Math 140A: Midterm 2 Foundations of Real Analysis

- You have 50 minutes.
- No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- You may not use homework problems (without proof) in your solutions.

1. (10 points)

(a) (5 points) Let $\{a_n\}$ be a sequence of positive real numbers such that $\lim_{n \to \infty} a_n = 0$. Prove that $\lim_{n \to \infty} a_n^p = 0$, for any p > 0.

(b) (5 points) Let $\{a_n\}$, $\{b_n\}$ and $\{c_n\}$ be sequences of real numbers such that $a_n \leq b_n \leq c_n$, for all $n \geq 1$. Assume that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = l$.

Prove that $\lim_{n \to \infty} b_n = l$.

2. (10 points) Let $\{a_n\}$ and $\{b_n\}$ be bounded sequences of positive real numbers. Prove that $\limsup_{n \to \infty} (a_n b_n) \leq (\limsup_{n \to \infty} a_n)(\limsup_{n \to \infty} b_n).$

3. Let $\{a_n\}$ be a sequence of real numbers such that $\lim_{n\to\infty} a_n = 0$. Define a new sequence $\{b_n\}$ by letting $b_n = a_n - a_{n+1}$, for every $n \ge 1$. Prove that the series $\sum_{n=1}^{\infty} b_n$ is convergent and $\sum_{n=1}^{\infty} b_n = a_1$.

4. (10 points) Let a be a real number.

(a) (5 points) Prove that if $a \ge 1$, then the series $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{(a+1)(a+2)\dots(a+n)}$ is convergent. (b) (5 points) Prove that if $a \ge 2$, then the series $\sum_{n=1}^{\infty} (-1)^n \frac{n!}{(a+1)(a+2)\dots(a+n)}$ is absolutely convergent.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
Total	out of 40 points