MATH 140A FALL 2015 MIDTERM 1

1. (a) (5 pts). Carefully define the following:

(i). What it means for a set X with a distance function d to be a metric space.

(ii). What it means for $p \in X$ to be a limit point of a subset E of X.

(iii). The closure \overline{E} of a subset E of a metric space X.

(b) (5 pts). Let E be a nonempty set of real numbers which is bounded below. Prove that inf $E \in \overline{E}$.

(c) (5 pts). Let \mathbb{Q} be the set of rational numbers in the metric space \mathbb{R} . What is \mathbb{Q} ? Justify your answer.

2 (5 pts). Let **x** and **y** be vectors in the Euclidean space \mathbb{R}^k . Prove that

$$|\mathbf{x} + \mathbf{y}|^2 + |\mathbf{x} - \mathbf{y}|^2 = 2|\mathbf{x}|^2 + 2|\mathbf{y}|^2.$$

3. Let $\mathbb{N} = \{1, 2, 3, \dots\}$ be the natural numbers.

(a) (5 pts). Let A be the set of all functions $f : \mathbb{N} \to \{0, 1\}$. Prove that A is uncountable directly by using Cantor's diagonal process (do not quote a theorem from the book).

(b) (5 pts). Let B be the set of all functions $f : \{0,1\} \to \mathbb{N}$. Is B countable or is it uncountable? Justify your answer.

4. Let X be a metric space. Let E° denote the interior of a subset E of X. Suppose that E and F are subsets of X.

- (a) (5 pts). Is it always true that $E^{\circ} \cap F^{\circ} = (E \cap F)^{\circ}$? Prove or give a counterexample.
- (b) (5 pts). Is it always true that $E^{\circ} \cup F^{\circ} = (E \cup F)^{\circ}$? Prove or give a counterexample.

Date: October 19, 2015.