MATH 140A FALL 2015 MIDTERM 1- SAMPLE SOLUTIONS

1. (a) (5 pts). Carefully define the following:
(i). What it means for a set X with a distance function d to be a metric space.
(ii). What it means for p € X to be a limit point of a subset F of X.
(

iii). The closure E of a subset E of a metric space X.

(b) (5 pts). Let E be a nonempty set of real numbers which is bounded below. Prove that
inf £ € E.
(¢) (5 pts). Let Q be the set of rational numbers in the metric space R. What is Q?

Justify your answer.

Solution.

(i). X is a metric space with distance function d if d(z,y) > 0 for all z,y € X, with
d(z,y) = 0 if and only if =z = y; d(z,y) = d(y,x) for all z,y € X; and d(zx,2) < d(z,y) +
d(y, z) for all z,y,z € X.

(ii). The point p is a limit point of E provided that for every r > 0, there is some ¢ € E
with ¢ # p such that ¢ € N,(p) = {z € X|d(z,p) <r}.

(iii). Let E’ be the set of all limit points of E. Then we define £ = F U E'.

(b). Let o = inf E. If a € E we are done, since £ C E. Thus suppose that o ¢ E. Given
r > 0, then o + r is not a lower bound of F, by definition of the infimum. Thus there is
x € E such that @ < x < a+ r, and since by assumption o ¢ E, we have o < x < a + 1.
This shows that o # x € N,(a) and thus by definition « is a limit point of E. But then
a€E CE.

(c). We claim that Q = R. Let a € R. Then for all r > 0, the interval (o, + r) must
contain a rational number, by a theorem proved in class and in the book (Theorem 1.20).
Thus for all » > 0 we have that V,.(«) contains a point in Q other than « and hence « is a

limit point of Q. Thus in fact Q' = R and so certainly Q = R.
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2 (5 pts). Let x and y be vectors in the Euclidean space R¥. Prove that
[x +yI* + [x — y* = 21" + 2[y .

Solution. Recall that |x|? = (x-x), where - indicates the dot product of two vectors. Since

the dot product is additive in each coordinate, we calculate that
x+yP+lx—yPP=(x+y x+y)+(x-y x-y)

=x-x)+@{y-x)+xy)+yy)+rxx-(yx)-xy+yy

=2(x-x)+2(y-y) = 2]x* + 2y

3. Let N={1,2,3,...} be the natural numbers.

(a) (5 pts). Let A be the set of all functions f : N — {0,1}. Prove that A is uncountable
directly by using Cantor’s diagonal process (do not quote a theorem from the book).

(b) (5 pts). Let B be the set of all functions f : {0,1} — N. Is B countable or is it
uncountable? Justify your answer.

Solution.

(a). Suppose that A is countable. Then we can enumerate the elements of A as fi, fa2, f3,.. ..
Create a new function g € A where g(n) = 0 if f,(n) = 1 and g(n) = 1 if f,(n) = 0. By
construction, ¢ differs from f,, in its value at n. Thus g # f, for all n € N. Thus ¢ is an
element of A which is not among the enumerated sequence fi, fo, ..., a contradiction. Thus
A is uncountable.

(b). The set B is countable. An element of B is a function with two arbitrary values
f(0), f(1). Thus the set B is in one-to-one correspondence with ordered pairs of elements
in N, that is, with the cartesian product N x N. But we proved that that such a cartesian

product is countable (Theorem 2.13 in the text).

4. Let X be a metric space. Let E° denote the interior of a subset £ of X. Suppose that
E and F' are subsets of X.

(a) (5 pts). Is it always true that £° N F° = (E N F)°? Prove or give a counterexample.

(b) (5 pts). Is it always true that £° U F° = (E'U F)°? Prove or give a counterexample.



Solution.

(a). This is true. Recall that the interior E° is the set of points x € E such that there is
r > 0 with N,(z) C E. If x € (EN F)°, so there is > 0 such that N,.(z) C EN F, then
N,(x) C E and N,.(z) C F. Thus x € E° and = € F° and hence x € E° N F°.

Conversely, if x € E°NF°, Then there is > 0 such that N,, (z) € F and ry > 0 such that
N,,(x) € F. Let r = min(ry,73) > 0. Then N,(z) C E and N,(x) C F, so N,(x) C ENF.
Thus z € (ENF)°.

(b). This is not always true. For example, let X = R and let F = [0,1] and F = [1,2].
Then FUF =[0,2]. Soclearly 1 € (FUF)°, but 1 ¢ E° and 1 ¢ F°.

(Though this is not necessary to answer what was asked, we remark that one inclusion is

always true however, namely E° U F° C (E U F)°.)



