Math 140A: Midterm 1

Foundations of Real Analysis

- You have 50 minutes.
- No books and notes are allowed.
- You may quote any result stated in the textbook or in class.
- You may not use homework problems (without proof) in your solutions.

1. (10 points) Let A and B be two nonempty sets of positive real numbers.

The "product of A and B " is defined as $C=\{a b \mid a \in A, b \in B\}$.
Prove that C is bounded below and $\inf C=(\inf A)(\inf B)$.
2. (10 points)
(a) (5 points) Prove that inf $\left\{\left.\frac{1}{n} \right\rvert\, n\right.$ positive integer $\}=0$.
(b) (5 points) Prove that if $x, y, z \in \mathbb{R}^{k}$ (the euclidean k-space), then

$$
|x|+|y|+|z| \leqslant|x+y-z|+|x-y+z|+|-x+y+z| .
$$

3. (10 points) Let J be the set of all positive integers.
(a) (5 points) Let A be the set of all finite subsets of J. Prove that A is countable.
(b) (5 points) Let B be the set of all subsets of J. Prove that B is uncountable.
4. (10 points) Let X be a metric space with distance function d. Let A be a subset of X and x be a point in X. The "distance from x to A " is defined as $d(x, A)=\inf \{d(x, y) \mid y \in A\}$.
(a) (5 points) Prove that $x \in \bar{A}$ if and only $d(x, A)=0$.
(b) (5 points) Assume that A is compact. Prove that there exists a point $y \in A$ such that $d(x, y)=d(x, A)$.

Do not write on this page.

1	out of 10 points
2	out of 10 points
3	out of 10 points
4	out of 10 points
Total	out of 40 points

