.50. Let F be a field with charF = p > 0, and suppose that F is finite. Then F must

be perfect. Indeed, the Frobenius map φ : F → F is always injective (since F is a field). Then

since F is a finite set this forces φ to be surjective as well.

Example 17.51. Let F = Fp(y) be a field of fractions functions in one variable over Fp. Then F is

not perfect. In fact, this must be true, we already saw Example 17.41 that F [x] has an irreducible

inseparable polynomial when p = 2, and a similar example works for arbitrary p.

But we can also check it directly from the definition of perfect, by showing that y ∈ F has no

pth root. Indeed, suppose that f/g ∈ F , where f, g ∈ Fp[y], and that (f/g)p = y. Then fp = ygp

in Fp[y]. But then considering degrees we have p deg f = p deg g + 1, which is absurd.

There are infinite fields of characteristic p which are perfect, as well. An easy example is any

algebraically closed field of characteristic p (we will see later that these exist). Over an algebraically

closed field there are no irreducible polynomials except those of degree 1, which are trivially sepa-

rable.

17.5. Finite fields and the Theorem of the Primitive Element. In the first part of this

section, we give the basic structure theory of fields with finitely many elements.

We start with an easy group theory result and its application to the structure of the multiplicative

group of a field.
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Lemma 17.52. Let G be a finite abelian group of order n. Suppose that for each divisor d of n

that G has at most d elements of order dividing d. Then G is cyclic.

Proof. We use the classification of finite abelian groups in the invariant factor form. This tells us

that G is isomorphic to an additive group Z/(a1)⊕ · · · ⊕ Z/(am), where a1|a2| . . . |am are integers

greater than 1. Suppose that m ≥ 2. Then since am−1|am, every element of the form g =

(0, 0, . . . , 0, b, c) satisfies amg = 0. There are (am)(am−1) > am such elements. In other words, G

has more than am elements of order dividing am, contradicting the hypothesis. Thus m = 1 and

G ∼= Z/(a1) is cyclic. �

Corollary 17.53. Let F a be a field and F× = F − {0} its multiplicative group. If G is a finite

subgroup of F× then G is cyclic. In particular, if F is a finite field then F× is cyclic.

Proof. Using multiplicative notation, the elements in G of order dividing d are {g ∈ G|gd = 1}.

In other words, these are roots in G of the polynomial xd − 1 ∈ F [x]. This polynomial can have

at most d roots in F by Corollary 11.11. Thus the hypotheses of the lemma are satisfied and we

conclude that G is cyclic. The last statement is clear. �

Now let us prove the basic structural results of finite fields. Note that if F is a finite field, then

certainly 1 has finite additive order and so F has positive characteristic, say p for a prime p. Then

the additive subgroup generated by 1 is a subfield isomorphic to Fp, so we can think of F as an

extension of Fp.

Theorem 17.54. Let p be prime. For each n ≥ 1, setting q = pn the splitting field of xq − x over

Fp is a field Fq with |Fq| = q. Conversely, if F is any finite field of characteristic p then F ∼= Fq
for q = pn, some n ≥ 1.

Proof. Let F be the splitting field of f = xp
n − x over Fp. Note that f ′ = pnxp

n−1 − 1 = −1 since

we are in characteristic p, so we must have gcd(f, f ′) = 1, and by Lemma 17.44 f is separable.

Thus f has pn distinct roots in F . Let E be the set of these roots in F , so E = {α ∈ F |αpn = α}.

Note that φ : F → F given by φ(x) = xp
n

is the nth power of the Frobenius homomorphism; in

particular, φ is a homomorphism of fields. Then E = {x ∈ F |φ(x) = x} is automatically a subfield

of F . Now since E contains all of the roots of f , the polynomial f already splits in E[x], and

obviously the subfield of F generated over Fp by these roots must be E. Hence F = E and the

spliting field of f is actually equal to the set of roots of f . In particular |F | = pn. Letting q = pn

and writing Fq = F , we have |Fq| = q.
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Conversely, let F be a finite field of characteristic p. As we remarked above, F contains a copy

of Fp. Thus we have a field extension Fp ⊆ F . The degree [F : Fp] = n is certainly finite, since

F is. Moreover, a vector space of dimension n over Fp clearly has precisely pn elements, because

this is the number of distinct Fp-linear combinations of n basis vectors. Now F× = F − {0} is a

multiplicative group of order pn − 1; so for any α ∈ F× we have αp
n−1 = 1. Then αp

n
= α. This

latter equation is also true for α = 0. Hence every element of F is a root of f = xp
n − x ∈ Fp[x].

Since F consists of pn = deg f distinct roots of f , the polynomial f must already split over F as

xp
n − x =

∏
α∈F (x − α) ∈ F [x]. So F is a splitting field of f over Fp. Now by the uniqueness of

splitting fields up to isomorphism, setting q = pn we have that F ∼= Fq for the field Fq constructed

above. �

Thinking of the field Fq for q = pn as the splitting field of xp
n − x was useful for theoretical

reasons, but to actually construct a field Fq, in practice it is helpful to find it as a splitting field of

a polynomial of smaller degree. This can be done with the help of our result that the multiplicative

group of a finite field is cyclic.

Lemma 17.55. Let p be prime. For each n ≥ 1 there is at least one irreducible polynomial f ∈ Fp[x]

of degree n; and for any such f , Fp[x]/(f) is a field isomorphic to Fpn.

Proof. Consider the field F = Fpn as an extension of its prime subfield Fp. We know that F× is

a cyclic group by Corollary 17.53, say with generator γ. Since the powers of γ fill up F×, clearly

Fp(γ) = F , so F is a simple extension of Fp. Consequently F ∼= Fp[x]/(f) where f = minpolyFp(γ).

But we also know that [F : Fp] = n = deg f , so f is an irreducible polynomial over Fp of degree n.

Conversely, it is clear that for any irreducible polynomial g ∈ Fp[x] of degree n, then K =

Fp[x]/(g) is a field with [K : Fp] = n and hence |K| = pn. �

Example 17.56. Irreducible polynomials of low degree over Fp can be found explicitly as described

in Example 11.16. For example, as shown there, f = x4 + x + 1 is irreducible over F2 and thus

F16
∼= F2[x]/(x4 +x+1). This gives an explicit description of F16 that allows one to do calculations

in this field, by writing its elements as {a0 + a1x+ a2x
2 + a3x

3 + (f)|ai ∈ F2} and doing arithmetic

of such elements modulo (f).

For example, consider x ∈ F16 (ommitting the +(f) and just remembering to do calculations

modulo f). The relation tells us that x4 = −x− 1 = x+ 1. Then x5 = x2 + x and x3 = x3 are not

equal to 1 (since the representative of a coset with degree ≤ 3 is uniquely determined). This shows

that the order of x in F×16 is 15 and so x is a generator of the cyclic group F×16.
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Corollary 17.53 is also relevant to the proof of a basic theorem often called the “Theorem of

the Primitive Element”. It gives a useful criterion for when a finite degree extension is a simple

extension, i.e. generated by one element. The name arises from the fact that in a simple extension

F ⊆ F (γ) the element γ is sometimes called a primitive element for the extension.

Theorem 17.57. Let F ⊆ K be a field extension with [K : F ] <∞. The following are equivalent:

(i) K = F (γ) for some γ ∈ K.

(ii) There are finitely many subfields E with F ⊆ E ⊆ K.

Proof. Different arguments are required here depending on whether F is finite or infinite. The finite

case follows quickly from results we have already proved. If |F | < ∞ then |K| = [K : F ]|F | < ∞

also. Then K× is a cyclic group by Corollary 17.53, generated by some γ, say. Thus K = F (γ),

so every finite degree extension of a finite field is simple and (i) is automatic. Condition (ii) also

trivially holds when F and hence K is finite, since K has finitely many distinct subsets.

Assume for the rest of the proof that |F | = ∞. Suppose as in (ii) that there are finitely many

subfields E with F ⊆ E ⊆ K (these are called intermediate fields for the extension F ⊆ K).

Suppose that α, β ∈ K and consider the fields Ea = F (α + aβ) as a ranges over elements of F .

Since each Ea is an intermediate field, of which there are only finitely many, yet |F | =∞, we must

have Ea = Eb, for some a 6= b. Then Ea contains α+aβ−(α+bβ) = (a−b)β and since 0 6= a−b ∈ F ,

β ∈ Ea. But then aβ ∈ Ea and so α ∈ Ea also. It follows that Ea = F (α + aβ) = F (α, β). This

shows that the subfield of K generated over F by any two elements can actually be generated by

one element. Since [K : F ] <∞, K/F is certainly finitely generated. By iteratively replacing pairs

of generators by a single generator we obtain that K = F (γ) for some γ.

Conversely, suppose that K = F (γ) for some γ ∈ K. Let F ⊆ E ⊆ K where E is an intermediate

field. Since [K : F ] <∞, certainly [K : E] <∞, so γ is algebraic over E. Let f = minpolyE(γ) =

xn+an−1x
n−1 + · · ·+a1x+a0 ∈ E[x]. Since all ai ∈ E, we have E′ = F (a0, . . . , an−1) ⊆ E. Since f

is irreducible in E[x], and also f ∈ E′[x], certainly f is irreducible in E′[x]. Thus f = minpolyE′(γ)

also. But this means that [K : E′] = [E′(γ) : E′] = deg f = [E(γ) : E] = [K : E]. This forces

[E : E′] = 1 and hence E′ = E. In particular, E is generated over F by the coefficients of

f = minpolyE(γ). Now let g = minpolyF (γ). Then since g(γ) = 0, we have f |g in E[x], hence in

K[x]. Since there are only finitely many monic polynomials that divide g in K[x], there are finitely

many possible f and so finitely many intermediate fields E. �
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We will see later that if F ⊆ K is a finite degree separable extension, then condition (ii) above

holds and hence K = F (γ) is a simple extension. For example, an arbitrary finite degree extension

of Q can be generated by one element, which is quite surprising.

18. Galois Theory

18.1. Separable and normal extensions. In this section we study two special properties of

field extensions, separability and normality, and their relations to automorphisms of fields. This

will lay the main groundwork for the fundamental theorem of Galois Theory in the next section.

This theory is named for the French mathematician Évariste Galois (pronounced “gal-wah”), who

developed its main ideas at a young age before his life was tragically cut short in a duel. At the

time, there was no notion of a “group”—the groups that occured in Galois’s work were explicit

subsets of the group of permutations of the roots of a polynomial. These ideas nonetheless helped

to point the way to the idea of an abstract group which was formulated later in the 1800’s.

Definition 18.1. Let F ⊆ K be a field extension. We define

Aut(K) = {σ : K → K |σ is an automorphism of fields},

which is a group under composition. The Galois group of the field extension K/F is

Gal(K/F ) = {σ ∈ Aut(K) |σ(a) = a for all a ∈ F}.

It is a subgroup of Aut(K).

We read Gal(K/F ) as “Galois K over F”. We say that the elements of Gal(K/F ) fix F . Note

that these elements are required to fix F pointwise, not just as an overall set.

One reason it is interesting to consider automorphisms of K that fix F is the following. If

σ ∈ Gal(K/F ) and f ∈ F [x], then if α ∈ K is a root of f , then σ(α) is also a root of f . Explicitly,

if f =
∑
aix

i with ai ∈ F , then
∑
aiα

i = 0, so applying σ we get∑
σ(ai)σ(α)i =

∑
aiσ(α)i = f(σ(α)) = 0,

since σ fixes F . Thus elements in Gal(K/F ) must permute any roots of f ∈ F [x] that lie in K. We

will use this fact frequently.

It turns out that finite degree extensions which have “enough” automorphisms have particularly

good properties and will be the focus of the fundamental theorem later. The relevant definition is

the following.

Definition 18.2. A finite degree extension K/F is called Galois if |Gal(K/F )| = [K : F ].
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Here are two examples that show the sort of things that might go wrong and prevent an extension

from being Galois.

