MATH 109 WINTER 2015 MIDTERM 1 SOLUTIONS

Remember that there is not just one correct way to do a proof, and so your argument may differ from these sample solutions.

1 (10 pts). Let $Q(a, b, c)$ be the following, where a, b, c are integers:

$$
\text { If } a \mid b \text { and } b \mid c \text {, then } a \mid(b+c) .
$$

(a) (5 pts). Prove that $Q(a, b, c)$ is true for all integers $a, b, c \in \mathbb{Z}$.
(b) (3 pts). Write down the converse of $Q(a, b, c)$. Is the converse true for all integers a, b, c ? Justify your answer.
(c) (2 pts). Write down the contrapositive of $Q(a, b, c)$. Is the contrapositive true for all integers a, b, c ? Justify your answer.

Solution.

(a). Let a, b, c be integers such that $a \mid b$ and $b \mid c$. By definition, this means there is an integer m such that $b=m a$ and an integer n such that $c=n b$. Then $c=n b=n(m a)=m n a$. So $b+c=m a+m n a=a(m+m n)$. Since m and n are integers, $m+m n$ is an integer as well. By the definition of divides, $a \mid(b+c)$.
(b). The converse of "If P then Q " is the proposition "If Q then P ". Thus the converse of $Q(a, b, c)$ is "If $a \mid(b+c)$ then $a \mid b$ and $b \mid c$ ". This statement is not true for all integers $a, b, c ;$ for example, if $a=2, b=1, c=1$, then $b+c=2$ and so $a \mid(b+c)$, but $a \mid b$ does not hold since $2 \nmid 1$.
(c). The contrapositive of "If P then Q " is the proposition "If not Q then not P ". Thus the contrapositive of $Q(a, b, c)$ is "If $a \nmid(b+c)$, then it is not true that $a \mid b$ and $b \mid c$ ". We could go further and use that "not (R and S)" is the same as "(not R) or (not S)" to write this as "If $a \nmid(b+c)$, then $a \nmid b$ or $b \nmid c$." We saw in class (also in the text) that the contrapositive of an implication is logically equivalent to it. Since $Q(a, b, c)$ is true for all integers a, b, c, so is the contrapositive.
$2(10 \mathrm{pts})$. Let A, B and C be sets.
(a) (5 pts). Show that $(A \cup C)-B \subseteq(A-B) \cup C$.
(b) (5 pts). Does $(A \cup C)-B=(A-B) \cup C$ for all sets A, B, C ? Justify your answer.

Solution.

(a). Suppose that $x \in(A \cup C)-B$. Thus $x \in A$ or $x \in C$, and $x \notin B$. If $x \in A$, then since $x \notin B$ we have $x \in A-B$. The other case is that $x \in C$. Thus in either case we must have $x \in A-B$ or $x \in C$, which means that $x \in(A-B) \cup C$ by definition. This shows that $(A \cup C)-B \subseteq(A-B) \cup C$.
(b). The statement is not true for all sets A, B and C. A counterexample is given by taking $A=\emptyset, B=\{1\}$, and $C=\{1\}$. Then $(A \cup C)-B=\{1\}-\{1\}=\emptyset$, while $(A-B) \cup C=\emptyset \cup\{1\}=\{1\}$. (In fact, any three sets such that $B \cap C$ is nonempty will suffice to give a counterexample.)

3 (10 pts). Prove that

$$
\prod_{i=2}^{n}\left(1-\frac{1}{i^{2}}\right)=\frac{n+1}{2 n}
$$

for all integers $n \geq 2$.
Solution. We prove this by induction. The base case is $n=2$, for which we get

$$
\left(1-\frac{1}{2^{2}}\right)=\frac{3}{4}=\frac{2+1}{(2)(2)}
$$

so that the statement holds for $n=2$. Now assume that

$$
\prod_{i=2}^{k}\left(1-\frac{1}{i^{2}}\right)=\frac{k+1}{2 k}
$$

For some $k \geq 2$. If we multiply both sides by $\left(1-\frac{1}{(k+1)^{2}}\right)$ we obtain

$$
\left[\prod_{i=2}^{k}\left(1-\frac{1}{i^{2}}\right)\right]\left(1-\frac{1}{(k+1)^{2}}\right)=\prod_{i=2}^{k+1}\left(1-\frac{1}{i^{2}}\right)=\left(\frac{k+1}{2 k}\right)\left(1-\frac{1}{(k+1)^{2}}\right) .
$$

Some algebraic manipulation (find a common denominator) shows that the right hand side of this equation is equal to $\frac{k+2}{2(k+1)}$, proving the induction step. Thus the result holds for all $n \geq 2$ by induction.

4 (10 pts). Let $S=\left\{x \in \mathbb{R} \mid x>0\right.$ and $\left.x^{2}>4\right\}$.
(a) (5 pts). Show that $S=\{x \in \mathbb{R} \mid x>2\}$.
(b) (5 pts). Show that S does not have a least element. In other words, there does not exist a number $a \in S$ such that $a \leq b$ for all $b \in S$.

Solution.

(a). Let $T=\{x \in \mathbb{R} \mid x>2\}$. Suppose first that $x \in T$, so $x>2$. Note that $x>0$, so multiplying both sides by x gives $x^{2}>2 x$. Multiplying both sides of $x>2$ by 2 gives
$2 x>4$. By the transitive property of inequality, we get $x^{2}>4$. Thus $x \in S$. This proves that $T \subseteq S$.

On the other hand, suppose that $x \in S$, so $x>0$ and $x^{2}>4$. Suppose that $x \leq 2$. Similarly as above, since $x>0$ we can multiply both sides by x to get $x^{2} \leq 2 x$, and multiply both sides by 2 to get $2 x \leq 4$; together these imply $x^{2} \leq 4$. This contradicts $x^{2}>4$. Thus $x>2$ and so $x \in T$. This proves that $S \subseteq T$. Thus $S=T$.
(b). We use the description of S proved in part (a): $S=\{x \in \mathbb{R} \mid x>2\}$. Suppose that a is the least element of S. In paticular, $a \in S$ and so $a>2$. Now let $b=(2+a) / 2$, the average of 2 and a. Clearly $2<b<a$ since b is the average. (Here is a proof: Since $a>2$, we have $a+2>4$ and so multiplying by $1 / 2$ we get $(2+a) / 2>2$; similarly, since $a>2$, $2 a>2+a$ and so multiplying by $1 / 2$ we get $a>(2+a) / 2$.) Now since $b>2, b \in S$, but $b<a$ and so a is not the least element of S, a contradiction. Thus S has no least element.

