Math 140a Fall 2015 Homework 8

Due Friday November 20 by 5pm in HW box in basement of AP\&M

Reading

Read Chapter 4. Note that no homework will be due on November 27 (Thanksgiving Holiday)

Assigned problems from the text (write up and hand in):

Chapter 4: \#2, 3, 4, 7, 11, 12, 18, 20
Remarks: In \#11, don't do the part that asks you to use the result to give another proof of Exercise 13. In $\# 18$, just prove that the function is continuous at every irrational point and not continuous at each rational point. We won't discuss "simple" discontinuities yet. For the second part of $\# 4$, first do problem A below.

Additional problem (write up and hand in)

A. Let $f: X \rightarrow Y$ and $g: X \rightarrow Y$ be continuous functions where X and Y are metric spaces. Let $W=\{x \in X \mid f(x)=g(x)\}$. Prove that W is a closed subset of X.

Optional problem (handing in not required):

B. Chapter 4: \#6

Remark: The problem is not so clearly stated. Assume that $f: E \rightarrow Y$ for some metric space Y. Then the graph of f is the subset $G=\{(x, f(x)) \mid x \in E\}$ of the Cartesian product $E \times Y$. The Cartesian product $E \times Y$ is again a metric space, where $d\left(\left(e_{1}, y_{1}\right),\left(e_{2}, y_{2}\right)\right)=$ $\left[d\left(e_{1}, e_{2}\right)^{2}+d\left(y_{1}, y_{2}\right)^{2}\right]^{1 / 2}$, so the subset G is a metric space. Now the problem is to prove that assuming that E is compact, then f is continuous if and only if G is compact.

