Math 142B Practice Midterm (Eggers 2011) - Solutions

1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous. Define

$$
G(x)=\int_{0}^{x}(x-t) f(t) d t \text { for all } x
$$

Use the Second Fundamental Theorem to show that $G^{\prime \prime}(x)=f(x)$ for all x. (Hint: Use the linearity property of the integral to rewrite it in a more convenient form.)

Proof. By the linearity of the integral,

$$
G(x)=x \int_{0}^{x} f(t) d t-\int_{0}^{x} t f(t) d t .
$$

Now by the Second Fundamental Theorem,

$$
G^{\prime}(x)=\frac{d}{d x}\left[x \int_{0}^{x} f(t) d t-\int_{0}^{x} t f(t) d t\right]=x f(x)+\int_{0}^{x} f(t) d t-x f(x)=\int_{0}^{x} f(t) d t .
$$

Applying the Second Fundamental Theorem once more yields:

$$
G^{\prime \prime}(x)=\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
$$

2. Let $f(x)=e^{x}$. We have seen that the $n^{\text {th }}$ Taylor polynomial for f at $x=0$ is given by

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{1}{k!} x^{k}=1+x+\frac{1}{2!} x^{2}+\cdots+\frac{1}{n!} x^{n} .
$$

Prove that for every real number $x, f(x)$ is equal to its Taylor series at $x=0$.
Proof. Let $x_{0} \in \mathbb{R}$. Choose $r>\left|x_{0}\right|$. We will show that $f(x)$ equals its Taylor series on the interval $[-r, r]$ and so f equals its Taylor series at x_{0}. By Theorem 8.14, it suffices to choose an $M>0$ such that for all $x \in[-r, r],\left|f^{(n)}(x)\right| \leq M^{n}$.

We note that $f^{(n)}(x)=e^{x}$ for all n, and that e^{x} is a strictly increasing function (as it has strictly positive derivative everywhere). Hence, if we choose $M=e^{r}$, then for all $n \in \mathbb{N}$, and all $x \in[-r, r]$,

$$
\left|f^{(n)}(x)\right| \leq \max _{[-r, r]} e^{x}=e^{r} \leq M^{n}
$$

3. Use the Lagrange Remainder Theorem to show that

$$
0<x-\ln (1+x)<\frac{1}{2} x^{2} \text { for all } x>0
$$

Proof. Let $f(x)=\ln (1+x)$. First, we note that by rearranging inequalities, it suffices to show that

$$
x-\frac{1}{2} x^{2}<\ln (1+x)<x
$$

We compute the first three derivatives of $\ln (1+x)$:

$$
f^{\prime}(x)=\frac{1}{1+x} \quad \text { and } \quad f^{\prime \prime}(x)=-\frac{1}{(1+x)^{2}} \quad \text { and } \quad f^{\prime \prime \prime}(x)=\frac{1}{(1+x)^{3}}
$$

So the first and second Taylor polynomials for $\ln (1+x)$ at $x=0$ are

$$
\begin{gathered}
p_{1}(x)=x \\
p_{2}(x)=x-\frac{1}{2} x^{2}
\end{gathered}
$$

Now by Lagrange Remainder Theorem, there exists a c between 0 and x such that

$$
\ln (1+x)=x+\frac{f^{\prime \prime}(c)}{2!} x^{2}
$$

But since $f^{\prime \prime}(x)<0$ for all $x>0$, it follows that the remainder term is always negative and hence $\ln (1+x)<x$. Similarly, there exists a c such that

$$
\ln (1+x)=x-\frac{1}{2} x^{2}+\frac{f^{\prime \prime \prime}(c)}{3!} x^{3}
$$

Since $f^{\prime \prime \prime}(x)>0$ for all $x>0$, here the remainder term is always positive so

$$
x-\frac{1}{2} x^{2}<\ln (1+x)<x
$$

4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ have derivatives of all orders and satisfy

$$
\begin{gathered}
f^{\prime}(x)=f(x) \text { for all } x \\
f(0)=2
\end{gathered}
$$

(a) Find a formula for the coefficients of the $n^{\text {th }}$ Taylor polynomial for f at $x=0$.

Proof. By induction, $f^{(k)}(x)=f(x)$ for all k and all x. Hence, the coefficient for the k th term in the Taylor polynomial is given by

$$
\frac{f^{(k)}(0)}{k!} x^{k}=\frac{f(0)}{k!} x^{k}=\frac{2}{k!} x^{k}
$$

So we have

$$
p_{n}(x)=\sum_{k=0}^{n} \frac{2}{k!} x^{k}
$$

(b) Show that the Taylor series for f at $x=0$ converges for all x.

Proof. Again, we show convergence of the Taylor series at an arbitrary $x_{0} \in \mathbb{R}$. Let $r>\left|x_{0}\right|$. We again use Theorem 8.14 to show that the Taylor series converges on $[-r, r]$. Since $f(x)$ is differentiable, therefore it is continuous. By the Extreme Value Theorem, there exists some $M=\max _{[-r, r]} f(x)$. Now, for all $n \in \mathbb{N}$ and all $x \in[-r, r]$,

$$
\left|f^{(n)}(x)\right|=|f(x)| \leq M \leq M^{n}
$$

(since $M \geq 2$).

