
MATH 140A FALL 2015 MIDTERM 1– SAMPLE SOLUTIONS

1. (a) (5 pts). Carefully define the following:

(i). What it means for a set X with a distance function d to be a metric space.

(ii). What it means for p ∈ X to be a limit point of a subset E of X.

(iii). The closure E of a subset E of a metric space X.

(b) (5 pts). Let E be a nonempty set of real numbers which is bounded below. Prove that

inf E ∈ E.

(c) (5 pts). Let Q be the set of rational numbers in the metric space R. What is Q?

Justify your answer.

Solution.

(i). X is a metric space with distance function d if d(x, y) ≥ 0 for all x, y ∈ X, with

d(x, y) = 0 if and only if x = y; d(x, y) = d(y, x) for all x, y ∈ X; and d(x, z) ≤ d(x, y) +

d(y, z) for all x, y, z ∈ X.

(ii). The point p is a limit point of E provided that for every r > 0, there is some q ∈ E

with q 6= p such that q ∈ Nr(p) = {x ∈ X|d(x, p) < r}.

(iii). Let E ′ be the set of all limit points of E. Then we define E = E ∪ E ′.

(b). Let α = inf E. If α ∈ E we are done, since E ⊆ E. Thus suppose that α 6∈ E. Given

r > 0, then α + r is not a lower bound of E, by definition of the infimum. Thus there is

x ∈ E such that α ≤ x < α + r, and since by assumption α 6∈ E, we have α < x < α + r.

This shows that α 6= x ∈ Nr(α) and thus by definition α is a limit point of E. But then

α ∈ E ′ ⊆ E.

(c). We claim that Q = R. Let α ∈ R. Then for all r > 0, the interval (α, α + r) must

contain a rational number, by a theorem proved in class and in the book (Theorem 1.20).

Thus for all r > 0 we have that Nr(α) contains a point in Q other than α and hence α is a

limit point of Q. Thus in fact Q′ = R and so certainly Q = R.
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2 (5 pts). Let x and y be vectors in the Euclidean space Rk. Prove that

|x + y|2 + |x− y|2 = 2|x|2 + 2|y|2.

Solution. Recall that |x|2 = (x ·x), where · indicates the dot product of two vectors. Since

the dot product is additive in each coordinate, we calculate that

|x + y|2 + |x− y|2 = (x + y · x + y) + (x− y · x− y)

= (x · x) + (y · x) + (x · y) + (y · y) + (x · x)− (y · x)− (x · y) + (y · y)

= 2(x · x) + 2(y · y) = 2|x|2 + 2|y|2.

3. Let N = {1, 2, 3, . . . } be the natural numbers.

(a) (5 pts). Let A be the set of all functions f : N→ {0, 1}. Prove that A is uncountable

directly by using Cantor’s diagonal process (do not quote a theorem from the book).

(b) (5 pts). Let B be the set of all functions f : {0, 1} → N. Is B countable or is it

uncountable? Justify your answer.

Solution.

(a). Suppose thatA is countable. Then we can enumerate the elements ofA as f1, f2, f3, . . . .

Create a new function g ∈ A where g(n) = 0 if fn(n) = 1 and g(n) = 1 if fn(n) = 0. By

construction, g differs from fn in its value at n. Thus g 6= fn for all n ∈ N. Thus g is an

element of A which is not among the enumerated sequence f1, f2, . . . , a contradiction. Thus

A is uncountable.

(b). The set B is countable. An element of B is a function with two arbitrary values

f(0), f(1). Thus the set B is in one-to-one correspondence with ordered pairs of elements

in N, that is, with the cartesian product N × N. But we proved that that such a cartesian

product is countable (Theorem 2.13 in the text).

4. Let X be a metric space. Let E◦ denote the interior of a subset E of X. Suppose that

E and F are subsets of X.

(a) (5 pts). Is it always true that E◦ ∩ F ◦ = (E ∩ F )◦? Prove or give a counterexample.

(b) (5 pts). Is it always true that E◦ ∪ F ◦ = (E ∪ F )◦? Prove or give a counterexample.
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Solution.

(a). This is true. Recall that the interior E◦ is the set of points x ∈ E such that there is

r > 0 with Nr(x) ⊂ E. If x ∈ (E ∩ F )◦, so there is r > 0 such that Nr(x) ⊂ E ∩ F , then

Nr(x) ⊂ E and Nr(x) ⊂ F . Thus x ∈ E◦ and x ∈ F ◦ and hence x ∈ E◦ ∩ F ◦.

Conversely, if x ∈ E◦∩F ◦, Then there is r1 > 0 such that Nr1(x) ∈ E and r2 > 0 such that

Nr2(x) ∈ F . Let r = min(r1, r2) > 0. Then Nr(x) ⊂ E and Nr(x) ⊂ F , so Nr(x) ⊂ E ∩ F .

Thus x ∈ (E ∩ F )◦.

(b). This is not always true. For example, let X = R and let E = [0, 1] and F = [1, 2].

Then E ∪ F = [0, 2]. So clearly 1 ∈ (E ∪ F )◦, but 1 6∈ E◦ and 1 6∈ F ◦.

(Though this is not necessary to answer what was asked, we remark that one inclusion is

always true however, namely E◦ ∪ F ◦ ⊂ (E ∪ F )◦.)
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