Example 18.3. Consider Q ⊆ K = Q( 3
√

2) inside C. Since K ⊆ R and the other two roots of

x3 − 2 in C are not real, 3
√

2 is the only root of x3 − 2 in K. Now if σ ∈ G = Gal(K/Q), then by

the remark above σ( 3
√

2) = 3
√

2 is forced. Since σ ∈ G fixes Q and the element 3
√

2 which generates

K, it follows that σ = 1K . Thus G is trivial and |Gal(K/Q)| = 1 < [K : Q] = 3.

Example 18.4. Consider F = F2(y). As we have already seen in Example 17.41, the polynomial

f = x2 − y ∈ F [x] is inseparable and irreducible. If K is a splitting field of f over F then there is

α ∈ K such that f(α) = 0, that is α2 = y, and where f = (x−α)2 ∈ K[x]. So K = F (α). Again if

σ ∈ Gal(K/F ) then σ(α) = α because σ permutes the roots of f ∈ F [x] (and α is the only root).

This implies that σ = 1K and so |Gal(K/F )| = 1 < [K : F ] = 2.

In the next results we will see that the things that happened in the two examples above are the

only things that can go wrong in an extension K/F that is not Galois—either there is an irreducible

polynomial in F [x] that does not entirely split in K[x], so it doesn’t have enough roots in K, or

a polynomial in F [x] that splits in K[x] but with indistinct roots, so again there are not enough

different places for an automorphism to send the roots. This leads to the following two definitions.

Definition 18.5. Let F ⊆ K be an algebraic field extension. We say the extension K/F is separable

if for all irreducible polynomials f ∈ F [x], if f has a root in K then f is separable.

Definition 18.6. Let F ⊆ K be an algebraic field extension. We say the extension K/F is normal

if for all irreducible polynomials f ∈ F [x], if f has a root in K then f splits over K.

An alternative way to define these notions is using minimal polynomials: given an extension

K/F , it is normal if for all α ∈ K, minpolyF (α) splits in K[x], and it is separable if for all α ∈ K,

minpolyF (α) is a separable polynomial. This follows immediately from the fact that any irreducible

polynomial in F [x] that has α as a root must be the minimal polynomial of α.

Note that in Example 18.3, the extension Q ⊆ K is not normal, because the irreducible poly-

nomial f = x3 − 2 ∈ Q[x] has the root 3
√

2 ∈ K but does not split over K. In Example 18.4,

the extension F ⊆ K fails to be separable, because the minimal polynomial of α is the irreducible

inseparable polynomial x2 − y ∈ F [x].

It is useful to see how the separable and normal properties pass to smaller extensions.

Lemma 18.7. Let F ⊆ E ⊆ K be field extensions where K/F is algebraic.
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(1) If K/F is separable, then E/F and K/E are separable.

(2) if K/F is normal, then K/E is normal.

Proof. (1) It is obvious that E/F is separable from the definition–we are just checking minpolyF (α)

is separable for those α ∈ E, rather than for all α ∈ K. Now if α ∈ K, consider g = minpolyE(α).

If f = minpolyF (α), then since f(α) = 0 and f ∈ F [x] ⊆ E[x], we have g|f in E[x]. But now since

f has distinct roots in a splitting field, so does its factor g. So K/E is also separable.

(2) Similarly as in part (1), for α ∈ K, g = minpolyE(α) divides f = minpolyF (α). Now since

f splits over K, so does its factor g. �

It turns out that finite degree normal extensions are the same as splitting fields of polynomials.

Both points of view are useful, since the notion of normality doesn’t depend on a choice of poly-

nomial, so it is easier to work with abstractly; while thinking in terms of the splitting field of a

particular polynomial is important in calculations.

Lemma 18.8. Let F ⊆ K be a field extension with [K : F ] <∞. Then K/F is normal if and only

if there is a polynomial f ∈ F [x] such that K is the splitting field of f over F .

Proof. Suppose first that K is the splitting field over F of f ∈ F [x]. Thus f = a(x−α1) . . . (x−αm)

in K[x], with K = F (α1, . . . , αm). Let g ∈ F [x] be irreducible over F and assume that g(β1) = 0

with β1 ∈ K. Let K ⊆ L where L is the splitting field of g over K. So the polynomial g splits as

g = a(x− β1)(x− β2) . . . (x− βn) in L[x], and L = K(β1, . . . , βn).

Now note that f and g both split over L, and that L = F (α1, . . . , αm, β1, . . . βn). This implies

that L is a splitting field of h = fg ∈ F [x] over F . By Corollary 17.37, since g is an irreducible

factor of h, for any root βi of g there is an automorphism σ of L such that σ satisfies σ|F = 1F ,

in other words σ fixes F , and σ(β1) = βi. On the other hand, since f has coefficients in F , σ

must permute the roots {αj} of f as well. Since K is generated by the {αj} over F , σ(K) = K.

In particular, since β1 ∈ K, we get σ(β1) = βi ∈ K for all i. This shows that L ⊆ K and hence

K = L. Thus g already splits over K. We see that any irreducible polynomial in F [x] with a root

in K splits over K, so K/F is normal.

The converse is easier. If K/F is normal, then since [K : F ] <∞ the extension K/F is certainly

finitely generated; say K = F (γ1, . . . , γr). Let gi = minpolyF (γi). By the normality condition,

each gi must split over K. But then f = g1g2 . . . gr is a polynomial that splits over K, and the set

of all of its roots generates K over F since these roots are contained in K and include all of the γi.

So K is the splitting field of f over F . �
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The lemma allows for an alternate proof of Lemma 18.7: If F ⊆ E ⊆ K with K/F normal, then

we know that K is the splitting field over F over some f ∈ F [x]. It is easy to see then that K is

also the splitting field over E of the same f , so K/E must also be normal.

Example 18.9. We can also now give an example showing that if F ⊆ E ⊆ K and K/F is normal,

then E/F need not be normal. Consider F = Q ⊆ E = Q( 3
√

2) ⊆ K = Q( 3
√

2, ζ) where ζ = e2πi/3.

We have seen in Example 17.32 that K is the splitting field over F of x3 − 2. On the other hand,

we saw that E is not normal over F in Example 18.3. Thus normality of K/F does not pass in

general to the subextension E/F .

We now give the main result of this section. It shows that the failure of an extension to be

Galois is always because there are two few automorphisms, not too many; and this always happens

essentially because of one of the two problems exhibited in Examples 18.3 and 18.4, namely lack of

normality or lack of separability.

Theorem 18.10. Let F ⊆ K be a field extension with [K : F ] <∞.

(1) |Gal(K/F )| ≤ [K : F ].

(2) The following are equivalent:

(i) K/F is Galois, i.e. |Gal(K/F )| = [K : F ].

(ii) K/F is separable and normal.

(iii) K is the splitting field over F of a separable polynomial f ∈ F [x].

Proof. (1) If K = F the result is vacuous, so assume that [K : F ] ≥ 2. Pick any α1 ∈ K − F and

let g = minpolyF (α1), so g is irreducible over F and n = deg g ≥ 2, with [F (α1) : F ] = n. Let

{α1, . . . , αm} be the set of all elements in K that are roots of g, so m ≤ n.

If σ ∈ Gal(K/F ), then σ(α1) = αi for some i, because g ∈ F [x]. Let

S = {i ∈ {1, 2, . . . ,m}|there exists an automorphism σ ∈ Gal(K/F ) such that σ(α1) = αi}.

For each i ∈ S fix an automorphism σi ∈ Gal(K/F ) such that σi(α1) = αi.

Now let us prove that |Gal(K/F )| ≤ [K : F ] by induction on the degree [K : F ]. We have

[K : F (α1)] < [K : F ]. By the induction hypothesis, |Gal(K/F (α1))| ≤ [K : F (α1)]. Now if

τ ∈ Gal(K/F ) is arbitrary, then τ(α1) = αi for some i ∈ S; then ρ = (σi)
−1 ◦ τ ∈ Gal(K/F ) and

ρ(α1) = α1. Thus ρ fixes F (α1) pointwise, and so ρ ∈ Gal(K/F (α1)). Let H = Gal(K/F (α1)). We

conclude that τ = σi ◦ ρ ∈ σiH. Thus

(18.11) |Gal(K/F )| ≤ |S||H| ≤ m|H| ≤ n|Gal(K/F (α1))| ≤ |F (α1) : F ||K : F (α1)| = |K : F |.
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(2) Consider the argument in part (1). In order to have equality in (18.11), so that |Gal(K/F )| =

|K : F |, it is necessary and sufficient that |S| = m = n and |Gal(K/F (α1))| = [K : F (α1)].

(i) =⇒ (ii). The case K = F is trivial. Assume that K/F is Galois with [K : F ] > 1.

Choose any α1 ∈ K − F and let g = minpolyF (α1). As just remarked, we must have the number

m of elements in K that are roots of g equal to the degree n of g in the argument of part (1). In

particular, this forces g to split over K, and with distinct roots, so that g is a separable polynomial.

By definition, K/F is normal and separable.

(ii) =⇒ (iii). Since K/F is normal, K is the splitting field over F of some polynomial f ∈ F [x]

by Lemma 18.8. We may assume that f is monic. Write f = (g1)e1 . . . (gm)em where the gi are

monic irreducibles in F [x] such that g1, . . . , gm are all distinct, and ei ≥ 1. It is clear that K is

also the splitting field of h = g1 . . . gm over F . Now if gi and gj have a common root α ∈ K, then

gi = minpolyF (α) = gj , a contradiction. Also, since K/F is separable, each irreducible polynomial

gi is separable and thus splits with distinct roots in K. We conclude that h has distinct roots in

K and so is a separable polynomial, and K is the splitting field of h over F .

(iii) =⇒ (i). The proof is by induction on [K : F ], with the case F = K trivial as usual.

Assume that K is the splitting field of a separable polynomial f over F , where f does not split

over F (otherwise we are back to the trivial case F = K). Let g be an irreducible factor of f

in F [x] with deg g ≥ 2, and apply the argument in (1) to a root α1 ∈ K of g. Since K is a

splitting field of f , the polynomial g splits over K, and since f is separable, so is g, so g has

m = n = deg g distinct roots in K. In addition, for any root αi of g, we can find an automorphism

σi ∈ Gal(K/F ) such that σi(α1) = αi, by Corollary 17.37. So |S| = m = n in the argument of

part (1). Finally, K is also the splitting field of the separable polynomial f over F (α1). Since

[K : F (α1)] < [K : F ], by induction we may assume that |Gal(K/F (α1))| = [K : F (α1)]. Now

(18.11) implies that |Gal(K/F )| = [K : F ]. �

Corollary 18.12. Let K/F be a finite degree Galois extension. Then for every intermediate field

E with F ⊆ E ⊆ K, the extension K/E is also Galois.

Proof. By Theorem 18.10, we know that for a finite degree extension being Galois is equivalent to

being normal and separable. But both properties pass from K/F to K/E by Lemma 18.7. �

Example 18.9 is an example of a Galois extension K/F such that E/F is not Galois.

Suppose F ⊆ K is a finite-degree extension that is not necessarily normal. Then we can embed

it canonically in a normal extension, as follows.

Proposition 18.13. Let F ⊆ K be an extension with [K : F ] <∞.
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(1) There is an extension K ⊆ L with [L : K] < ∞ such that L/F is normal, and where L is

minimal in the sense that if K ⊆ E ⊆ L with E/F normal, then E = L.

(2) If K/F is separable in (1), then L/F is Galois.

Proof. (1) K/F is certainly finitely generated, say K = F (α1, . . . , αm). Let gi = minpolyF (αi) ∈

F [x]. Some of the gi may be equal; let f be the product of the distinct gi, each once.

Now take L to be a splitting field of f over K. We define the splitting field over K, not over F ,

because we need to ensure the resulting field L contains K. However, if β1, . . . , βn are the roots of

f in L then

L = K(β1, . . . , βn) = F (α1, . . . , αm, β1, . . . , βn) = F (β1, . . . , βn)

because the elements αi are roots of f and hence lie among the βj . Thus L is in fact the splitting

field of f over F as well. By Lemma 18.8, L/F is now a normal extension.

