Math 140A: Midterm 2

Foundations of Real Analysis

- You have 50 minutes.
- No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- You may not use homework problems (without proof) in your solutions.

1. (10 points)
(a) (5 points) Let $\left\{a_{n}\right\}$ be a sequence of positive real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$.

Prove that $\lim _{n \rightarrow \infty} a_{n}^{p}=0$, for any $p>0$.
(b) (5 points) Let $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ be sequences of real numbers such that $a_{n} \leqslant b_{n} \leqslant c_{n}$, for all $n \geqslant 1$. Assume that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=l$.
Prove that $\lim _{n \rightarrow \infty} b_{n}=l$.
2. (10 points) Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be bounded sequences of positive real numbers. Prove that $\limsup \left(a_{n} b_{n}\right) \leqslant\left(\limsup a_{n}\right)\left(\limsup b_{n}\right)$.

$$
n \rightarrow \infty \quad n \rightarrow \infty \quad n \rightarrow \infty
$$

3. Let $\left\{a_{n}\right\}$ be a sequence of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$. Define a new sequence $\left\{b_{n}\right\}$ by letting $b_{n}=a_{n}-a_{n+1}$, for every $n \geqslant 1$.
Prove that the series $\sum_{n=1}^{\infty} b_{n}$ is convergent and $\sum_{n=1}^{\infty} b_{n}=a_{1}$.
4. (10 points) Let a be a real number.
(a) (5 points) Prove that if $a \geqslant 1$, then the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(a+1)(a+2) \ldots(a+n)}$ is convergent.
(b) (5 points) Prove that if $a \geqslant 2$, then the series $\sum_{n=1}^{\infty}(-1)^{n} \frac{n!}{(a+1)(a+2) \ldots(a+n)}$ is absolutely convergent.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
Total	out of 40 points

