
Math 142B Practice Midterm (Eggers 2011) - Solutions

1. Let f : R→ R be continuous. Define

G(x) =

∫ x

0
(x− t)f(t) dt for all x.

Use the Second Fundamental Theorem to show that G′′(x) = f(x) for all x. (Hint: Use the linearity
property of the integral to rewrite it in a more convenient form.)

Proof. By the linearity of the integral,

G(x) = x

∫ x

0
f(t) dt−

∫ x

0
tf(t) dt.

Now by the Second Fundamental Theorem,

G′(x) =
d

dx

[
x

∫ x

0
f(t) dt−

∫ x

0
tf(t) dt

]
= xf(x) +

∫ x

0
f(t) dt− xf(x) =

∫ x

0
f(t) dt.

Applying the Second Fundamental Theorem once more yields:

G′′(x) =
d

dx

∫ x

0
f(t) dt = f(x).

�

2. Let f(x) = ex. We have seen that the nth Taylor polynomial for f at x = 0 is given by

pn(x) =
n∑

k=0

1

k!
xk = 1 + x +

1

2!
x2 + · · ·+ 1

n!
xn.

Prove that for every real number x, f(x) is equal to its Taylor series at x = 0.

Proof. Let x0 ∈ R. Choose r > |x0|. We will show that f(x) equals its Taylor series on the interval
[−r, r] and so f equals its Taylor series at x0. By Theorem 8.14, it suffices to choose an M > 0
such that for all x ∈ [−r, r], |f (n)(x)| ≤Mn.

We note that f (n)(x) = ex for all n, and that ex is a strictly increasing function (as it has
strictly positive derivative everywhere). Hence, if we choose M = er, then for all n ∈ N, and all
x ∈ [−r, r],

|f (n)(x)| ≤ max
[−r,r]

ex = er ≤Mn.

�
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3. Use the Lagrange Remainder Theorem to show that

0 < x− ln(1 + x) <
1

2
x2 for all x > 0.

Proof. Let f(x) = ln(1+x). First, we note that by rearranging inequalities, it suffices to show that

x− 1

2
x2 < ln(1 + x) < x.

We compute the first three derivatives of ln(1 + x):

f ′(x) =
1

1 + x
and f ′′(x) = − 1

(1 + x)2
and f ′′′(x) =

1

(1 + x)3

So the first and second Taylor polynomials for ln(1 + x) at x = 0 are

p1(x) = x

p2(x) = x− 1

2
x2.

Now by Lagrange Remainder Theorem, there exists a c between 0 and x such that

ln(1 + x) = x +
f ′′(c)

2!
x2.

But since f ′′(x) < 0 for all x > 0, it follows that the remainder term is always negative and hence
ln(1 + x) < x. Similarly, there exists a c such that

ln(1 + x) = x− 1

2
x2 +

f ′′′(c)

3!
x3.

Since f ′′′(x) > 0 for all x > 0, here the remainder term is always positive so

x− 1

2
x2 < ln(1 + x) < x.

�
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4. Let f : R→ R have derivatives of all orders and satisfy

f ′(x) = f(x) for all x,

f(0) = 2.

(a) Find a formula for the coefficients of the nth Taylor polynomial for f at x = 0.

Proof. By induction, f (k)(x) = f(x) for all k and all x. Hence, the coefficient for the kth term
in the Taylor polynomial is given by

f (k)(0)

k!
xk =

f(0)

k!
xk =

2

k!
xk.

So we have

pn(x) =
n∑

k=0

2

k!
xk.

�

(b) Show that the Taylor series for f at x = 0 converges for all x.

Proof. Again, we show convergence of the Taylor series at an arbitrary x0 ∈ R. Let r > |x0|.
We again use Theorem 8.14 to show that the Taylor series converges on [−r, r]. Since f(x) is
differentiable, therefore it is continuous. By the Extreme Value Theorem, there exists some
M = max

[−r,r]
f(x). Now, for all n ∈ N and all x ∈ [−r, r],

|f (n)(x)| = |f(x)| ≤M ≤Mn

(since M ≥ 2). �
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