To see that L is minimal, note that if K ⊆ E ⊆ L is an extension where E/F is normal, then

each irreducible polynomial gi has a root in K and so must split in E. But then all of the roots βj

of f in L are already in E, so E = L since L is generated over K by the βj .

(2) Now suppose that K/F is separable. Then each gi is a separable polynomial, by definition.

As we saw previously, distinct monic irreducible polynomials in F [x] cannot have a common root.

Since each gi has distinct roots in the splitting field L, the product f of the distinct gi is a separable

polynomial. This L is a splitting field over F of a separable polynomial f . By Theorem 18.10, L is

Galois over F . �

The extension L/F constructed in (1) above is called the normal closure of K/F . It is unique

up to isomorphism, as the reader may check. When K/F is separable, so that the normal closure

L/F is Galois as in part (2), then it is called the Galois closure.

18.2. The Fundamental Theorem of Galois Theory. The fundamental theorem we will prove

in this section gives a surprisingly tight connection between group theory and field theory. Namely,

the set of intermediate fields E such that F ⊆ E ⊆ K where K/F is a finite degree Galois extension

will be in one-to-one correspondence with the set of subgroups of the group G = Gal(K/F ).

Moreover, the correspondence will have many other special properties.

The way the correspondence is set up is not particularly complicated to describe. Let F ⊆ K be

an extension of fields. Let G = Gal(K/F ), which we know is a group under composition. If E is

an intermediate field with F ⊆ E ⊆ K, then we can define a subgroup H of G by H = Gal(K/E).

In other words, these are the automorphisms of K that fix (pointwise) the larger field E, not just
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F . This is obviously a subset of G, and since the elements fixing E are closed under products and

inverses, H is a subgroup of G.

Conversely, if we start with a subgroup H of G = Gal(K/F ), then we define an intermediate

field E by E = Fix(H) = {α ∈ K|σ(α) = α for all h ∈ H}. This is called the fixed field of H.

Because the elements in H are automorphisms of K it is clear that Fix(H) is a subfield of K; and

F ⊆ Fix(H) since every element of G fixes F . So F ⊆ Fix(H) ⊆ K and Fix(H) is an intermediate

field.

Thus for a fixed field extension F ⊆ K we have the following setup and notation:

(18.14){
intermediate fields E with F ⊆ E ⊆ K

} Γ=Gal(K/−)
//
{

subgroups H of G = Gal(K/F )

}
Φ=Fix(−)

oo

There are some basic properties of the maps Γ and Φ that we follow directly from the defini-

tions. First, if E is an intermediate field, then E ⊆ ΦΓ(E) = Fix Gal(K/E); this is clear since

every element of Gal(K/E) fixes E at least (but there could be a larger field of elements fixed by

Gal(K/E)). Similarly, if H is a subgroup of G = Gal(K/F ) then H ⊆ ΓΦ(H) = Gal(K/Fix(H));

because certainly H is contained in the set of those elements of G that fix everything in Fix(H)

(though there could be more elements that do). Second, both Φ and Γ are inclusion reversing.

Namely, if F ⊆ E ⊆ L ⊆ K, then Γ(L) = Gal(K/L) ⊆ Γ(E) = Gal(K/E), since an automor-

phism that fixes L pointwise certainly also fixes E. Similarly, if H ⊆ J ⊆ G are subgroups of G,

then Φ(J) = Fix(J) ⊆ Φ(H) = Fix(H), since the elements fixed pointwise by everything in J are

certainly also fixed by everything in H.

While the set up above in (18.14) makes sense for any field extension F ⊆ K, we will prove it has

especially good properties when [K : F ] < ∞ and K/F is Galois. In that case we will see shortly

that Γ and Φ are inverse bijections of sets, so they will define a one-to-one (inclusion reversing)

correspondence between intermediate fields and the subgroups of the Galois group.

Understanding the action of ΦΓ on intermediate subfields of a Galois extension is easy from what

we have already done.

Lemma 18.15. Let F ⊆ K be an extension with [K : F ] < ∞ and K/F Galois. For every

intermediate field E with F ⊆ E ⊆ K, we have ΦΓ(E) = Fix Gal(K/E) = E.

Proof. By Corollary 18.12, K/E is a Galois extension with [K : E] <∞. Let E′ = Fix Gal(K/E),

so E ⊆ E′ ⊆ K. Now by the inclusion reversing property of Gal(K/−) we have Gal(K/E′) ⊆

Gal(K/E). On the other hand, if σ ∈ Gal(K/E) then by definition σ fixes pointwise everything in
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E′ = Fix Gal(K/E), and so σ ∈ Gal(K/E′). Hence Gal(K/E) = Gal(K/E′). Also, K/E′ is a Galois

extension by Corollary 18.12. It follows that [K : E] = |Gal(K/E)| = |Gal(K/E′)| = [K : E′].

But this forces [E′ : E] = 1 and hence E = E′. �

An immediate corollary is the following version of the theorem of the primitive element.

Corollary 18.16. Let F ⊆ K be an extension with [K : F ] <∞. If K/F is separable, then it has

a primitive element; in other words K = F (γ) for some γ ∈ K.

Proof. Using Proposition 18.13, we can take a Galois closure L/F of K/F ; so F ⊆ K ⊆ L and L/F

is Galois. Now by Lemma 18.15, for any F ⊆ E ⊆ L we have E = Fix Gal(K/E). If G = Gal(L/F )

then G is finite and so has finitely many subgroups. Since every E is the fixed field of the subgroup

Gal(K/E) of G, there are finitely many intermediate fields E. Since the extension L/F has finitely

many intermediate fields, of course the smaller extension K/F also has this property. Now apply

Theorem 17.57. �

We note that a finite degree inseparable extension might well have infinitely many intermediate

fields.

To understand the action of ΓΦ on subgroups of Gal(K/F ) we need one more new idea, which is

a way of determining the minimal polynomial of an element using the action of the Galois group.

Lemma 18.17. Let K/F be a finite degree Galois extension. Suppose that H is a subgroup of

Gal(K/F ) such that Fix(H) = F .

(1) For any α ∈ K, let Oα = {σ(α)|σ ∈ H}. Then minpolyF (α) is equal to
∏
β∈Oα(x− β).

(2) H = Gal(K/F ).

Proof. (1) Given any automorphism σ ∈ Gal(K/F ), σ : K → K extends to an automorphism σ

of K[x] in the usual way, by acting on the coefficients of a polynomial. Apriori the polynomial

f =
∏
β∈Oα(x− β) just lies in K[x], but we claim it is actually in F [x].

Since Oα is an orbit of the action of H on K, it is clear that for any σ ∈ H, if Oα = {β1, . . . , βm}

then {σ(β1), . . . , σ(βm)} = Oα as well. Now we have σ(f) =
∏
β∈Oα(x−σ(β)) =

∏
β∈Oα(x−β) = f .

This is true for all σ ∈ H. But that means that every coefficient of f is fixed by all σ ∈ H. In

other words the coefficients of f lie in Fix(H) = F and so f ∈ F [x] as claimed.

Since α ∈ Oα it is clear that f(α) = 0. Let g = minpolyF (α). Then for each σ ∈ H ⊆ Gal(K/F ),

we know that σ permutes the roots of g in K. In particular σ(α) must be a root of g for all σ ∈ H.

But now every element of Oα is a root of g, and so (x − β) is a factor of g for all β ∈ Oα. This

forces f |g and hence f = g since g is irreducible.
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(2) By Corollary 18.16, we know there is γ ∈ K such that K = F (γ). Now |Gal(K/F )| =

[K : F ] = deg minpolyF (γ). By part (1), deg minpolyF (γ) = |Oγ | ≤ |H|. This shows that

|Gal(K/F )| ≤ |H| and since H is a subgroup of Gal(K/F ) we have H = Gal(K/F ). �

Corollary 18.18. Let G = Gal(K/F ) for a finite degree Galois extension K/F . If H is a subgroup

of G then ΓΦ(H) = Gal(K/Fix(H)) = H.

Proof. Since K/F is Galois, we know that K/Fix(H) is Galois by Corollary 18.12. Now applying

Lemma 18.17 to the subgroupH and the extensionK/Fix(H) yields thatH = Gal(K/Fix(H)). �

We also now get an additional characterization of Galois extensions to add to those we found in

Theorem 18.10. In fact, the property in the next theorem is sometimes taken to be the definition

of a Galois extension.

Theorem 18.19. Let F ⊆ K be an extension with [K : F ] <∞. Then K/F is Galois if and only

if F = Fix(Gal(K/F )).

Proof. If K/F is Galois, then we saw that F = Fix(Gal(K/F )) in Lemma 18.15. On the other

hand, if F = Fix(Gal(K/F )) then Lemma 18.17(1) applies with H = Gal(K/F ). For any α ∈ K

the minimal polynomial minpolyF (α) calculated there clearly has distinct roots and splits over K.

This shows that K/F is normal and separable, and hence it is Galois by Theorem 18.10. �

We now have all of the ingredients we need to prove the fundamental theorem.

Theorem 18.20 (Fundamental Theorem of Galois Theory). Let F ⊆ K be a finite degree Galois

extension of fields. Let G = Gal(K/F ).

(1) The functions Γ,Φ defined as in (18.14) by{
intermediate fields E with F ⊆ E ⊆ K

} Γ=Gal(K/−)
//
{

subgroups H of G = Gal(K/F )

}
Φ=Fix(−)

oo

are inverse inclusion-reversing bijections between the indicated sets.

(2) For F ⊆ E ⊆ K, we have [K : E] = |Gal(K/E)| and [E : F ] = |G : Gal(K/E)|.

(3) For F ⊆ E ⊆ K, E/F is normal (and hence Galois) if and only if H = Gal(K/E) is a

normal subgroup of G, and in this case Gal(E/F ) ∼= G/H as groups.

Proof. (1) We have done almost all of the work needed for the proof in the preceding lemmas. We

saw that Γ and Φ make sense for a general field extension and that they always reverse inclusions.

Now using that K/F is finite degree Galois, by Lemma 18.15 we have ΦΓ is the identity function on
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intermediate fields. By Lemma 18.18, ΓΦ is the identity function on subgroups of G = Gal(K/F ).

Thus Φ and Γ are inverse bijections.

(2) We also saw in Corollary 18.12 that for any intermediate field E, K/E is also Galois. Thus by

definition [K : E] = |Gal(K/E)|. Of course we have in particular that [K : F ] = |G| = |Gal(K/F )|.

Now we have [E : F ] = [K : F ]/[K : E] = |G|/|Gal(K/E)| = |G : Gal(K/E)|.

(3) Since K/F is Galois, it is separable and so E/F is separable. This is why if E/F is normal

it is automatically Galois as commented.

Let H = Gal(K/E). It is easy to see that the conjugate σHσ−1 is equal to Gal(K/σ(E)). We

see that H is normal in G if and only if Gal(K/σ(E)) = Gal(K/E) for all σ ∈ G. But since Γ is a

bijection this is if and only if σ(E) = E for all σ ∈ G.

Now we claim that σ(E) = E for all σ ∈ G if and only if E/F is a normal extension. If E/F is

normal and σ ∈ G, then for any α ∈ E, f = minpolyF (α) splits in E[x], so every root of f in K is

already in E. On the other hand, σ must permute the roots of f , so σ(α) ∈ E and thus σ(E) ⊆ E;

applying this argument with σ−1 yields σ−1(E) ⊆ E and so E ⊆ σ(E); thus σ(E) = E for all σ ∈ G.

Conversely, suppose that σ(E) = E for all σ ∈ G. For α1 ∈ E, let f = minpolyF (α1). Now f splits

in K[x], say with roots α1, . . . , αm ∈ K. By Corollary 17.37, for any i there is σ ∈ Gal(K/F ) such

that σ(α1) = αi. By hypothesis since α1 ∈ E, αi ∈ σ(E) = E. So f splits over E and E/F is

normal. This proves the claim.

