
MATH 140A FALL 2015 MIDTERM 2 SOLUTIONS

1 (10 pts). Decide if the following series converges or not. Justify your answer.

∞∑
n=0

√
n

n2 + 5

Solution. Since n2 + 5 > n2 for all n, we have

√
n

n2 + 5
<

√
n

n2
=

1

n3/2
for all n ≥ 0. Since

∞∑
n=0

1

n3/2
is a p-series with p = 3/2 > 1, it converges. Thus

∞∑
n=0

√
n

n2 + 5
also converges by the

comparison test.

2. (a) (7 pts). Let {pn} be a sequence in a metric space X. Prove that if {pn} converges,

then the sequence is bounded. (This is a result in the text, so you must reproduce the proof

here rather quoting that result.)

(b) (3 pts). Give an example of a bounded sequence in a metric space X that does not

converge. Briefly justify your answer.

Solution. (a) Suppose {pn} converges to p ∈ X. Choose any ε > 0; then by definition,

there exists N ∈ N such that for all n ≥ N , d(pn, p) < ε. If

r = max(ε, d(p1, p), d(p2, p), . . . , d(pN−1, p)),

then the open neighborhood Nr(p) contains pn for all n ≥ 1. Thus Nr(p) contains the range

{pn|n ≥ 1} of the sequence, and so {pn} is bounded by definition.

(b). Let {pn} be defined by pn = (−1)n for n ≥ 1, so pn alternates between 1 and −1. If

p is any real number, then either d(p, 1) ≥ 1/2 or d(p,−1) ≥ 1/2. Thus taking ε = 1/2, it is

impossible to choose N ∈ N such that pn ∈ Nε(p) for all n ≥ N . So {pn} does not converge

to p for any p.

3 (10 pts). Let E = {1/n |n = 1, 2, 3, . . . }
⋃
{0} in R. Show that E is compact directly

from the definition (not using the Heine-Borel Theorem). In other words, prove directly that

any open cover has a finite subcover.
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Solution. Suppose {Gα} is an open cover of E. Then 0 is in one of the sets of the open

cover, say 0 ∈ Gα0 . Since Gα0 is open, there is a neighborhood Nε(0) = (−ε, ε) ⊂ Gα0 for

some ε > 0. By the Archimedean property, there is N such that N > 1/ε; then 0 < 1/n < ε

for all n ≥ N and so 1/n ∈ Gα0 for all n ≥ N . For each 1 ≤ n ≤ N − 1 we can choose some

open set in the cover Gαn with 1/n ∈ Gαn . Thus E is contained in
⋃N−1
n=0 Gαn and thus the

open cover of E has a finite subcover.

4 (10 pts). Let E and F be compact subsets of a metric space X. Prove that E ∪ F is

compact.

Solution. Suppose that {Gα} is an arbitrary open cover of E ∪F . Then it is also an open

cover of E and an open cover of F . Since E is compact, there is a finite subcover, that is,

E ⊆ Gα1 ∪ · · · ∪ Gαn for some indices α1, . . . , αn. Similarly, since F is compact, there is a

finite subcover, say F ⊆ Gβ1 ∪ · · · ∪Gβm . Then E ∪ F ⊆ Gα1 ∪ · · · ∪Gαn ∪Gβ1 ∪ · · · ∪Gβm .

Thus the open cover {Gα} of E ∪ F has a finite subcover.

5 (10 pts). Let {pn} and {qn} be Cauchy sequences in the metric space X with distance

function d. Prove that lim
n→∞

d(pn, qn) exists.

Solution.

Let ε > 0 be fixed. By definition we can choose N1 ∈ N such that d(pm, pn) < ε/2 for all

m,n ≥ N1. Similarly we can choose N2 ∈ N such that d(qm, qn) < ε/2 for all m,n ≥ N2. If

N = max(N1, N2) then for all m,n ≥ N we have

d(pn, qn) ≤ d(pn, pm) + d(pm, qm) + d(qm, qn) < d(pm, qm) + 2(ε/2)

by the triangle inequality. Then d(pn, qn)−d(pm, qm) < ε for m,n ≥ N . Interchanging m and

n we also have d(pm, qm) − d(pn, qn) < ε and thus |d(pn, qn) − d(pm, qm)| < ε for m,n ≥ N .

Since the distance function in R is given by the absolute value of the difference, this shows

that {d(pn, qn)} is a Cauchy sequence of real numbers. Since R is complete, this Cauchy

sequence converges and so lim
n→∞

d(pn, qn) exists.
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