MATH 140A FALL 2015 MIDTERM 2 SOLUTIONS

1 (10 pts). Decide if the following series converges or not. Justify your answer.

$$
\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n^{2}+5}
$$

Solution. Since $n^{2}+5>n^{2}$ for all n, we have $\frac{\sqrt{n}}{n^{2}+5}<\frac{\sqrt{n}}{n^{2}}=\frac{1}{n^{3 / 2}}$ for all $n \geq 0$. Since $\sum_{n=0}^{\infty} \frac{1}{n^{3 / 2}}$ is a p-series with $p=3 / 2>1$, it converges. Thus $\sum_{n=0}^{\infty} \frac{\sqrt{n}}{n^{2}+5}$ also converges by the comparison test.
2. (a) (7 pts). Let $\left\{p_{n}\right\}$ be a sequence in a metric space X. Prove that if $\left\{p_{n}\right\}$ converges, then the sequence is bounded. (This is a result in the text, so you must reproduce the proof here rather quoting that result.)
(b) (3 pts). Give an example of a bounded sequence in a metric space X that does not converge. Briefly justify your answer.

Solution. (a) Suppose $\left\{p_{n}\right\}$ converges to $p \in X$. Choose any $\epsilon>0$; then by definition, there exists $N \in \mathbb{N}$ such that for all $n \geq N, d\left(p_{n}, p\right)<\epsilon$. If

$$
r=\max \left(\epsilon, d\left(p_{1}, p\right), d\left(p_{2}, p\right), \ldots, d\left(p_{N-1}, p\right)\right)
$$

then the open neighborhood $N_{r}(p)$ contains p_{n} for all $n \geq 1$. Thus $N_{r}(p)$ contains the range $\left\{p_{n} \mid n \geq 1\right\}$ of the sequence, and so $\left\{p_{n}\right\}$ is bounded by definition.
(b). Let $\left\{p_{n}\right\}$ be defined by $p_{n}=(-1)^{n}$ for $n \geq 1$, so p_{n} alternates between 1 and -1 . If p is any real number, then either $d(p, 1) \geq 1 / 2$ or $d(p,-1) \geq 1 / 2$. Thus taking $\epsilon=1 / 2$, it is impossible to choose $N \in \mathbb{N}$ such that $p_{n} \in N_{\epsilon}(p)$ for all $n \geq N$. So $\left\{p_{n}\right\}$ does not converge to p for any p.

3 (10 pts). Let $E=\{1 / n \mid n=1,2,3, \ldots\} \bigcup\{0\}$ in \mathbb{R}. Show that E is compact directly from the definition (not using the Heine-Borel Theorem). In other words, prove directly that any open cover has a finite subcover.

[^0]Solution. Suppose $\left\{G_{\alpha}\right\}$ is an open cover of E. Then 0 is in one of the sets of the open cover, say $0 \in G_{\alpha_{0}}$. Since $G_{\alpha_{0}}$ is open, there is a neighborhood $N_{\epsilon}(0)=(-\epsilon, \epsilon) \subset G_{\alpha_{0}}$ for some $\epsilon>0$. By the Archimedean property, there is N such that $N>1 / \epsilon$; then $0<1 / n<\epsilon$ for all $n \geq N$ and so $1 / n \in G_{\alpha_{0}}$ for all $n \geq N$. For each $1 \leq n \leq N-1$ we can choose some open set in the cover $G_{\alpha_{n}}$ with $1 / n \in G_{\alpha_{n}}$. Thus E is contained in $\bigcup_{n=0}^{N-1} G_{\alpha_{n}}$ and thus the open cover of E has a finite subcover.

4 (10 pts). Let E and F be compact subsets of a metric space X. Prove that $E \cup F$ is compact.

Solution. Suppose that $\left\{G_{\alpha}\right\}$ is an arbitrary open cover of $E \cup F$. Then it is also an open cover of E and an open cover of F. Since E is compact, there is a finite subcover, that is, $E \subseteq G_{\alpha_{1}} \cup \cdots \cup G_{\alpha_{n}}$ for some indices $\alpha_{1}, \ldots, \alpha_{n}$. Similarly, since F is compact, there is a finite subcover, say $F \subseteq G_{\beta_{1}} \cup \cdots \cup G_{\beta_{m}}$. Then $E \cup F \subseteq G_{\alpha_{1}} \cup \cdots \cup G_{\alpha_{n}} \cup G_{\beta_{1}} \cup \cdots \cup G_{\beta_{m}}$. Thus the open cover $\left\{G_{\alpha}\right\}$ of $E \cup F$ has a finite subcover.

5 (10 pts). Let $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ be Cauchy sequences in the metric space X with distance function d. Prove that $\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)$ exists.

Solution.

Let $\epsilon>0$ be fixed. By definition we can choose $N_{1} \in \mathbb{N}$ such that $d\left(p_{m}, p_{n}\right)<\epsilon / 2$ for all $m, n \geq N_{1}$. Similarly we can choose $N_{2} \in \mathbb{N}$ such that $d\left(q_{m}, q_{n}\right)<\epsilon / 2$ for all $m, n \geq N_{2}$. If $N=\max \left(N_{1}, N_{2}\right)$ then for all $m, n \geq N$ we have

$$
d\left(p_{n}, q_{n}\right) \leq d\left(p_{n}, p_{m}\right)+d\left(p_{m}, q_{m}\right)+d\left(q_{m}, q_{n}\right)<d\left(p_{m}, q_{m}\right)+2(\epsilon / 2)
$$

by the triangle inequality. Then $d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)<\epsilon$ for $m, n \geq N$. Interchanging m and n we also have $d\left(p_{m}, q_{m}\right)-d\left(p_{n}, q_{n}\right)<\epsilon$ and thus $\left|d\left(p_{n}, q_{n}\right)-d\left(p_{m}, q_{m}\right)\right|<\epsilon$ for $m, n \geq N$. Since the distance function in \mathbb{R} is given by the absolute value of the difference, this shows that $\left\{d\left(p_{n}, q_{n}\right)\right\}$ is a Cauchy sequence of real numbers. Since \mathbb{R} is complete, this Cauchy sequence converges and so $\lim _{n \rightarrow \infty} d\left(p_{n}, q_{n}\right)$ exists.

[^0]: Date: November 9, 2015.