We have seen that E/F is a normal extension if and only if H = Gal(K/E) is a normal subgroup

of G. Now assume this is the case. The map

φ : Gal(K/F ) −→ Gal(E/F )

σ 7−→ σ|E

is well defined because σ(E) = E for all σ ∈ G. It is easy to see that φ is a homomorphism of

groups since it is simply defined by restriction. Also, kerφ = H = Gal(K/E) by definition. Then

G/H ∼= φ(G) as groups by the 1st isomorphism theorem. The orders satisfy

|φ(G)| = |G|/|H| = [G : Gal(K/E)] = [E : F ] = |Gal(E/F )|

since E/F is Galois, and this forces φ to be surjective, so G/H ∼= Gal(E/F ). �

18.3. Examples of the fundamental theorem.

Example 18.21. Let K be the splitting field over Q of f = x3 − 2 ∈ Q[x]. We have seen that

[K : Q] = 6. since K is the splitting field of a separable polynomial, K/Q is Galois and so
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|Gal(K/Q)| = 6. In fact, in Example 17.38 we already constructed 6 different automorphisms, but

let us revisit this yet again from another perspective.

We have K = Q(α, ζ), where α = 3
√

2 and ζ = e2πi/3. Any σ ∈ G = Gal(K/Q) must permute

the roots {ζ, ζ2} of x2 + x + 1 and the the roots {α, αζ, αζ2} of x3 − 2. Moreover, since α and ζ

generate K over Q, any automorphism in G is determined by its action on α and ζ. Since there

are 3 possible things to send α to and 2 possible things to send ζ to, there are at most 6 different

automorphisms in G. Since we know |G| = 6, all of these possibilities occur. Thus by applying our

general results which tell us that K/Q is Galois in advance, we do not have to directly construct

these automorphisms using the theory of splitting fields, as in Example 17.38.

In particular, there is an automorphism σ with σ(α) = αζ and σ(ζ) = ζ, and an automorphism

ρ with ρ(α) = α and ρ(ζ) = ζ2. Then σρ(α) = σ(α) = αζ while ρσ(α) = ρ(αζ) = αζ2. It follows

that σρ 6= ρσ and hence G is non-abelian. The only non-abelian group of order 6 is S3, so G ∼= S3.

Now σ clearly has order 3, so 〈σ〉 is the unique subgroup of order 3 in G. Since this group has

index 2 in G, the corresponding intermediate field Fix〈σ〉 has degree 2 over Q. Clearly this must

be Fix〈σ〉 = Q(ζ).

The elements of order 2 in the group are then ρ, σρ, and σ2ρ. The corresponding fixed fields

must have degree 3 over Q. It is now easy to check that Fix〈ρ〉 = Q(α), Fix〈σρ〉 = Q(αζ2), and

Fix〈σρ〉 = Q(αζ). The fields we have found must be all of the intermediate fields strictly between

Q and K, by the fundamental theorem.

Now let us work through a more elaborate example of the fundamental theorem.

Example 18.22. Consider the splitting field of f = x4 − 2 over Q. The 4th roots of 1 in C

are {±1,±i}. Let α = 4
√

2 be the positive real 4th root of 2. Then the roots of f in C are

{α, αi,−α,−αi}. It is clear that the splitting field K of f is equal to Q(α, i).

Now [Q(α) : Q] = 4, since f is irreducible by Eisenstein and thus f = minpolyQ(α). Since

Q(α) ⊆ R, Q(α) 6= K; since i is a root of the degree 2 polynomial x2 +1 ∈ Q[x], the only possibility

is [Q(α, i) : Q(α)] = 2 and so [K : Q] = 8.

K/Q is certainly a Galois extension, being the splitting field of a separable polynomial, so

|Gal(K/Q)| = 8. Let G = Gal(K/Q) and let us determine the isomorphism type of G. If σ ∈ G,

then σ sends α to one of the 4 roots of f and sends i to one of the 2 roots of minpolyQ(i) = x2 + 1.

Since α and i generate K over Q, any σ ∈ G is determined by where it sends α and i. Since there

are only (4)(2) = 8 possibilities they must all occur.
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Let us call σ the automorphism in G with σ(α) = αi and σ(i) = i. We let τ be the automorphism

in G with τ(α) = α and τ(i) = −i. Now it is easy to see that |σ| = 4 and |τ | = 2. It is

clear that 〈σ〉 ∩ 〈τ〉 = {1} and so we must have 〈σ〉〈τ〉 = G as this product has order 8. Thus

G = {1, σ, σ2, σ3, τ, στ, σ2τ, σ3τ}.

Now one easily calculates that τσ = σ3τ = σ−1τ . We recognize from this relation that G is

isomorphic to the dihedral group D8. From our knowledge of D8 we can write down all of the

subgroups of G. Of course we have the trivial subgroup and all of G; there is the rotation subgroup

〈σ〉 of order 4, which has a subgroup 〈σ2〉 of order 2; each reflection generates a subgroup of order

2, and these are the subgroups 〈τ〉, 〈στ〉, 〈σ2τ〉, and 〈σ3τ〉. Any missing subgroups have order 4

and so must intersect 〈σ〉 in a subgroup of order 2, thus containing σ2. This leads to two further

subgroups 〈σ2, τ〉 and 〈σ2, στ〉 which are isomorphic to the Klein 4-group.

We display the lattice diagram of these subgroups on the left below, with a line drawn when one

is included in the other. For each subgroup H we write the subfield Fix(H) on the right in the

same position; the resulting diagram of all intermediate fields E looks the same, but due to the

inclusion-reversing nature of the correspondence, the larger fields are below the fields they contain.

For each intermediate field we have written elements that generate that field over Q.

G
Fix(−)−→ Q

〈σ〉 〈τ, σ2〉 〈στ, σ2〉 Q(i) Q(
√

2) Q(
√

2i)

〈σ2〉 〈τ〉 〈σ2τ〉 〈στ〉 〈σ3τ〉 Q(
√

2, i) Q( 4
√

2) Q( 4
√

2i) Q( 4
√

2(1 + i)) Q( 4
√

2(1− i))

{1} Gal(K/−)←− K

The verification that the fixed fields of each subgroup are what we have displayed is largely routine.

For example, the subgroup H = 〈στ〉 has order 2 and hence index 4 in G. Thus E = Fix(H) has

degree 4 over Q. To find elements in Fix(H), one method is to take any γ ∈ K and note that∑
ρ∈H ρ(γ) is fixed by H. (This idea already appeared in the proof of Lemma 18.17.) Applying

this to α = 4
√

2 gives that 4
√

2 + 4
√

2i = 4
√

2(1 + i) ∈ Fix(〈στ〉). On the other hand, ( 4
√

2(1 + i))4 =

2(−4) = −8 and so 4
√

2(1 + i) is a root of x4 + 8. One may check that this polynomial is irreducible
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over Q, and so [Q( 4
√

2(1+i)) : Q] = 4. Thus Q( 4
√

2(1+i)) = Fix(H). We leave the other verifications

to the reader.

We know by the theorem of the primitive element that every intermediate field can be generated

by one element over Q; for most of the intermediate fields above this has already been done.

Suppose we want to write K = Q( 4
√

2, i) in the form Q(γ) for some γ. It suffices to choose a γ

which is not contained in any of the 5 displayed fields that have index 4 over Q. This could be

done by showing it is not fixed by any of the 5 elements generating order 2 subgroups of G. For

example, στ( 4
√

2 + i) = 4
√

2i− i = ( 4
√

2− 1)i, which has 0 real part and so certainly is not equal to

4
√

2 + i. Similarly, σ2, τ , σ2τ , and σ3τ do not fix 4
√

2 + i, so K = Q( 4
√

2 + i).

We may also easily determine which subfields are normal and hence Galois over Q. The normal

subgroups of G include the three subgroups of index 2 and the subgroup 〈σ2〉 (which is actually the

center of D8). The other 4 subgroups of order 2 generated by the reflections are not normal. Thus

the intermediate fields which are normal over Q are Q(i), Q(
√

2), Q(
√

2i) and Q(
√

2, i). It is also

easy to see directly that these are all splitting fields over Q. On the the other hand, for example,

Q( 4
√

2) is not normal over Q since it contains one root of x4 − 2 but this polynomial does not split

over that field. Similarly, Q( 4
√

2(1 + i)) contains one root of x4 + 8 but that polynomial does not

split over it. In fact, it is easy to see that K is also the splitting field over Q of x4 + 8.

Finally, for any field E which is normal over Q, the fundamental theorem tells us that Gal(E/Q) ∼=

Gal(K/Q)/Gal(K/E). For instance, taking E = Q(
√

2, i) we must have Gal(Q(
√

2, i)/Q) ∼=

D8/〈σ2〉. It is also easy to see directly that both sides are Klein 4-groups.

We observe that it was easy to compute the subgroups of the Galois group above, and relatively

easy then to find the fixed fields. Without Galois theory it is extremely unclear how one would go

about finding all of the intermediate fields in the extension, or even why there should be finitely

many.

Let us give an example of a Galois group over Q where determining the group is a bit less

straightforward.

Example 18.23. Let α =
√

2 +
√

2. First let us calculate its minimal polynomial over Q. We

have α2 = 2 +
√

2 so (α2 − 2)2 = 2. Then α is a root of f = (x2 − 2)2 − 2 = x4 − 4x2 + 2. This

polynomial is irreducible by the Eisenstein criterion, so f = minpolyQ(α). Then [Q(α) : Q] = 4.

We claim that K = Q(α) is already the splitting field of f over Q. First, applying the quadratic

formula to x2− 4x+ 2 = 0 yields roots 2±
√

2. Thus x4− 4x2 + 2 = 0 has roots ±
√

2±
√

2, where

all of these roots are real. Write β =
√

2−
√

2, so the roots are ±α,±β.
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Now notice that
√

2−
√

2
√

2 +
√

2 =
√

(2−
√

2)(2 +
√

2) =
√

4− 2 =
√

2. Moreover,
√

2 =

α2 − 2 is already in K. Hence β =
√

2−
√

2 ∈ K already and so all of the roots of f are in K.

Thus K is the splitting field of f as claimed.

Let G = Gal(K/Q). Since K is a splitting field of a polynomial over Q, K/Q is Galois and so

|G| = 4. Either G ∼= Z4 or G ∼= Z2 × Z2 and we would like to determine which occurs.

We know from our results on splitting fields that we can find σ ∈ G that sends α to any other

root of f . Let us choose σ ∈ G with σ(α) = β. How does σ act on the other roots of f? Well,

σ(α2) = β2. This says σ(2 +
√

2) = 2 −
√

2. Then clearly σ(
√

2) = −
√

2. Now since αβ =
√

2,

σ(αβ) = −αβ which implies σ(β) = −α. We see from this that σ2(α) = −α and thus σ cannot

have order 2. Hence σ has order 4 and thus G is cyclic of order 4.

Now G has only one proper subgroup, which is 〈σ2〉. The corresponding intermediate field is

Q(
√

2) = Fix〈σ2〉.

For any splitting field K of a separable polynomial f over F , it is possible to visualize the Galois

group as a subgroup of the permutation group of the roots of f in K; indeed, this is how Galois

originally thought about it. This is because any automorphism in Gal(K/F ) must permute these

roots and is determined by its action on these roots. For instance, in the previous example one

notes that σ acts as a 4-cycle on the roots of x4 − 4x2 + 2, which is another way of seeing that it

is cyclic of order 4.

18.4. Cyclotomic extensions. The set µn = {e2mπi/n|0 ≤ m ≤ n− 1} consists of the n distinct

nth roots of 1 in C. This can also be described as the set of roots in C of xn− 1 ∈ Q[x]. The group

µn is a subgroup of the multiplicative group C×.

The map (Zn,+) → µn given by m 7→ e2mπi/n is easily seen to be an isomorphism of groups.

