MATH 140A FALL 2015 MIDTERM 1- SAMPLE SOLUTIONS

1. (a) (5 pts). Carefully define the following:
(i). What it means for a set X with a distance function d to be a metric space.
(ii). What it means for $p \in X$ to be a limit point of a subset E of X.
(iii). The closure \bar{E} of a subset E of a metric space X.
(b) (5 pts). Let E be a nonempty set of real numbers which is bounded below. Prove that $\inf E \in \bar{E}$.
(c) (5 pts). Let \mathbb{Q} be the set of rational numbers in the metric space \mathbb{R}. What is $\overline{\mathbb{Q}}$? Justify your answer.

Solution.

(i). X is a metric space with distance function d if $d(x, y) \geq 0$ for all $x, y \in X$, with $d(x, y)=0$ if and only if $x=y ; d(x, y)=d(y, x)$ for all $x, y \in X$; and $d(x, z) \leq d(x, y)+$ $d(y, z)$ for all $x, y, z \in X$.
(ii). The point p is a limit point of E provided that for every $r>0$, there is some $q \in E$ with $q \neq p$ such that $q \in N_{r}(p)=\{x \in X \mid d(x, p)<r\}$.
(iii). Let E^{\prime} be the set of all limit points of E. Then we define $\bar{E}=E \cup E^{\prime}$.
(b). Let $\alpha=\inf E$. If $\alpha \in E$ we are done, since $E \subseteq \bar{E}$. Thus suppose that $\alpha \notin E$. Given $r>0$, then $\alpha+r$ is not a lower bound of E, by definition of the infimum. Thus there is $x \in E$ such that $\alpha \leq x<\alpha+r$, and since by assumption $\alpha \notin E$, we have $\alpha<x<\alpha+r$. This shows that $\alpha \neq x \in N_{r}(\alpha)$ and thus by definition α is a limit point of E. But then $\alpha \in E^{\prime} \subseteq \bar{E}$.
(c). We claim that $\overline{\mathbb{Q}}=\mathbb{R}$. Let $\alpha \in \mathbb{R}$. Then for all $r>0$, the interval $(\alpha, \alpha+r)$ must contain a rational number, by a theorem proved in class and in the book (Theorem 1.20). Thus for all $r>0$ we have that $N_{r}(\alpha)$ contains a point in \mathbb{Q} other than α and hence α is a limit point of \mathbb{Q}. Thus in fact $\mathbb{Q}^{\prime}=\mathbb{R}$ and so certainly $\overline{\mathbb{Q}}=\mathbb{R}$.
$2(5 \mathrm{pts})$. Let \mathbf{x} and \mathbf{y} be vectors in the Euclidean space \mathbb{R}^{k}. Prove that

$$
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2} .
$$

Solution. Recall that $|\mathbf{x}|^{2}=(\mathbf{x} \cdot \mathbf{x})$, where \cdot indicates the dot product of two vectors. Since the dot product is additive in each coordinate, we calculate that

$$
\begin{gathered}
|\mathbf{x}+\mathbf{y}|^{2}+|\mathbf{x}-\mathbf{y}|^{2}=(\mathbf{x}+\mathbf{y} \cdot \mathbf{x}+\mathbf{y})+(\mathbf{x}-\mathbf{y} \cdot \mathbf{x}-\mathbf{y}) \\
=(\mathbf{x} \cdot \mathbf{x})+(\mathbf{y} \cdot \mathbf{x})+(\mathbf{x} \cdot \mathbf{y})+(\mathbf{y} \cdot \mathbf{y})+(\mathbf{x} \cdot \mathbf{x})-(\mathbf{y} \cdot \mathbf{x})-(\mathbf{x} \cdot \mathbf{y})+(\mathbf{y} \cdot \mathbf{y}) \\
=2(\mathbf{x} \cdot \mathbf{x})+2(\mathbf{y} \cdot \mathbf{y})=2|\mathbf{x}|^{2}+2|\mathbf{y}|^{2} .
\end{gathered}
$$

3. Let $\mathbb{N}=\{1,2,3, \ldots\}$ be the natural numbers.
(a) (5 pts). Let A be the set of all functions $f: \mathbb{N} \rightarrow\{0,1\}$. Prove that A is uncountable directly by using Cantor's diagonal process (do not quote a theorem from the book).
(b) (5 pts). Let B be the set of all functions $f:\{0,1\} \rightarrow \mathbb{N}$. Is B countable or is it uncountable? Justify your answer.

Solution.

(a). Suppose that A is countable. Then we can enumerate the elements of A as $f_{1}, f_{2}, f_{3}, \ldots$. Create a new function $g \in A$ where $g(n)=0$ if $f_{n}(n)=1$ and $g(n)=1$ if $f_{n}(n)=0$. By construction, g differs from f_{n} in its value at n. Thus $g \neq f_{n}$ for all $n \in \mathbb{N}$. Thus g is an element of A which is not among the enumerated sequence f_{1}, f_{2}, \ldots, a contradiction. Thus A is uncountable.
(b). The set B is countable. An element of B is a function with two arbitrary values $f(0), f(1)$. Thus the set B is in one-to-one correspondence with ordered pairs of elements in \mathbb{N}, that is, with the cartesian product $\mathbb{N} \times \mathbb{N}$. But we proved that that such a cartesian product is countable (Theorem 2.13 in the text).
4. Let X be a metric space. Let E° denote the interior of a subset E of X. Suppose that E and F are subsets of X.
(a) (5 pts). Is it always true that $E^{\circ} \cap F^{\circ}=(E \cap F)^{\circ}$? Prove or give a counterexample.
(b) (5 pts). Is it always true that $E^{\circ} \cup F^{\circ}=(E \cup F)^{\circ}$? Prove or give a counterexample.

Solution.

(a). This is true. Recall that the interior E° is the set of points $x \in E$ such that there is $r>0$ with $N_{r}(x) \subset E$. If $x \in(E \cap F)^{\circ}$, so there is $r>0$ such that $N_{r}(x) \subset E \cap F$, then $N_{r}(x) \subset E$ and $N_{r}(x) \subset F$. Thus $x \in E^{\circ}$ and $x \in F^{\circ}$ and hence $x \in E^{\circ} \cap F^{\circ}$.

Conversely, if $x \in E^{\circ} \cap F^{\circ}$, Then there is $r_{1}>0$ such that $N_{r_{1}}(x) \in E$ and $r_{2}>0$ such that $N_{r_{2}}(x) \in F$. Let $r=\min \left(r_{1}, r_{2}\right)>0$. Then $N_{r}(x) \subset E$ and $N_{r}(x) \subset F$, so $N_{r}(x) \subset E \cap F$. Thus $x \in(E \cap F)^{\circ}$.
(b). This is not always true. For example, let $X=\mathbb{R}$ and let $E=[0,1]$ and $F=[1,2]$. Then $E \cup F=[0,2]$. So clearly $1 \in(E \cup F)^{\circ}$, but $1 \notin E^{\circ}$ and $1 \notin F^{\circ}$.
(Though this is not necessary to answer what was asked, we remark that one inclusion is always true however, namely $E^{\circ} \cup F^{\circ} \subset(E \cup F)^{\circ}$.)

