MATH 109 FALL 2016 MIDTERM 1 - SAMPLE SOLUTIONS

Remember that there is more than one way to do a proof. Your answer may be correct
even though it differs from the one here.

1 (5 pts). A tautology is a statement involving propositional variables P, @, ... which is
always true no matter what propositions are substituted for the variables.

Is the statement
Q= (P=Q)

a tautology? Justify your answer.
Solution. We show the given statement is a tautology using a truth table:

PlQIP=Q[Q=(P=Q]

T|T T T
T|F F T
F|T T T
F|F T T

(Alternatively, rather than using a truth table, it is also possible to argue this through in
words, as follows. Let R = (P = Q). For Q = R to be false, it must be that @ is true and
R is false, since this is the only case where an implication is false. But if @) is true, then
P = (@ is also true (again, the only way it could be false is for P to be true and @ to be
false), so if @) is true than R cannot be false. Thus @ = (P = @) is always true.)

2 (5 pts). Prove the following statement.
It is not true that for all x € R, there exists y € R such that zy = 1.

Solution.
We are asked to prove

NotVer e R,dy € R, zy = 1.
By the rules for interchanging Not with quantifiers, this is logically equivalent to
Jr e R,Vy e Ryxy # 1.
To prove this, take z = 0. Then for all y € R, we have zy = 0(y) = 0 # 1.
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3 (10 pts). In this problem you may use the following fact: an integer n is odd if and only
if n = 2m + 1 for some integer m.

(a) Let m be an integer. Prove that m? + m is even.

(b) Let n be an integer. Prove that n is odd if and only if 8|(n* — 1).

Solution.
(a). The integer m is either even or odd. Suppose first that m is even, so that m = 2k for
some integer k. Then
m?® +m = (2k)* + 2k = 4k* + 2k.

We have 4k* 42k = 2(2k*+ k), where 2k? +k is an integer. thus m?+m is even by definition.
Otherwise m is odd. We can assume in this case that m = 2k + 1 for some integer k. Then

m*+m = 2k +1)> + (2k + 1) = 4k* + 4k + 1 + 2k + 1 = 4k* + 6k + 2.
We have 4k* + 6k + 2 = 2(2k* + 3k + 1), where 2k% + 3k + 1 is an integer. Thus m? + m is

even in this case as well.
(b). Suppose first that n is an odd integer. We are allowed to assume that n = 2m + 1
for some integer m in this case. Then

n—1=02m+1)?—-1=4m* +4m+1—1=4m? + 4m = 4(m* + m).

By part (a), m? + m is always even, so m? + m = 2k for some integer k. Then n?> — 1 =
4(m? +m) = 8k. Thus n? — 1 is a multiple of 8, in other words 8|(n* — 1).

Conversely, suppose that 8|(n? — 1); we need to show that n is odd. We have n? — 1 = 8k
for some integer k, so n* = 8k + 1 = 2(4k) + 1. By the characterization of odd integers we
are allowed to assume, this implies that n? is odd. Suppose for contradiction that n is even.
Then n = 2m for some integer m, so n? = (2m)? = 4m? = 2(2m?) is also even. This is a
contradiction since we know that n? is odd. Thus n is odd as required.

4 (10 pts). Let A, B, C be sets.
(a) Show that AN (BUC)C (ANB)UC.
(b) Show that AN (BUC) = (AN B)UC if and only if C' C A.

Solution.

(a). Let z € AN(BUC). Then x € Aand z € (BUC). Since x € (BUC), either z € B
or z € C. Suppose that © € B. Then z € A and = € B, so z € (AN B). Otherwise x € C.
We see that either x € (AN B), or x € C. Thus x € (AN B)UC. We have proved that
AN(BUC) C (AN B)UC as required.

(b). Suppose that C' C A. To show that AN(BUC) = (AN B)UC, since we have already
shown one inclusion in part (a), we just need to show that (AN B)UC) C AN (BUCQO).

Suppose that © € (AN B)UC. Either z € (ANB)orz e C. If x € (ANB), thenx € A
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and z € B. Since z € B, certainly z € (BUC). Sox € A and z € (BU (), and thus
x € AN(BUC). Otherwise x € C. In this case, by the hypothesis C' C A, we get also that
x € A. Since x € C, certainly x € (BUC). Again we get x € A and = € (BU () and so
x € AN (BUC). This proves that (AN B)UC) C AN(BUC).

Conversely, suppose that AN(BUC) = (ANB)UC. If z € C, then certainly x € (ANB)UC.
Thus x € AN (B UC(C), since this set is assumed equal. But this means that x € A and
x € (BUC), so in particular x € A. Since x € C implies z € A, we have C' C A in this case

as we wished.

5 (10 pts). We define a sequence of numbers by induction as follows. Let v; = 3, vy = 5,

and define v, = 2v,, + v, for all n > 2.

(a) Calculate vs.
(b) Prove that 2" < v, < 3" for all n > 1.

Solution.

(a) By the inductive definition of the v,, we have

vy = 2vy +v; = 2(5) + 3 =13,

vy = 2v3 + ve = 2(13) + 5 = 31, and finally

vy = 2vy +v3 = 2(31) + 13 = 75.

(b) For clarity, we prove that 2" < v, for all n > 1 and that v,, < 3" for all n > 1 in two
separate (strong) induction proofs.

First, 2 = 2! < v, = 3 and 4 = 22 < v, = 5, proving the base cases. For the induction
step, assume that 2™ < v, for all 1 < m < k, some k > 2. We have vp,1 = 2u, + vp_1. By
the induction hypothesis, 2¥ < v, and multiplying by 2 we get 2¥*! < 2v,. We also have
2k=1 < 4, so in particular 0 < vj,_;. Thus 28! < 2u, < 2u, + vp_1 = V41, proving the
induction step. Thus 2" < v,, for all n > 1, by induction.

Next, v; =3 < 3! =3 and v, =5 < 32 = 9, so the base cases are correct. For the induction
step, assume that v, < 3™ for all 1 <m < k, some k > 2. We have vy = 2v, + vp_1. By
the induction hypothesis, vy < 3F and v, < 3871, Thus vy = 2vp + vy < 2(3%) + 381,
Multiplying both sides of 1 < 3 by 37!, we also get 3*~! < 3%, so 2(3%) +3k~1 < 2(3k)+3F =
3(3%) = 3k, Putting these inequalities together we get vj,; < 31 proving the induction

step. Thus v, < 3" for all n > 1 by induction as well.