Thus µn is cyclic, and any generator of µn is called a primitive nth root. From our knowledge of

cyclic groups we know that the generators of Zn are {m| gcd(m,n) = 1} and so the primitive nth

roots are {e2mπi/n| gcd(m,n) = 1}. There are ϕ(n) of them, where ϕ is the Euler ϕ-function.

Definition 18.24. Let Pn = {e2mπi/n| gcd(m,n) = 1} be the set of primitive nth roots of 1. Let

Φn(x) =
∏
α∈Pn

(x− α) ∈ C[x].

Φn(x) is called the nth cyclotomic polynomial. Clearly deg Φn(x) = ϕ(n).

If α ∈ µn, then α has order d in C× for some d|n, and then α is a primitive dth root. Thus the

following formula is clear.
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Lemma 18.25. Let n ≥ 1. Then xn − 1 =
∏
d|n Φd(x).

Using this lemma we can compute the polynomials Φn(x) inductively. This is easy to do by hand

if n is small.

Example 18.26. 1 is the only primitive 1st root, so Φ1(x) = x − 1. Similarly, −1 is the lone

primitive 2nd root and Φ2(x) = x + 1. By Lemma 18.25 we have x3 − 1 = Φ3(x)Φ1(x) and so

Φ3(x) = (x3 − 1)/(x− 1) = x2 + x+ 1. Next,

Φ4(x) = (x4 − 1)/(Φ2(x)Φ1(x)) = (x4 − 1)/((x+ 1)(x− 1)) = (x4 − 1)/(x2 − 1) = x2 + 1.

Of course, x2 + 1 = (x− i)(x+ i), and the roots of Φ4(x) are the two primitive 4th roots of unity,

i and −i. We leave it to the reader to check that Φ6(x) = x2 − x+ 1.

If p is prime then Φp(x) = (xp − 1)/(x− 1) = xp−1 + · · ·+ x+ 1. We proved this polynomial is

irreducible in Q[x] using the Eisenstein criterion with substitution. In fact, all of the polynomials

Φn(x) lie in Z[x] and are irreducible over Q. We give the proof of irreducibility now, though as it

is a bit technical the reader might wish to simply assume this fact and move on.

Theorem 18.27. For any n ≥ 1, Φn(x) ∈ Z[x], it is monic, and it is irreducible in Q[x].

Proof. By definition it is obvious that Φn(x) is monic. We have xn − 1 = Φn(x)
∏
d|n,d<n Φd(x) by

Lemma 18.25. We prove that Φn(x) ∈ Z[x] by induction on n. Thus we can assume that Φd(x) ∈

Z[x], for all divisors d of n with d < n, by the induction hypothesis. Then g =
∏
d|n,d<n Φd(x) is

also monic. By Gauss’s lemma, there is λ ∈ Q such that λ−1Φn(x) and λg are in Z[x]. Since g and

Φn(x) are monic, this forces λ and λ−1 ∈ Z, so λ = ±1 and Φn(x) ∈ Z[x] already.

Let f be one of the irreducible factors of Φn(x) in Q[x] and write Φn(x) = fg. By Gauss’s

Lemma again, we can choose this factorization so f and g are in Z[x] and are monic. Now pick any

prime p with gcd(p, n) = 1. The idea of the proof is to consider this factorization of Φn(x) modulo

p.

Let ζ be a primitive nth root of 1; since gcd(p, n) = 1, we also have ζp is a primitive nth root.

Thus ζ and ζp are roots of Φn(x) and each is a root of either f or g. Suppose that f(ζ) = 0, while

g(ζp) = 0.

Now g(ζp) = 0 means that ζ is a root of g(xp) ∈ Z[x]. Since f is irreducible, f = minpolyQ(ζ).

Hence f |g(xp) in Q[x], say g(xp) = fh. As above, h is monic and by Gauss’s lemma we have

h ∈ Z[x].
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Let φ : Z[x] → (Z/pZ)[x] = Fp[x] be the reduction mod p homomorphism which sends each

coefficient a ∈ Z to a = a + pZ. For f ∈ Z[x] write f for φ(f). Now applying φ we have

g(xp) = f h. If we write g(x) =
∑m

i=0 aix
i, with ai ∈ Fp, then since the pth power map is a ring

homomorphism of Fp[x], we have

g(xp) =

m∑
i=0

aix
ip =

m∑
i=0

api x
ip =

m∑
i=0

(aix
i)p = (

m∑
i=0

aix
i)p = (g(x))p,

where we have used that ap = a for all a ∈ Fp by Fermat’s little theorem.

We now see that f | (g)p in Fp[x]. This implies that f and g have a common irreducible factor in

Fp[x]. But since Φn = f g this means that Φn has a repeated irreducible factor in Fp[x], and so it is

not a separable polynomial. On the other hand, Φn divides xn − 1, which is a separable polynomial

in Fp[x]: its derivative is nxn−1 6= 0 (because gcd(p, n) = 1), and so gcd(xn − 1, nxn−1) = 1 in

Fp[x]. This is a contradiction.

The contradiction implies that for all roots ζ of f and all primes p with gcd(p, n) = 1, ζp must

also be a root of f . Now if gcd(i, n) = 1 for some integer i, then factorizing i = p1p2 . . . pk where

each pj is prime, then gcd(pj , n) = 1 for all j and so by induction we get for any root ζ of f that

ζi is also a root of f . However, any root ζ of f is by definition a generator of the group µn of nth

roots of 1, and the other generators are equal to ζi for 0 < i < n with gcd(i, n) = 1. Hence every

primitive nth root of 1 is a root of f . This shows that Φn(x) = f and hence Φn(x) is irreducible

over Q. �

Theorem 18.28. Let n ≥ 1. Consider the nth cyclotomic field K = Q(ζ) where ζ is a primitive

nth root of 1. Then [K : Q] = ϕ(n), and K/Q is Galois with Gal(K/Q) ∼= Z∗n, where Z∗n is the

multiplicative group of units mod n.

Proof. We know that K is the splitting field of xn − 1 over Q by Example 17.31. We also know

from Theorem 18.27 that Φn(x) is irreducible over Q; hence Φn(x) = minpolyQ(ζ), which implies

[Q(ζ) : Q] = deg Φn(x) = ϕ(n). K/Q is Galois since it is a splitting field of a separable polynomial.

Now any σ ∈ G = Gal(K/Q) is determined by its action on ζ, and σ(ζ) must be another

root of Φn(x). Since this polynomial has ϕ(n) roots and |G| = ϕ(n), all possibilities occur. For

each 0 ≤ i ≤ n − 1 with gcd(i, n) = 1, we have an automorphism σi ∈ G where σi(ζ) = ζi, so

G = {σi | 0 ≤ i ≤ n − 1, gcd(i, n) = 1}. Now define a function φ : G → Z∗n by φ(σi) = i. Since

σiσj(ζ) = σi(ζ
j) = σi(ζ)j = (ζi)j = ζij = ζm, where m is unique integer with 0 ≤ m ≤ n− 1 such

that m ≡ ij mod n, we have σiσj = σm where ij = m. This implies that φ is a homomorphism of

groups, and it is clearly bijective. �
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Recall from our study of groups that the structure of the group Z∗n is well-understood. First, if

n = pe11 . . . pemm for distinct primes pi, then Z∗n ∼=
∏
i Z∗peii

. If p is an odd prime, then Z∗pe is cyclic of

order ϕ(pe) = pe−1(p− 1); while Z∗2e ∼= Z2 × Z2e−2 .

Example 18.29. Let n = 9 and consider the splitting field K of xn − 9 over Q. We know that

[K : Q] = ϕ(9) = 6 and if G = Gal(K/Q) then G ∼= Z∗9, which is cyclic order 6.

Let ζ be a primitive 9th root of unity, so K = Q(ζ). One may check that 2 is a generator of

Z∗9. It follows that the automorphism σ ∈ G with σ(ζ) = ζ2 generates G. So G = 〈σ〉, and by the

stucture of cyclic groups of order 6, the subgroups of G are 〈σ2〉, 〈σ3〉, and the trivial subgroup.

We have a diagram of subgroups and and corresponding diagram of fixed subfields as follows,

where the numbers indicate the index of one subgroup in another (on the left) or the degree of one

subfield over another (on the right).

〈σ〉
2 3

Q
2 3

〈σ2〉

3

〈σ3〉

2

Q(α)

3

Q(β)

2

〈σ6〉 = {1} Q(ζ) = K

Let us find elements α and β which generate the indicated extensions on the right. Note that since

ζ is a primitive 9th root, ζ3 is a primitive 3rd root. Thus K also contains the cyclotomic extension

Q(ζ3), where the minimal polynomial of ζ3 is x2 + x+ 1. Thus Q(ζ3) is a field of degree 2 over Q,

so we can take α = ζ3 in the picture, as there is only one subfield of degree 2 over Q. For the other

extension we note that ζ + σ3(ζ) = ζ + ζ8 = ζ + ζ−1 is fixed by σ3, so ζ + ζ−1 ∈ Fix(〈σ3〉). ζ + ζ−1

is not in Q (for if it was, ζ+ ζ−1 = q ∈ Q would give ζ2 +1 = qζ and hence ζ would satisfy a degree

2 polynomial in Q[x], while we know that deg minpolyQ(ζ) = 6). Thus we can take β = ζ + ζ−1 in

the picture.

18.5. More on finite fields. Recall that we have seen that there is a unique field Fpn with pn

elements up to isomorphism, for any prime p and n ≥ 1. It can be defined as the splitting field of

xp
n − x over Fp. We can now easily calculate the Galois group of this field as an extension of Fp.

Theorem 18.30. Let K be a field with |K| = pn for a prime p and n ≥ 1. Then Fp ⊆ K and K/Fp
is Galois with [K : Fp] = n and G = Aut(K) = Gal(K/Fp) ∼= Zn. In particular, G is generated as

a group by the Frobenius automorphism σ : K → K given by σ(a) = ap.
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Proof. We know that K has characteristic p, and we have seen that the additive subgroup of K

generated by 1 is a copy of the field Fp. Any automorphism of K sends 1 to itself and so will fix

the elements in Fp, which are sums of 1. Thus Aut(K) = Gal(K/Fp).

We know that K× is a cyclic group of order pn − 1. Let γ ∈ K be a generator of this group.

Then γp
n−1 = 1 and so γp

n
= γ. Conversely, if γj = γ for some j > 1 then γj−1 = 1 and hence

j ≥ pn since γ has order pn − 1.

Now the Frobenius map σ is an automorphism of K, as in Example 17.50. We have σi(γ) = γp
i

and this cannot equal γ for 0 < i < n; so σi 6= 1K . On the other hand σn(γ) = γ and since

K = Fp(γ), σn = 1. It follows that σ is an element of order n in G. Since |G| = [K : Fp] = n, the

Frobenius map σ must generate G and hence G ∼= (Zn,+). �

Corollary 18.31. Let K be a field with |K| = pn for some prime p and n ≥ 1. Then K has a

unique subfield with pd elements for each positive divisor d of n. These are the only subfields of K.

Proof. G = Gal(K/Fp) = 〈σ〉, where σ, the Frobenius map, has order n in G. Since G is cyclic of

order n, for each divisor d of n there is a unique subgroup Hd = 〈σd〉 with [G : Hd] = d. Then the

fields Ed where Fp ⊆ Ed = Fix(Hd) ⊆ K are the only intermediate fields of the extension K/Fp,

where [Ed : Fp] = d and hence |Ed| = pd. In fact these Ed are all of the subfields of K, because

every subfield of K must contain the prime subfield Fp. There is one for each divisor d of n. �

We can describe the subfield Ed of order pd inside a field K of order pn more explicitly: Since

Ed has order pd, all a ∈ Ed must satisfy ap
d

= a, because we saw in our original study of finite

fields that the elements of Ed are all roots of xp
d − x. Since that polynomial only has pd roots, the

elements in E must be all of its roots. Thus E = {a ∈ K|apd = a}.

One elegant consequence of our results so far is the following description of the factorization of

xp
n − x over Fp.

Proposition 18.32. xp
n − x ∈ Fp[x] is the product of all monic irreducible polynomials of degree

d over Fp, for all divisors d of n.

