Math 142B

Summer 2011 Midterm Exam 1 Solution

1. Let $f:[0,1] \rightarrow \mathbb{R}$ be defined by

$$
f(x)= \begin{cases}x & \text { if } x=\frac{1}{n} \text { for some } n \in \mathbb{N} \\ 0 & \text { otherwise }\end{cases}
$$

Show the f is integrable on $[0,1]$ and determine the value of $\int_{0}^{1} f$.
Given a natural number $n, f(x)=0$ for each x in $\left(\frac{1}{k}, \frac{1}{k-1}\right)$ for all integers $k=2, \ldots, n$. Thus, f is a step function, hence integrable, on $\left[\frac{1}{n}, 1\right]$. Choose P_{n}^{\star} a partition of $\left[\frac{1}{n}, 1\right]$ such that $U\left(f, P_{n}^{\star}\right)-L\left(f, P_{n}^{\star}\right)<\frac{1}{n}$, and let $P_{n}=P_{n}^{\star} \cup\{0\}$. Then, P_{n} is a partition of $[0,1]$ and

$$
U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=U\left(f, P_{n}^{\star}\right)-L\left(f, P_{n}^{\star}\right)+U\left(f,\left\{0, \frac{1}{n}\right\}\right)-L\left(f,\left\{0, \frac{1}{n}\right\}\right)<\frac{1}{n}+\frac{1}{n} \rightarrow 0 .
$$

It follows that $\left\{P_{n}\right\}$ is Archimedean for f on $[0,1]$. Hence, f is integrable. Since $L(f, P)=0$ for every partition P of $[0,1], \int_{0}^{1} f=0$.
2. Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function such that $\int_{c}^{d} f \geq 0$ for all c, d with $a \leq c<d \leq b$. Prove that $f(x) \geq 0$ for all $x \in[a, b]$.
Suppose $f\left(x_{0}\right)=-\rho<0$ at some x_{0} in $[a, b]$. Since f is continuous, there is a $\delta>0$ such that $\left|f(x)-f\left(x_{0}\right)\right|=|f(x)+\rho|<\frac{\rho}{2}$ for all x such that $\left|x-x_{0}\right|<\delta$. Thus, $-\frac{3 \rho}{2}<f(x)<-\frac{\rho}{2}<0$ for all x in $\left(x_{0}-\delta, x_{0}+\delta\right)$. It follows that $\int_{x_{0}-\delta}^{x_{0}+\delta} f<0$.
3. Exhibit an example of a function $f:[0,1] \rightarrow \mathbb{R}$ that is unbounded.

The function $f:[0,1] \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}\frac{1}{x} & \text { if } 0<x \leq 1, \\ 0 & \text { if } x=0\end{cases}
$$

is unbounded since $\lim _{x \rightarrow 0^{+}} \frac{1}{x}$ diverges to infinity.
4. For numbers a_{1}, \ldots, a_{n}, define $p(x)=a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$ for all x. Suppose that

$$
\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1}=0 .
$$

Prove that there is an $x_{0} \in(0,1)$ such that $p\left(x_{0}\right)=0$.
By the Fundamental Theorem of Calculus, $\int_{0}^{1} p=\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1}$.
Suppose $p(x) \neq 0$ for all x in $(0,1)$. Then, $p(x)>0$ for all x in $(0,1)$ or $p(x)<0$ for all x in $(0,1)$, since p is continuous. If $p(x)>0$ for all x in $(0,1)$, then $\int_{0}^{1} p>0$. Similarly, if $p(x)<0$ for all x in $(0,1)$, then $\int_{0}^{1} p<0$. It follows that $\frac{a_{1}}{2}+\frac{a_{2}}{3}+\cdots+\frac{a_{n}}{n+1} \neq 0$.
5. Let $f:[a, b] \rightarrow \mathbb{R}$ be monotonically increasing.
(a) Show that f is bounded on $[a, b]$. $f(a) \leq f(x) \leq f(b)$ for all x in $[a, b]$, since f is monotonically increasing.
(b) Let P_{n} be a regular partition of $[a, b]$ into n partition intervals. Show that

$$
\begin{aligned}
& U\left(f, P_{n}\right)-L\left(f, P_{n}\right)=\frac{[f(b)-f(a)][b-a]}{n} \\
& U\left(f, P_{n}\right)-L\left(f, P_{n}\right)= \sum_{i=1}^{n}\left(M_{i}-m_{i}\right)\left(x_{i}-x_{i-1}\right) \\
&=\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \frac{[b-a]}{n} \text { since } P_{n} \text { is a regular partition } \\
&=\sum_{i=1}^{n}\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right) \frac{[b-a]}{n} \text { since } f \text { is monotonically increasing } \\
&=\frac{[f(b)-f(a)][b-a]}{n} .
\end{aligned}
$$

