Math 109 Winter 10 Midterm Exam 2

February 22, 2010 NAME:

Problem 1 /10	
Problem 2 /10	
Problem 3 /10	
Problem 4 /15	
Total /45	

1. ($\mathbf{1 0}$ pts) Here is a calculation that $\operatorname{gcd}(80,28)=4$ using the Euclidean algorithm:

$$
\begin{gathered}
80=(2)(28)+24 \\
28=(1)(24)+4 \\
24=(6)(4)+0
\end{gathered}
$$

(a). (5 pts) Find a solution with $x, y \in \mathbb{Z}$ to the equation $80 x+28 y=12$. Then find a second solution with $x, y \in \mathbb{Z}$ which is different from the first. Show your work, so it is clear how you found these solutions, but no proof is necessary. (You are not required to find all solutions, though you can if you want.)
(b). (5 pts) Find all solutions to the equation $80 x+28 y=14$. Prove directly, without quoting a theorem about linear diophantine equations, that you have found all possible solutions.
2. (10 pts) Let n be an integer. Prove that if 3 divides n^{2}, then 3 divides n. Make sure you mention any major theorem you are using in the course of your proof.
3. (10 pts) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function $f(x)=\left|x^{3}\right|$ (in other words, $f(x)$ is the absolute value of the cube of x.)

Is f injective? Is f surjective? Though you are welcome to draw a graph for scratchwork, justify your answers with a written argument, not using a graph, in this problem.
4. (15 pts) Let A, B be sets and let $f: A \rightarrow B, g: B \rightarrow A$ be functions. Suppose that $g \circ f=I_{A}$. (here, $I_{A}: A \rightarrow A$ is the identity function defined by $I_{A}(a)=a$ for all $a \in A$.)
(a) $(5 \mathrm{pts})$. Show that f is injective.
(b) (5 pts). Show that g is surjective.
(c) (5 pts). With the same hypotheses as above, show that f does not have to be surjective, by giving an explicit example of sets A, B and functions $f: A \rightarrow B, g: B \rightarrow A$ such that $g \circ f=I_{A}$, but where f is not surjective.
(d) (optional extra credit problem). Now suppose that $A=B$, and that we have functions $f: A \rightarrow A, g: A \rightarrow A$ such that $g \circ f=I_{A}$. Must f be surjective now? Either prove that f is surjective or give another example where f is not surjective.

Scratch work page