Proof. If f ∈ Fp[x] is monic and irreducible of degree d, where d|n, then K = Fp[x]/(f) is a field

with pd elements. We know then by Corollary 18.31 that the field Fpn has a subfield isomorphic to

this field. Since every element of Fpn satisfies ap
n

= a, the same must be true of the elements of

K. In particular, (x + (f))p
n

= xp
n

+ (f) = x + (f) in K, which means xp
n − x ∈ (f). In other

words, f divides xp
n − x.
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Conversely, if g ∈ Fp[x] is any monic irreducible factor of xp
n − x, then we know that g splits

over Fpn since this field is the splitting field of xp
n − x. If α ∈ Fpn is a root of g, then Fp(α) ⊆ Fpn

where [Fp(α) : Fp] = deg g because g = minpolyFp(α). It follows that |Fp(α)| = pdeg g. Since we

have seen that all subfields of a field with pn elements have pd elements for some divisor d of n,

deg g = d for some divisor d of n.

Finally, we know that xp
n − x is separable over Fp, as we showed that its roots in Fpn are the

pn distinct elements of Fpn . It follows that xp
n −x is a product of distinct irreducible polynomials.

By the arguments above the irreducibles occurring are exactly those of degree d where d|n. �

The proposition can be used to give a precise count of the number of irreducible polynomials of

each degree n over Fp, by induction. We omit the exact formula here, but demonstrate the idea in

an example.

Example 18.33. Consider x81 − x ∈ F3[x]. Here 81 = 34. By the proposition, x81 − x is the

product of all monic irreducible polynomials in F3[x] of degree 1, 2, or 4. We know the degree 1

monic polynomials are (x − 1), (x − 2), and (x − 4). The degree 2 monic irreducibles are those

without a root in F3; these are x2 +1, x2 +2x+2, and x2 +x+2 by direct calculation. The product

of these 6 polynomials has degree 9. That means there is a polynomial of degree 81 − 9 = 72 left

over in the factorization of x81 − x, which is a product of all distinct monic degree 4 irreducibles.

There are thus 72/4 = 18 distinct such irreducibles over F3.

18.6. Root Extensions. A very common kind of field extension is “adding an nth root of an

existing element”. We have seen many examples of this already. In other words, one has a field F

and an element a ∈ F such that f = xn − a ∈ F [x] does not split already over F . In a splitting

field K for f there is a root α ∈ K of f and we can consider the extension F ⊆ F (α) inside K.

Since αn = a ∈ F , we think of α as an nth root of a, and might loosely write α = n
√
a, though this

notation is not uniquely defined, as a may have as many as n different nth roots. We are going

to see in the next results that extensions of this kind are closely related to cyclic Galois groups.

Technically, extensions of this form are simplest when xn − 1 already splits in the base field with

distinct roots, and we will concentrate on that case.

We first see that adding an nth root gives a cyclic Galois group (when the base field already has

enough roots of 1).

Proposition 18.34. Let F be a field such that xn−1 ∈ F [x] splits with distinct roots in F . Suppose

that F ⊆ K is a field extension and α ∈ K is a root of f = xn − a ∈ F [x]. Then F (α)/F is a

Galois extension and Gal(F (α)/F ) is cyclic of order d for some divisor d of n.
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Proof. The set of roots of xn − 1 in F is a finite multiplicative subgroup of F×. Since we are

assuming this polyonomial splits with distinct roots in F , this is a subgroup of order n. We have

seen that a finite subgroup of the multplicative group of a field is always cyclic in Corollary 17.53,

so this group is cyclic generated by some ζ, say; thus {1, ζ, ζ2 . . . , ζn−1} is the set of roots of xn− 1

in F .

Now αn = a and so clearly (αζi)n = a also for all i; thus xn − a has the n distinct roots

{α, αζ, . . . , αζn−1} in K. Since by assumption ζ ∈ F , we see that all of these roots are contained

in F (α) already. Thus F (α) is the splitting field of f over F ; and f has distinct roots and so is a

separable polynomial. Thus F (α)/F is a Galois extension.

Now consider any σ ∈ G = Gal(F (α)/F ). Since σ permutes the roots of xn − a ∈ F [x], we have

σ(α) = αζi. This allows us to define a map φ : G → (Zn,+) defined by φ(σ) = i, where i is any

integer such that σ(α) = αζi. Note that if we express σ(α) as αζj for some other j, we will have

ζi = ζj and thus since ζ has order n, i = j ∈ Zn, so that φ is well-defined.

Now to see that φ is a homomorphism, we just note that if σ, τ ∈ G, with σ(α) = αζi and

τ(α) = αζj , then

τσ(α) = τ(αζi) = τ(α)τ(ζ)i = τ(α)ζi = αζjζi = αζi+j ,

where we use that ζ ∈ F and that τ ∈ Gal(F (α)/F ) fixes F . This shows that φ(τσ) = i+ j =

i+ j = φ(τ) + φ(σ) and thus φ is a homomorphism.

Since any σ ∈ G is determined by where it sends α, it follows that φ is injective. Thus G is

isomorphic to a subgroup of the cyclic group Zn, and thus from our classification of subgroups of

cyclic groups, we conclude that G is cyclic of order d for some divisor d of n. �

Example 18.35. One really can get a proper subgroup of Zn in the previous theorem, because

there is no requirement that f = xn− a be irreducible over F . (If f does happen to be irreducible,

then [F (α) : F ] = n = |G| and this does force G ∼= Zn).

Here is an explicit example. Let K be the splitting field of f = x8 − 2 over Q. Let ζ be a

primitive 8th root of 1 in C, and let α = 8
√

2 be the positive 8th root of 2. Then the roots of f in

C are {α, αζ, . . . , αζ7} and K = Q(ζ, α).

Of course Q does not contain 8 distinct roots of x8 − 1, but F = Q(ζ) does, and so Proposi-

tion 18.34 applies to the extension F ⊆ F (α) = Q(ζ, α) = K. By that proposition, G = Gal(K/F )

is cyclic of order dividing 8.

Let us now calculate [K : Q]. Explicitly we have ζ = e2πi/8 =
√

2/2 + (
√

2/2)i ⊆ Q(
√

2, i), and

it is easy to see that [Q(
√

2, i) : Q] = 4. On the other hand, we know that [Q(ζ) : Q] = ϕ(8) = 4 by
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the theory of cyclotomic extensions. (In fact one may easily calculate that minpolyQ(ζ) = Φ8(x) =

x4 + 1). This shows that Q(ζ) = Q(
√

2, i).

We do know that x8 − 2 is irreducible over Q by the Eisenstein criterion, and so x8 − 2 =

minpolyQ(α) and hence [Q(α) : Q] = 8. Now

K = Q(α, ζ) = Q(
8
√

2, i,
√

2) = Q(
8
√

2, i)

from which it is straightforward to see that [K : Q] = 16, since i 6∈ Q( 8
√

2). This implies that

[K : F ] = 4 and so Gal(K/F ) ∼= Z4.

In retrospect, it is easy to see explicitly that f = x8 − 2 is not irreducible over F = Q(ζ). Since
√

2 ∈ F , f factors as (x4 −
√

2)(x4 +
√

2) in F [x].

The perhaps more surprising fact is that when a Galois extension has a cyclic Galois group, and

the base field has enough roots of 1 already, then the extension must be given by adjoining an nth

root. The standard proof relies on a result known as “linear independence of group characters”,

a result with other applications in field theory which we would certainly present as well if we had

more time. Here, for simplicity we give a proof which relies on some of the techniques of modules

over PIDs we already have on hand.

Proposition 18.36. Let F ⊆ K be a an extension with [K : F ] <∞. Assume that xn− 1 splits in

F with distinct roots. Suppose that K/F is Galois with Gal(K/F ) cyclic of order dividing n. Then

K = F (α) for some α ∈ K such that αn ∈ F .

Proof. By assumption G = Gal(K/F ) is cyclic of order d where d divides n. Since K/F is Galois,

d = [K : F ] also. Let σ be a generator of G, so σ has order d. Note that σ preserves addition and

if λ ∈ F, a ∈ K, then σ(λa) = σ(λ)σ(a) = λσ(a), since σ fixes F . It follows that σ is an F -linear

transformation of the n-dimensional vector space K over F . As such, there is an associated F [x]-

module structure on K, where x acts as σ, and we now investigate this module using our results

on modules over a PID.

Since σd = 1, σ satisfies the polynomial xd−1. Thus the minimal polynomial of σ divides xd−1.

Since d divides n and F has n distinct nth roots of 1, F has d distinct dth roots of 1 already as

well. Thus xd − 1 factors as (x − 1)(x − ρ) . . . (x − ρd−1) for some primitive dth root ρ of 1 in F ,

where 1, ρ, . . . ρd−1 ∈ F are all distinct.

Let a1, . . . , am ∈ F [x] be the invariant factors of K as an F [x]-module, so that

K ∼= F [x]/(a1)⊕ · · · ⊕ F [x]/(am)
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as F [x]-modules, where ai|ai+1 for all i. We have seen that the largest invariant factor am is the

minimal polynomial of σ. Now am divides xd − 1 and thus am factors in F [x] as a product of

distinct linear factors. Then the same is true of all ai. Now the elementary divisors of the module

are found by factoring each invariant factor as a product of powers of distinct irreducibles. So in

this case we see that all elementary divisors have degree 1. It follows that σ has a Jordan form

over F , and moreover this Jordan form is diagonal, with diagonal entries which are dth roots of 1.

Since σ has order d and not smaller order, one of the diagonal entries has to be a primitive dth

root of 1. Without loss of generality we can assume ρ is one of the entries. This tells us that σ has

an eigenvector in K, say α ∈ K, with eigenvalue ρ. Thus σ(α) = ρα.

Up until now we have not used that σ is an automorphism of K, i.e. that σ preserves multiplica-

tion. Now we note that σ(αi) = (σ(α))i = ρiαi. Thus αi ∈ K is an eigenvector of σ with eigenvalue

ρi, and we conclude that all powers of ρ, and hence all dth roots of 1, are eigenvalues of σ. Also,

since 1, α, α2, . . . αd−1 are eigenvectors with distinct eigenvalues, they are linearly independent over

F . Since [K : F ] = d, these powers of α form a basis of K over F . With respect to this basis σ

has diagonal entries 1, ρ, . . . , ρd−1 and so the minimal polynomial of σ is in fact xd − 1. (Note that

the minimal polynomial of a vector space map is not necessarily irreducible, unlike the minimal

polynomial of an algebraic element in a field extension.)

Since the powers of α give a basis of K over F , certainly F (α) = K. And since σ(αd) = ρdαd =

αd, we have αd ∈ Fix〈σ〉 = FixG = F since the extension is Galois. Certainly then αn ∈ F as

well. �

Putting together the previous two results we get the following very nice theorem.

Theorem 18.37. Let F ⊆ K be a field extension and suppose that xn − 1 has n distinct roots in

F . Then the following are equivalent:

(1) K/F is Galois with Gal(K/F ) cyclic of order dividing n.

(2) K = F (α) for some α ∈ K with αn ∈ F .

We now single out those extensions that can be formed by iterating the procedure of adjoining

a root.

Definition 18.38. A field extension F ⊆ K is called a root extension if there is a chain of subfields

F = K0 ⊆ K1 ⊆ K2 ⊆ · · · ⊆ Km = K
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such that for all i ≥ 0 there is αi ∈ Ki+1 and ni ≥ 1 such that Ki+1 = Ki(αi) and αnii ∈ Ki. A

polynomial f ∈ F [x] is solvable by radicals if there exists a root extension F ⊆ K such that f splits

in K[x].

In other words, at each step in a root extension, we get the next field by adjoining some root of

an element we already have. Speaking loosely, the elements in a root extension K of F are those

that can be expressed using only elements in F , field operations, and nested root symbols. Thus a

polynomial is solvable by radicals if all of its roots can be expressed in such a way. For example,

3

√
(1/10) +

√
2/ 5
√

3 lies in a root extension of Q, namely

Q ⊆ Q(
√

2) ⊆ Q(
√

2)(
3

√
(1/10) +

√
2) ⊆ Q(

√
2,

3

√
(1/10) +

√
2)(

5
√

3).

