Math 142B Spring 2014 Exam 2- Solutions

1. Let $F:(-1, \infty) \rightarrow \mathbb{R}$ be the function defined by $F(x)=\int_{0}^{x} \ln (1+t) d t$.
(a) Consider the third Taylor polynomial $p_{3}(x)$ of the function $F(x)$ about $x_{0}=0$. Show that

$$
p_{3}(x)=\frac{x^{2}}{2}-\frac{x^{3}}{6} .
$$

Proof. Note that $F(0)=\int_{0}^{0} \ln (1+t) d t=0$. By the Fundamental Theorem of Calculus, $F^{\prime}(x)=\ln (1+x)$. Differentiating thrice more yields $F^{\prime \prime}(x)=1 /(1+x), F^{\prime \prime \prime}(x)=-1 /(1+x)^{2}$, and $F^{(4)}(x)=2 /(1+x)^{3}$. Hence,

$$
p_{3}(x)=\sum_{k=0}^{3} \frac{F^{(k)}(0)}{k!} x^{k}=\frac{x^{2}}{2}-\frac{x^{3}}{6} .
$$

(b) Prove that $F(x)>\frac{x^{2}}{2}-\frac{x^{3}}{6}$ for all $x>0$.

Proof. By the Lagrange Remainder Theorem, for each $x>0$, there exists $c \in(0, x)$ such that

$$
F(x)=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{F^{(4)}(c)}{4!} x^{4}=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{1}{12(1+c)^{3}} x^{4}
$$

Since $c>0,(1+c)^{3}>0$ and $x^{4}>0$ for all x. Hence, the remainder term is positive so

$$
F(x)=\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{1}{12(1+c)^{3}} x^{4}>\frac{x^{2}}{2}-\frac{x^{3}}{6} .
$$

2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function which is infinitely differentiable and which satisfies $f^{\prime}(x)=2 f(x)$ for all $x \in \mathbb{R}$. For any $r>0$ show that the Taylor series expansion of f about $x_{0}=0$ converges to $f(x)$ for all $x \in[-r, r]$. Conclude that the Taylor series expansion of f about $x_{0}=0$ converges to f for all real numbers x.

Proof. Let $c=\max _{[-r, r]} f^{\prime}(x)$. Let $M=\max \{c, 2\}$. We wlil prove that for all $n \in \mathbb{N}$ and all $x \in[-r, r]$, that $\left|f^{(n)}(x)\right| \leq M^{n}$, so by Theorem 8.14, the Taylor series converges on $[-r, r]$.

We proceed by induction. For the base case, $\left|f^{\prime}(x)\right| \leq c \leq M$ for all $x \in[-r, r]$. Now by induction

$$
\left|f^{(n)}(x)\right|=2\left|f^{(n-1)}(x)\right| \leq 2 M^{n-1} \leq M^{n}
$$

since $M \geq 2$. Hence, $\left|f^{(n)}(x)\right| \leq M^{n}$ for all n and all $x \in[-r, r]$. Since for any x, there exists an r such that $r>|x|$, the Taylor series expansion converges for all $x \in \mathbb{R}$.
3. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ and $g: \mathbb{R} \rightarrow \mathbb{R}$ are functions and fix $x_{0} \in I$. Assume f and g are infinitely differentiable.
(a) Suppose that f and g have infinite order of contact at x_{0} and that f and g are both analytic at x_{0}. Prove that there is an open neighborhood I of x_{0} such that $f(x)=g(x)$ for all $x \in I$.

Proof. Since f is analytic, there exists an open neighborhood (a, b) of x_{0} where f is equal to its Taylor series. Similarly, there exists (c, d) an open neighborhood of x_{0} where g equals its Taylor series.
Let $I=(\max \{a, c\}, \max \{b, d\})=(a, b) \cap(c, d)$. This is an open neighborhood of x_{0} where

$$
f(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \quad \text { and } \quad g(x)=\sum_{k=0}^{\infty} \frac{g^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

But since f and g have infinite order of contact, their Taylor series agree, so $f(x)=g(x)$ for all $x \in I$.
(b) Suppose that f and g have infinite order of contact at x_{0}, but they are not necessarily analytic at x_{0}. Must there be an open neighborhood I of x_{0} such that $f(x)=g(x)$ for all $x \in I$? Prove or give an explicit counterexample with explanation.

Proof. As a counterexample, let

$$
f(x)= \begin{cases}e^{-1 / x^{2}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

and let $g(x)=0$ be identically zero. Then f and g have infinite order of contact (by theorems in section 8.6). But $f(x) \neq 0$ for any $x \neq 0$, so there is no open neighborhood wher $f(x)=$ $g(x)$.

