MATH 140A FALL 2015 MIDTERM 1

1. (a) (5 pts). Carefully define the following:
(i). What it means for a set X with a distance function d to be a metric space.
(ii). What it means for $p \in X$ to be a limit point of a subset E of X.
(iii). The closure \bar{E} of a subset E of a metric space X.
(b) (5 pts). Let E be a nonempty set of real numbers which is bounded below. Prove that $\inf E \in \bar{E}$.
(c) (5 pts). Let \mathbb{Q} be the set of rational numbers in the metric space \mathbb{R}. What is $\overline{\mathbb{Q}}$? Justify your answer.

2 (5 pts). Let \mathbf{x} and \mathbf{y} be vectors in the Euclidean space \mathbb{R}^{k}. Prove that

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2} .
$$

3. Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the natural numbers.
(a) (5 pts). Let A be the set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$. Prove that A is uncountable directly by using Cantor's diagonal process (do not quote a theorem from the book).
(b) (5 pts). Let B be the set of all functions $f:\{0,1\} \rightarrow \mathbb{N}$. Is B countable or is it uncountable? Justify your answer.
4. Let X be a metric space. Let E° denote the interior of a subset E of X. Suppose that E and F are subsets of X.
(a) (5 pts). Is it always true that $E^{\circ} \cap F^{\circ}=(E \cap F)^{\circ}$? Prove or give a counterexample.
(b) (5 pts). Is it always true that $E^{\circ} \cup F^{\circ}=(E \cup F)^{\circ}$? Prove or give a counterexample.