A major preoccupation of mathematicians in the Renaissance period in Europe was to find

solutions for a general polynomial equation

xn + an−1x
n−1 + · · ·+ a1x+ a0 = 0.

Really, what was desired was a formula, or method, that would give the solutions to any equation in

terms of manipulations of its coefficients, including algebraic operations and taking roots. Solutions

of this type for quadratic equations had been long known (although not exactly in the form of the

quadratic formula as we know it today). Formulas for solving polynomial equations of degree 3 and

4 were eventually successfully developed. These were first published by Cardano in 1545, but the

solutions are now attributed to Tartaglia and del Ferro (for the cubic) and Ferrari (for the quartic).

Interestingly, complex numbers arise naturally in these formulas even when one is only seeking real

roots, and this probably helped spur the eventual acceptance of complex numbers in mathematics.

No solution to the general degree 5 (quintic) equation could be found in teh following years, and

eventually, hundreds of years later in 1824, Abel proved that no solution of this kind could exist

(building on earlier work of Ruffini). Galois’s theory, which came just a bit later in 1830, then put

this theorem into a more general context.

Technically, what Abel and Galois proved is that there can exist no formula for the solution of a

quintic which depends only on field operations and nested root signs. In our terminology, we can

state the key theorem as follows:

Theorem 18.39. There exists a polynomial f ∈ Q[x] of degree 5 such that the splitting field K of

f in C is not a root extension of Q.
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Thus the roots of f in C are “not expressible in terms of radicals”. In fact Galois’s work showed

a much stronger result, which today we state in terms of solvable groups although that concept

wasn’t formalized at the time.

Theorem 18.40. Let F be a field of characteristic 0. Then f ∈ F [x] is solvable by radicals if and

only if Gal(K/F ) is a solvable group, where K is the splitting field of f over F .

Then to give the required example in Theorem 18.39, it just suffices to find a particular polyno-

mial whose splitting field has a non-solvable Galois group. Since the splitting field of a polynomial

of degree d has degree at most d! over Q, this explains why no such example could exist when

d ≤ 4, since all groups of order at most 24 are solvable, and thus all polynomials of degree at most

4 in Q are solvable by radicals. On the other hand, we will see that there does exist a polynomial

of degree 5 such that the Galois group of its splitting field is the non-solvable group S5.

We have decided to omit the complete proof of Theorem 18.40, which is a bit technical. The

result itself does not have the importance it once did, as solving polynomial equations explicitly is

no longer a central topic in algebra. But from the results we have already presented the main idea

of Theorem 18.40 is easy to grasp, and so we briefly discuss this. First, recall that in our study of

groups we defined a group G to be solvable if it has a series of subgroups

1 = H0 E H1 E H2 E · · · E Hn−1 E Hn = G

such that Hi+1/Hi is abelian for all i. However, if G is finite and solvable, then in fact it has such a

series where each Hi+1/Hi is cyclic. This follows easily from the fact that a finite abelian group is a

direct product of cyclic groups, which allows one to add additional terms to any series as above in

order to make the factor groups cyclic. Thus finite solvable groups are exactly those groups which

are built out of cyclic groups in this sense. By definition, root extensions are field extensions which

are built out of extensions where one adjoins a single root. Finally, Theorem 18.37 showed that

an extension where one adds a root has Galois group which is cyclic (under certain hypotheses).

These facts, together with the fundamental theorem of Galois theory, already suggest that root

extensions should correspond roughly to solvable groups under the Galois correspondence.

In order to write down a precise proof of Theorem 18.40, one has to deal with some additional

technical details. First, in Theorem 18.40 there is no assumption that F contains any roots of 1,

so to successfully apply Theorem 18.37 one first has to adjoin a bunch of roots of 1 to F , and

show this doesn’t change the property of being a root extension. Second, a root extension is not

necessarily Galois, since at each stage we just add one root of a polynomial, so one may need to

pass to a larger root extension which is Galois in order to apply the fundamental theorem.
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From now on we simply assume Theorem 18.40. We will, however, show how to use it to prove

Theorem 18.39.

Proof of Theorem 18.39. Let f = 2x5− 10x+ 5 ∈ Q[x]. We claim that f is not solvable by radicals

over Q.

Let K be the splitting field of f over Q. We claim that Gal(K/Q) ∼= S5. Once this proved, then

since S5 is not solvable, we will know that f is not solvable by radicals by Theorem 18.40.

The polynomial f is irreducible over Q by an application of the Eisenstein criterion with prime

5. Thus if α ∈ K is a root of f , we will have [Q(α) : Q] = 5. In particular, if G = Gal(K/Q) then

|G| = |K : Q| is divisible by 5. Thus G has an element of order 5 by Cauchy’s theorem.

Next, if α1, . . . , α5 are the roots of f in K (they are distinct since we are in characteristic 0),

then every σ ∈ G sends each root of f to a root of f , and so gives a permutation of these roots.

Since these roots also generate K over Q, σ is determined by how it permutes the roots of f . In

this way we get an injective homomorphism from G to S5, which maps σ ∈ G to the corresponding

permutation of the roots of f . Now think of G as a subgroup of S5. The only elements of order 5

in S5 are 5-cycles, so G contains a 5-cycle.

Now f was chosen to have exactly 3 real roots. This fact can be easily verified using calculus.

Namely, we have f ′ = 10x4−10 which has real zeroes at the values ±1. By the mean value theorem,

between any two real roots r1 < r2 of f there must be r1 < s < r2 such that f ′(s) = 0. Since f ′ has

only two real roots we conclude that f has at most 3 real roots. On the other hand, f(−2) < 0,

f(−1) > 0, f(1) < 0, and f(2) > 0, so an application of the intermediate value theorem shows that

f has at least 3 real roots. So f has exactly 3 real roots. Now we have, say, that α1, α2, α3 ∈ R,

while α4, α5 6∈ R. Since the non-real roots of a polynomial with real coefficients come in conjugate

pairs, we must have α5 = α4.

Now the complex conjugation map z 7→ z is an automorphism of C. It permutes the roots αi

of f and thus it restricts to an automorphism of K, that is an element in G = Gal(K/Q). This

automorphism obviously acts on the roots as the 2-cycle (45).

To complete the proof, one checks that any subgroup of S5 which contains a 5-cycle and a 2-cycle

is equal to all of S5. This is an exercise in group theory which we leave to the reader. This proves

the claim that G ∼= S5 and finishes the proof. �

18.7. Algebraically closed fields and algebraic closures. We have used throughout our study

of field theory that the field C of complex numbers is algebraically closed. In this section we will

prove that result, as well as studying algebraically closed fields more generally.
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Recall the following definition:

Definition 18.41. A field K is algebraically closed if for all f ∈ K[x], f splits in K[x], that is

f = c(x− α1) . . . (x− αn) for some α1, . . . , αn ∈ K.

This definition can formulated in a number of slightly different ways.

Lemma 18.42. Let K be a field. The following are equivalent:

(1) K is algebraically closed, that is, every polynomial in K[x] splits in K[x].

(2) Every nonconstant polynomial f ∈ K[x] has a root in K.

(3) If K ⊆ L is an algebraic extension, then L = K.

(4) If K ⊆ L is an algebraic extension with [L : K] <∞, then L = K.

Proof. (1) =⇒ (2) is obvious.

For (2) =⇒ (3), supppose that L/K is algebraic. Given α ∈ L, let f = minpolyK(α) ∈ K[x].

Then f has a root in K, but f is also irreducible over K. This forces deg f = 1 and hence α ∈ K.

Thus K = L.

(3) =⇒ (4) is also immediate.

(4) =⇒ (1): Let f ∈ K[x]. Let L be a splitting field for f over K, so [L : K] <∞ by definition.

Then we have L = K, so f splits in K[x] already. �

Definition 18.43. If F ⊆ K is a field extensions, K is called an algebraic closure of F if K/F is

algebraic and K is algebraically closed.

We are going to show shortly that every field has an algebraic closure, and the algebraic closure

is unique up to isomorphism.

Here is an alternative way of thinking about the algebraic closure.

Lemma 18.44. Let F ⊆ K be an algebraic extension. Then K is an algebraic closure of F if and

only if every f ∈ F [x] splits in K[x].

Proof. One direction is easy: if K is an algebraic closure, then K is algebraically closed. Since

every f ∈ F [x] is also in K[x], of course f splits in K[x] by definition.

Conversely, suppose that every f ∈ F [x] splits in K[x]. Suppose that K ⊆ L is an algebraic

extension. Since F ⊆ K is algebraic, we have that F ⊆ L is algebraic, by Theorem 17.26. For

α ∈ L, consider f = minpolyF (α). Then f splits in K[x]. Since α is a root of f , α ∈ K. Thus

K = L. Now K is algebraically closed by Lemma 18.42. �
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While we have only defined the splitting field of a single polynomial, given a set S of polynomials

in F [x], one could define an algebraic extension F ⊆ K to be a splitting field of the set S if every

polynomial in S splits in K and K is generated over F by the roots of all polynomials in S. In

this point of view, Lemma 18.44 is telling us that an algebraic closure of F is essentially a splitting

field for the set of all polynomials in F [x].

Let us note that to find an algebraic closure, it suffices to find some algebraically closed field

containing a given one.

Lemma 18.45. Let F ⊆ L be a field extension and assume that L is algebraically closed. Let

K = {α ∈ L|α is algebraic over F}. Then K is an algebraic closure of F .

Proof. We have seen previously in Corollary 17.20 that K is a subfield of L such that K/F is

algebraic. If f ∈ F [x], then f splits in L[x] since L is algebraically closed. But the roots of f in L

are algebraic over F and so they belong to K. Thus f already splits over K. Now K is an algebraic

closure of F by Lemma 18.44. �

We previously defined the field of algebraic numbers Q as the set of elements in C that are

algebraic over Q. We see by Lemma 18.45 that Q is an algebraic closure of Q. It is much smaller

than C, for it is not hard to prove that an algebraic closure of a countable field F is again countable,

for there are countably many polynomials in F [x], and each has finitely many roots.

We are now ready to prove the first main result of this section.

Theorem 18.46. Any field F has an algebraic closure.

Proof. By Lemma 18.45, it suffices to find any algebraically closed field L containing F . Then the

set of elements in L that are algebraic over F will be the desired algebraic closure.

All proofs of this result depend on some version of the axiom of choice. The following elegant

proof, due to Emil Artin, just uses the fact that any commutative ring has a maximal ideal (which

we proved as a consequence of Zorn’s lemma). Recall the idea of Lemma 17.28: Given a irreducible

polynomial f ∈ F [x], we can create a larger field containing F in which f has a root by taking

F [x]/(f). The idea of this proof is to do this for all polynomials in F [x] at once, adding one new

variable for each one. The resulting ring is not a field, but we can just pass to some factor ring

that is a field.

For each nonconstant polynomial f ∈ F [x] we define an intedeterminate xf . Now we define

R = F [xf |f ∈ F [x],deg(f) > 0] to be a polynomial ring generated over F by these (infinitely many)
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variables. Let I be the ideal of R generated by the set of polynomials {f(xf )|f ∈ F [x],deg(f) > 0}.

Each f(xf ) is a polynomial involving only one of the variables.

We claim that I 6= R. Suppose instead that I = R is the unit ideal. Then 1 ∈ I, so 1 =∑n
i=1 gifi(xfi) for some distinct polynomials f1, f2, . . . , fn ∈ R with deg fi > 0 and some gi ∈ R.

Let K be a splitting field over F of f1f2 . . . fn. Thus each fi has a root αi ∈ K. Now we define a

homomorphism φ : R → K as follows: We let φ(a) = a for a ∈ F ; φ(xfi) = αi for 1 ≤ i ≤ n; and

φ(xg) = 0 for all g’s not equal to any fi. Note that by the universal property of a polynomial ring,

given a homomorphism F → K, we can specify a unique homomorphism from R→ K by sending

each variable xf to any element of K we please, so there does exist such a homomorphism φ.

