Math 140a Fall 2015 Homework 2

Due Friday October 9 by 5pm in HW box in basement of AP\&M

Reading

All references are to Rudin, 3rd edition.
Finish reading Chapter 1 and begin reading about countability and metric spaces in Chapter 2.

Assigned problems (write up full solutions and hand in):

Chapter 1: \#11, 13, 14, 15, 17, 19

Problem not from the text (also to be handed in):

A. In this problem you fill in some of the details about expressing numbers as decimals, which are only briefly mentioned in the text in Section 1.22 . You may find the following formula for the partial sum of a geometric series helpful:

$$
\left(1+a+a^{2}+\cdots+a^{n}\right)=\frac{a^{n+1}-1}{a-1}, \quad \text { for any real } a \neq 1
$$

(a). Suppose that $n \in \mathbb{Z}$ is an integer and $a_{1}, a_{2}, a_{3}, \ldots$ is a sequence of integers with $0 \leq a_{i} \leq 9$ for all i. We define the decimal number $n . a_{1} a_{2} a_{3} \ldots$ to be the real number

$$
\sup \left\{\left.n+\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\cdots+\frac{a_{k}}{10^{k}} \right\rvert\, k \geq 0\right\} .
$$

Show that the set $\left\{\left.n+\frac{a_{1}}{10}+\frac{a_{2}}{10^{2}}+\cdots+\frac{a_{k}}{10^{k}} \right\rvert\, k \geq 0\right\}$ is bounded above and so the sup does exist in \mathbb{R}.
(b). Conversely, given a real number x, following Section 1.22, let n be the largest integer such that $n \leq x$, and define the sequence a_{1}, a_{2}, \ldots, inductively, where a_{k} is defined to be the largest integer such that $n+\frac{a_{1}}{10}+\cdots+\frac{a_{k}}{10^{k}} \leq x$. Show that $0 \leq a_{k} \leq 9$ for all $k \geq 1$. Show also that there does not exist $m>0$ such that $a_{k}=9$ for all $k \geq m$. (In other words, the natural representation of a number as a decimal does not end with an infinite sequence of nines.) Finally, show that $x=n \cdot a_{1} a_{2} a_{3} \ldots$ (as defined in part (a)).
(c). Suppose that $n \cdot a_{1} a_{2} \ldots$ and $p \cdot b_{1} b_{2} \ldots$ are two decimal numbers, where there does not exist $m>0$ such that $a_{k}=9$ for all $k \geq m$ or such that $b_{k}=9$ for all $k \geq m$. Show that if $n . a_{1} a_{2} \cdots=p . b_{1} b_{2} \ldots$, then $n=p$ and $a_{k}=b_{k}$ for all $k \geq 1$. Conclude that each real number x has a unique decimal representation $n . a_{1} a_{2} \ldots$ not ending in an infinite sequence of nines.

Optional problem (handing in is not required)

B. Chapter 1: \#20

