
Math 200a (Fall 2016) - Homework 8

Professor D. Rogalski

Posted November 23–Due Fri. December 2 at 3pm

1 Reading

Read Sections 9.1-9.5.

2 Exercises to submit on Fri. December 2 by 3pm

Exercise 1. Let n be a squarefree integer with n > 3 and let R = Z[
√
−n] = {a+b

√
−n|a, b ∈ Z}.

(Note this is different from the ring of integers OQ(
√
−n) when n ≡ 1 mod 4).

(a). Prove that 2,
√
−n, 1 +

√
−n, and 1−

√
−n are all irreducible in R.

(b). Show that R is not a UFD.
(c). Find an element in R which is irreducible and not prime.

Exercise 2. Let R = Z + xQ[x] be the subring of Q[x] consisting of polynomials with rational
coefficients whose constant terms are integers.

(a). Show that the irreducibles in R are ±p where p is a prime in Z and those polynomials
f ∈ R which are irreducible in Q[x] and have constant term ±1.

(b). Show that x ∈ R cannot be written as a product of finitely many irreducibles in R. Thus
R is not a UFD.

(c). We proved in class that if a commutative ring is noetherian, then every element is a finite
product of irreducibles. Thus R must be non-noetherian. Find an explicit infinitely ascending
chain of ideals I1 ( I2 ( . . . of R.

Exercise 3. Suppose that R is a UFD with field of fractions F . A polynomial f is monic if it
has leading coefficient 1; in other words f(x) = a0 + a1x+ · · ·+ an−1x

n−1 + xn.
(a). Suppose that f ∈ R[x] factors as f = gh with g, h ∈ F [x]. Show that the product of any

coefficient of g with any coefficient of h is in R.
(b). Suppose that f , g, and h are as in part (a) and that moreover g and h are monic. Show

that g ∈ R[x] and h ∈ R[x].
(c). Show that the ring S = Z[2

√
2] = {a + b2

√
2|a, b ∈ Z} is not a UFD by finding f ∈

S[x], g, h ∈ F [x], where F is the field of fractions of S, which violate the results above.
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Exercise 4. Consider the ring R = Z[
√
−5] = {a + b

√
−5|a, b ∈ Z}, in other words the ring of

integers OQ(
√
−5). You may assume the basic properties of the norm function N(a + b

√
−5) =

a2 + 5b2, as described on p. 229-230 of the text.
(a). Consider the ideals I2 = (2, 1 +

√
−5), I3 = (3, 2 +

√
−5), I ′3 = (3, 2−

√
−5). Show that

R/I2 ∼= Z2, and R/I3 ∼= R/I ′3
∼= Z3. Conclude that all three ideals are maximal ideals.

(b). Show that R/(3) ∼= Z3 × Z3 as rings. (Hint: Chinese Remainder theorem).
(c). Is R/(2) ∼= Z2 × Z2?

Exercise 5. This problem continues the investigations of the ring R in problem 7, so keep the
notation introduced there.

(a). Prove that I2, I3, I ′3 are all not principal ideals of R.
(b). Prove that I22 = (2), I2I3 = (1−

√
−5), I2I ′3 = (1 +

√
−5), and I3I

′
3 = (3). In particular,

this gives multiple examples showing that a product of nonprincipal ideals can be principal.

Remark. The ring R is an example of a Dedekind domain. Although unique factorization
fails in the sense that R is not a UFD, there is a different kind of unique factorization: every
nonzero ideal is a product of maximal ideals in a unique way up to the order of the factors. This is
demonstrated by part (b): even though the element 6 factors in two essentially different ways (hence
R is not a UFD), in the two equal products of principal ideals (2)(3) = (1 +

√
−5)(1 −

√
−5),

factoring each principal ideal as a product of maximal ideals, one gets the same answer I22I3I
′
3

on both sides up to rearrangement of the ideals. Dedekind domains are important in algebraic
geometry and number theory and may be studied in more detail in Math 200c.

3 Additional problems on topics covered late in the quarter (not
to be handed in)

Exercise 6. Recall that the characteristic of a ring R is the order of the element 1 in the additive
group of R, when this is a finite number; otherwise we say that R has characteristic 0. Using the
Eisenstein criterion, prove that the following elements are irreducible in the indicated ring.

(a). The element xn − p ∈ (Z[i])[x], where p is an odd prime in Z and n ≥ 1.
(b). The element x2 + y2 − 1 ∈ F [x, y], where F is any field of characteristic not 2.

Exercise 7. Let R be the ring Z[
√
−2] = {a+ b

√
−2|a, b ∈ Z}. By using similar arguments as we

used to study the Gaussian integers Z[i], show that the following are equivalent for an odd prime
number p ∈ Z:

(i) p is not irreducible in R.

(ii) p = a2 + 2b2 for some a, b ∈ Z.
(iii) −2 is a square in Zp.

(By the way, it is also known that −2 is a square mod p as in condition (iii) if and only if p is
congruent to either 1 or 3 modulo 8.)
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