Now we have 1 = φ(1) =
∑n

i=1 φ(gi)fi(αi) =
∑n

i=1 φ(gi)0 = 0, because αi is a root of fi by

definition. This is a contradiction. Thus I 6= R as claimed.

Since I is a proper ideal, we can choose a maximal ideal M of R with I ⊆ M ⊆ R (Propo-

sition 9.6). Then L1 = R/M is a field and we have a homomorphism ψ : F → L1 which is the

composition of the inclusion of F in R followed by the natural homomorphism R → R/M . Since

F is a field, ψ is injective and so we can think of F as a subfield of L1. As such, if f ∈ F [x]

is irreducible, then f has a root xf + M ∈ L1, because f(xf + M) = f(xf ) + M = 0 + M , as

f(xf ) ∈ I ⊆M .

To summarize, we have shown that there exists a field extension F ⊆ L1 such that every non-

constant f ∈ F [x] has a root in L1. Note that this does not prove that L1 is an algebraic closure of

F , because we do not know that f splits over L1, only that it has at least one root. However, we

can now proceed inductively as follows. By the same argument, there is a field extension L1 ⊆ L2

such that every nonconstant polynomial in L1[x] has a root in L2. Continue in this way, defining a

chain of fields F ⊆ L1 ⊆ L2 ⊆ . . . . Now let L =
⋃
n≥0 Ln, which as a union of fields is easily seen

to be a field. If g ∈ L[x] is nonconstant, then each coefficient of g lies in some Li, and so g ∈ Ln[x]

for some n. By construction, g has a root in Ln+1 ⊆ L. Since every nonconstant polynomial in

L[x] has a root in L, the field L is algebraically closed by Lemma 18.42. �

Let us also prove now that algebraic closures are unique up to isomorphism. This is similar to

our results on uniqueness of splitting fields (as we have already remarked, an algebraic closure is

like a splitting field for the set of all polynomials). As in those results, is convenient to work over

an isomorphism of base fields rather than a single base field.

Theorem 18.47. Let θ : F → F ′ be an isomorphism of fields. Let F ⊆ K and F ′ ⊆ K ′ be algebraic

closures. Then there is an isomorphism ρ : K → K ′ such that ρ|F = θ.
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Proof. Consider the set consisting of triples (E,E′, ψ) where E,E′ are subfields with F ⊆ E ⊆ K,

F ′ ⊆ E′ ⊆ K ′, and ψ : E → E′ is an isomorphism such that ψ|F = θ. Put a partial order on this

set where (E,E′ψ) ≤ (L,L′, ρ) if E ⊆ L, E′ ⊆ L′, and ρ|E = ψ. In other words, elements of the set

are isomorphisms matching up subfields of K and K ′, and a larger element represents an extension

of that isomorphism to one defined on larger subfields. The hypotheses of Zorn’s Lemma hold for

this set, because given any chain {(Ei, E′i, ψi)|i ∈ I} we can can extend the isomorphisms ψi to the

unions to get an upper bound of the form (
⋃
iEi,

⋃
iE
′
i, ψ).

By Zorn’s Lemma, there is a maximal element (L,L′, ρ) in the set. Suppose that L 6= K. Then

if α ∈ K \ L, let f = minpolyL(α) and choose any root α′ ∈ K ′ of f ′ = ρ(f); such a root exists

because K ′ is algebraically closed. By Lemma 17.33, we can extend the isomorphism ρ to an

isomorphism δ : L(α) → L′(α′), where δ|L = ρ. But this implies that (L(α), L′(α′), δ) is a strictly

larger element of our set of partial isomorphisms, contradicting that (L,L′, ρ) is maximal. We

conclude that L = K.

Now ρ : K → L′ is an isomorphism. The property of being algebraically closed is preserved

by automorphisms, so L′ is algebraically closed as well. However, since K ′/F ′ is algebraic, we see

that K ′/L′ is algebraic. Because algebraically closed fields have no proper algebraic extensions by

Lemma 18.42, K ′ = L′ and ρ is an isomorphism K → K ′ such that ρ|F = θ, as we wished. �

Of course, taking θ = 1F in the result above we get that any two algebraic closures K,K ′ of

F are isomorphic as fields. Given that the algebraic closure is essentially unique by this result,

sometimes the algebraic closure of a field F is simply notated F . The notation F = F is used as

shorthand to indicate that a field F is itself algebraically closed.

Here is another interesting consequence.

Corollary 18.48. Let F ⊆ E be an algebraic extension. If F ⊆ K is an algebraic closure, there is

an isomorphism φ : E → L for some subfield L with F ⊆ L ⊆ K, where φ|F = 1F .

In other words, given any algebraic extension, an “isomorphic copy” of it can be found inside

any fixed algebraic closure of the base field. Thus when we are studying algebraic extensions of F ,

we can always fix an algebraic closure of F and make all constructions inside there if we wish.

Proof. Let E ⊆ K ′ be an algebraic closure of E. Since E/F and K ′/F are algebraic, K ′/F is also

algebraic. Because K ′ is algebraically closed, we conclude that K ′ is also an algebraic closure of F .

Now choose by Theorem 18.47 an isomorphism ρ : K ′ → K such that ρ|F = 1F . If L = ρ(E), then

φ = ρ|E is an isomorphism φ : E → L with φ|F = 1F . �
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Example 18.49. Let Fp be the field with p elements for some prime p. Fix an algebraic closure

Fp. For each n ≥ 1 we have a field Fpn with pn elements. By the corollary we can find a copy of

this field inside the algebraic closure, so we consider Fp ⊆ Fpn ⊆ Fp.

Now we claim that Fp =
⋃
n Fpn . To see this, note that if α ∈ Fp, then α is algebraic over Fp,

so we can consider f = minpolyFp(α). If f has degree n, then f divides xp
n − x in Fp[x], so α is a

root of xp
n − x. The subfield Fpn must be equal to the set of roots of xp

n − x in Fp, so we see that

α ∈ Fpn for the fixed copy of Fpn . This proves the claim.

This gives a quite explicit picture of Fp as the union of all finite fields of characteristic p. Note,

however, that these fields do not form a single chain, as Fpd is a subset of Fpn if and only if d|n.

Rather, we are taking the union of a more complicated partially ordered set.

For our last main result, we will finally prove that the field C of complex numbers is algebraically

closed. Many quite different proofs of this result are known. All use some amount of analysis, which

is unavoidable because the real numbers are an analytic object, defined by a limiting process. There

is a well-known proof that relies on results in complex analysis, for example.

The proof we give uses Galois theory and reduces the amount of analysis needed to a few

elementary facts about the real numbers.

Lemma 18.50. (1) If f ∈ R[x] has odd degree, then f has a root in R.

(2) if g ∈ C[x] has degree 2, then g splits over C.

Proof. (1) Let f = anx
n + · · ·+ a0 ∈ R[x] where deg f = n is odd. Since we are just trying to show

that f has a root in R, without loss of generality we can replace f with −f if necessary and thus

assume that an > 0. Now it is standard that limn→∞ f(x) =∞ and limn→−∞ f(x) = −∞. By the

intermediate value theorem, since f is a continuous function f must have a root in R.

(2). If g = ax2 + bx + c then the quadratic formula tells us that (−b +
√
b2 − 4ac)/2a is a root

of g in C, for any square root
√
b2 − 4ac in C. Once g has a root α in C, then g = (x− α)h by the

factor theorem, but then h already has degree 1 and so g splits. �

Note that for any complex number z = reiθ in polar form, with r ≥ 0, then
√
reiθ/2 is a square

root of z, where
√
r is the nonnegative real square root of r. Thus ultimately the existence of square

roots in C is a consequence of the fact that nonegative real numbers have a unique nonnegative

square root. This follows easily from the least upper bound property.

The analysis above is all we need to prove our main result.

Theorem 18.51. C is algebraically closed.
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Proof. We will show that if C ⊆ L is a finite degree extension, then L = C. This implies that C is

algebraically closed by Lemma 18.42.

Since [C : R] = 2, we also have [L : R] < ∞, and of course L/R is separable since we are in

characteristic 0. Thus we can take a Galois closure M of L so that L ⊆M and M/R is Galois, by

Proposition 18.13.

Now let G = Gal(M/R). Let P be a Sylow 2-subgroup of G. Let K = Fix(P ). Then [K : R] =

[G : P ] is odd. If α ∈ K, then [R(α) : R] divides [K : R] so it is also odd. Then f = minpolyR(α)

is irreducible and of odd degree. But by Lemma 18.50(1), f has a root in R, and so cannot be

irreducible unless it has degree 1, in which case α ∈ R. This shows that K = R. This implies

P = G and so G is a finite 2-group. Also, [M : R] is a power of 2.

Since [C : R] = 2 we have [M : C] is a power of 2 as well. Also, because M/R is Galois, so is

M/C. Suppose that M 6= C. Now Gal(M/C) is a nontrivial 2-group, so from our earlier results on

p-groups we know that it must have a subgroup H of index 2. If E = Fix(H) then C ( E ⊆ M

with [E : C] = 2. If α ∈ E \C, then minpolyC(α) has degree 2, but by Lemma 18.50, any degree 2

polynomial in C[x] splits over C and cannot be irreducible, which is a contradiction. We conclude

that in fact M = C. Then L = C, completing the proof. �

We close with a curious result about the automorphism group of C. In a homework problem,

you were asked to show that Aut(R) = 1, by checking that every automorphism fixes Q and is

continuous. On the other hand, although C is just a degree 2 extension of R, its automorphism

group Aut(C) is actually very large. This can be seen using the idea of a transcendence basis.

Given any field extension F ⊆ K, it is possible to choose a set of elements {yα ∈ K|α ∈ I} such

that (i) the {yα} are algebraically independent in the sense that T = F (yα|α ∈ I) is isomorphic

to the field of fractions of a polynomial ring F [yα|α ∈ I]; and (ii) T ⊆ K is algebraic. The set

{yα|α ∈ I} is called a transcendence basis for the extension. It can be proved to exist by an

application of Zorn’s Lemma. The cardinality of a transcendence basis is uniquely determined

(though the subfield T it generates isn’t). This cardinality is called the transcendence degree of the

extension.

Consider the particular extension Q ⊆ C. In this case one can show that the transcendence

degree is uncountable. (It this were not the case, but rather the transcendence basis {yα} were

countable, then the field of rational functions Q(yα|α ∈ I) would be countable, and then since an

algebraic extension of a countable field is countable, C would be countable, a contradiction.)

Now fix a transcendence basis {yα|α ∈ I} for C over Q. Any permutation of the set I gives

an automorphism of the polynomial ring Q[yα|α ∈ I] where the variables are permuted in the
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same way. This then extends to an automorphism of the field T = Q(yα|α ∈ I) with the same

permutation of the variables. Finally, since C is algebraically closed and C/T is algebraic, C is

an algebraic closure of T . Thus any automorphism of T extends to an automorphism of C, by

Theorem 18.47.

In this way we can see that C has at least as many automorphisms as the number of elements

in the permutation group Sym(I), where I is the index set of a transcendence basis. Since I is

uncountable, the set of permutations of I actually has cardinality even bigger than the cardinality

of I (as can be seen by a version of Cantor’s diagonal argument). Thus Aut(C) is huge.

On the other hand, while a transcendence basis for C over Q exists, it is impossible to write one

down explicitly, and so the automorphisms of C one gets in this way also do not have any kind of

explicit description. And in fact they tend to have bizarre properties. It is possible to show that

except for the identity map and complex conjugation, any automorphism of C is discontinuous and

maps R onto a dense subset of C. So these really are hard to picture.

The concept of a transcendence basis is generally useful in commutative ring theory (not just for

creating strange automorphisms). We would cover it in more detail if we had more time. You can

find a treatment of it in Chapter 24 of Isaacs’ book.
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