MATH 142B SPRING 2014 MIDTERM 1 - SOLUTIONS

1. (10 pts) Suppose that $f:[a, b] \rightarrow \mathbb{R}$ and $g:[a, b] \rightarrow \mathbb{R}$ are bounded functions such that $f(x) \leq g(x)$ for all $x \in[a, b]$.
(a). (5 pts) Prove that for any two partitions P and Q of $[a, b]$, we have $L(f, P) \leq U(g, Q)$.

Proof. Let $P=\left\{x_{0}, \ldots, x_{n}\right\}$. Since $f(x) \leq g(x)$ for all $x \in[a, b]$, on each partition interval of P, we have $\inf _{x \in\left[x_{i-1}, x_{i}\right]} f(x) \leq \inf _{x \in\left[x_{i-1}, x_{i}\right]} g(x)$. Hence, $L(f, P) \leq L(g, P)$. By the Refinement Lemma, $L(g, P) \leq L(g, P \cup Q)$. By equation (6.3) in the text, $L(g, P \cup Q) \leq$ $U(g, P \cup Q)$. Finally, again by the Refinement Lemma, $U(g, P \cup Q) \leq U(g, Q)$. We conclude that $L(f, P) \leq U(g, Q)$.
(b). (5 pts) Use part (a) to prove that $\underline{\int}_{a}^{b} f \leq \bar{\int}_{a}^{b} g$.

Proof. Fix a partition P of $[a, b]$. Then by part (a), we have $L(f, P) \leq U(g, Q)$ for any partition Q of $[a, b]$. Hence, $L(f, P) \leq \inf \{U(g, Q) \mid Q\}=\bar{\int} g$ (by closedness of the set $[L(f, P), \infty)$, each $U(g, Q)$ is in this set, so the infimum must also be). But P was arbitrary so we have $L(f, P) \leq \bar{\int} g$ for any partition P. Hence, $\sup L(f, P)=\underline{\int} f \leq \bar{\int} g$ by closedness of $\left(-\infty, \bar{\int} g\right]$.
2. (10 pts) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function. Suppose that $\delta, \epsilon>0$ are given such that for all $u, v \in[a, b]$ with $|u-v|<\delta$, one has $|f(u)-f(v)|<\epsilon$.
Suppose that $P=\left\{x_{0}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ with the property that gap $P<\delta$.
Prove that $U(f, P)-L(f, P) \leq \epsilon(b-a)$. (Recall that gap $P=\max \left\{\left(x_{i}-x_{i-1}\right) \mid 1 \leq i \leq n\right\}$.)
Proof. On each partition interval $\left[x_{i-1}, x_{i}\right] \mathrm{f}$ is continuous so by the extreme value theorem there exist points y_{i}, and z_{i} where f achieves a minimum and a maximum on the interval. Since $y_{i}, z_{i} \in\left[x_{i-1}, x_{i}\right]$, we have $\left|y_{i}-z_{i}\right|<\delta$. So by hypothesis, $f\left(z_{i}\right)-f\left(y_{i}\right)<\epsilon$ Hence, $U(f, P)-L(f, P)=\sum_{i=1}^{n}\left[f\left(z_{i}\right)-f\left(x_{i}\right)\right]\left(x_{i}-x_{i-1}\right) \leq \sum_{i=1}^{n} \epsilon\left(x_{i}-x_{i-1}\right)=\epsilon \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)=\epsilon(b-a)$.
3. (10 pts) Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function such that $f(x)=0$ for all $x \in \mathbb{Q}$. Prove that if f is integrable, then $\int_{a}^{b} f=0$.

Proof. For any partition P of $[a, b]$, we have $L(f, P)=\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right)$ where m_{i} is the infimum of f in the interval $\left[x_{i-1}, x_{i}\right]$. By the density of the rationals, in each partition interval there exists a point y_{i} such that $f\left(y_{i}\right)=0$. Hence, $m_{i} \leq 0$ for all i. So $L(f, P) \leq 0$ for all partitions P. Thus, $\sup \{L(f, P) \mid P\}=\underset{\int}{f} f \leq 0$.

Similarly, we have $\bar{\int} f \geq 0$. Now since f is integrable, $\int f=\int f=\int f$. So we have $\int f \leq 0$ and $\int f \geq 0$ which is only possible if $\int f=0$.

