Math 109 Winter 10 Midterm Exam

January 25, 2010

NAME:

Problem 1 /10	
Problem 2 /10	
Problem 3 /10	
Problem 4 /10	
Total /40	

1. A tautology is a statement involving propositional variables P, Q, \ldots which is always true no matter what propositions are substituted for the variables.

Is the statement

$$
Q \Rightarrow(P \Rightarrow Q)
$$

a tautology? Justify your answer, either with truth tables or by writing out an explanation in words if you prefer.
2. Let a, b, c, d be integers, such that 7 divides $a-b$ and 7 divides $c-d$. (a) Prove that 7 divides $(a+c)-(b+d)$.
(b) prove that 7 divides $a c-b d$.
3. Let A, B, C be sets.

Show that $(A \cup B) \cap C \subseteq A \cup(B \cap C)$. Prove this from scratch, without quoting any formulas from the book.

Show, however, that it is not true in general that $(A \cup B) \cap C=A \cup(B \cap C)$, by demonstrating an explicit example of sets A, B, and C for which the equality fails.
4. Define a sequence of numbers by the following rules. Set $v_{1}=1, v_{2}=3$, and define the rest of the sequence inductively by the rule $v_{n+1}=v_{n}+2 v_{n-1}$ for all $n \geq 2$. Thus the sequence begins $1,3,5,11,21,43,85, \ldots$

Prove by induction that v_{n} is an odd number for all $n \geq 1$. You may freely use in your proof basic properties of even and odd integers, things like the sum of two odd integers is even, etc.
(scratch work page)

