
MATH 109 FALL 2016 MIDTERM 1 – SAMPLE SOLUTIONS

Remember that there is more than one way to do a proof. Your answer may be correct

even though it differs from the one here.

1 (5 pts). A tautology is a statement involving propositional variables P,Q, . . . which is

always true no matter what propositions are substituted for the variables.

Is the statement

Q⇒ (P ⇒ Q)

a tautology? Justify your answer.

Solution. We show the given statement is a tautology using a truth table:

P Q P ⇒ Q Q⇒ (P ⇒ Q)

T T T T

T F F T

F T T T

F F T T

(Alternatively, rather than using a truth table, it is also possible to argue this through in

words, as follows. Let R = (P ⇒ Q). For Q⇒ R to be false, it must be that Q is true and

R is false, since this is the only case where an implication is false. But if Q is true, then

P ⇒ Q is also true (again, the only way it could be false is for P to be true and Q to be

false), so if Q is true than R cannot be false. Thus Q⇒ (P ⇒ Q) is always true.)

2 (5 pts). Prove the following statement.

It is not true that for all x ∈ R, there exists y ∈ R such that xy = 1.

Solution.

We are asked to prove

Not∀x ∈ R,∃y ∈ R, xy = 1.

By the rules for interchanging Not with quantifiers, this is logically equivalent to

∃x ∈ R,∀y ∈ R, xy 6= 1.

To prove this, take x = 0. Then for all y ∈ R, we have xy = 0(y) = 0 6= 1.
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3 (10 pts). In this problem you may use the following fact: an integer n is odd if and only

if n = 2m + 1 for some integer m.

(a) Let m be an integer. Prove that m2 + m is even.

(b) Let n be an integer. Prove that n is odd if and only if 8|(n2 − 1).

Solution.

(a). The integer m is either even or odd. Suppose first that m is even, so that m = 2k for

some integer k. Then

m2 + m = (2k)2 + 2k = 4k2 + 2k.

We have 4k2+2k = 2(2k2+k), where 2k2+k is an integer. thus m2+m is even by definition.

Otherwise m is odd. We can assume in this case that m = 2k+1 for some integer k. Then

m2 + m = (2k + 1)2 + (2k + 1) = 4k2 + 4k + 1 + 2k + 1 = 4k2 + 6k + 2.

We have 4k2 + 6k + 2 = 2(2k2 + 3k + 1), where 2k2 + 3k + 1 is an integer. Thus m2 + m is

even in this case as well.

(b). Suppose first that n is an odd integer. We are allowed to assume that n = 2m + 1

for some integer m in this case. Then

n2 − 1 = (2m + 1)2 − 1 = 4m2 + 4m + 1− 1 = 4m2 + 4m = 4(m2 + m).

By part (a), m2 + m is always even, so m2 + m = 2k for some integer k. Then n2 − 1 =

4(m2 + m) = 8k. Thus n2 − 1 is a multiple of 8, in other words 8|(n2 − 1).

Conversely, suppose that 8|(n2 − 1); we need to show that n is odd. We have n2 − 1 = 8k

for some integer k, so n2 = 8k + 1 = 2(4k) + 1. By the characterization of odd integers we

are allowed to assume, this implies that n2 is odd. Suppose for contradiction that n is even.

Then n = 2m for some integer m, so n2 = (2m)2 = 4m2 = 2(2m2) is also even. This is a

contradiction since we know that n2 is odd. Thus n is odd as required.

4 (10 pts). Let A,B,C be sets.

(a) Show that A ∩ (B ∪ C) ⊆ (A ∩B) ∪ C.

(b) Show that A ∩ (B ∪ C) = (A ∩B) ∪ C if and only if C ⊆ A.

Solution.

(a). Let x ∈ A∩ (B ∪C). Then x ∈ A and x ∈ (B ∪C). Since x ∈ (B ∪C), either x ∈ B

or x ∈ C. Suppose that x ∈ B. Then x ∈ A and x ∈ B, so x ∈ (A ∩ B). Otherwise x ∈ C.

We see that either x ∈ (A ∩ B), or x ∈ C. Thus x ∈ (A ∩ B) ∪ C. We have proved that

A ∩ (B ∪ C) ⊆ (A ∩B) ∪ C as required.

(b). Suppose that C ⊆ A. To show that A∩ (B∪C) = (A∩B)∪C, since we have already

shown one inclusion in part (a), we just need to show that (A ∩ B) ∪ C) ⊆ A ∩ (B ∪ C).

Suppose that x ∈ (A ∩ B) ∪ C. Either x ∈ (A ∩ B) or x ∈ C. If x ∈ (A ∩ B), then x ∈ A
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and x ∈ B. Since x ∈ B, certainly x ∈ (B ∪ C). So x ∈ A and x ∈ (B ∪ C), and thus

x ∈ A ∩ (B ∪C). Otherwise x ∈ C. In this case, by the hypothesis C ⊆ A, we get also that

x ∈ A. Since x ∈ C, certainly x ∈ (B ∪ C). Again we get x ∈ A and x ∈ (B ∪ C) and so

x ∈ A ∩ (B ∪ C). This proves that (A ∩B) ∪ C) ⊆ A ∩ (B ∪ C).

Conversely, suppose that A∩(B∪C) = (A∩B)∪C. If x ∈ C, then certainly x ∈ (A∩B)∪C.

Thus x ∈ A ∩ (B ∪ C), since this set is assumed equal. But this means that x ∈ A and

x ∈ (B ∪C), so in particular x ∈ A. Since x ∈ C implies x ∈ A, we have C ⊆ A in this case

as we wished.

5 (10 pts). We define a sequence of numbers by induction as follows. Let v1 = 3, v2 = 5,

and define vn+1 = 2vn + vn−1 for all n ≥ 2.

(a) Calculate v5.

(b) Prove that 2n ≤ vn ≤ 3n for all n ≥ 1.

Solution.

(a) By the inductive definition of the vn, we have

v3 = 2v2 + v1 = 2(5) + 3 = 13,

v4 = 2v3 + v2 = 2(13) + 5 = 31, and finally

v5 = 2v4 + v3 = 2(31) + 13 = 75.

(b) For clarity, we prove that 2n ≤ vn for all n ≥ 1 and that vn ≤ 3n for all n ≥ 1 in two

separate (strong) induction proofs.

First, 2 = 21 ≤ v1 = 3 and 4 = 22 ≤ v2 = 5, proving the base cases. For the induction

step, assume that 2m ≤ vm for all 1 ≤ m ≤ k, some k ≥ 2. We have vk+1 = 2vk + vk−1. By

the induction hypothesis, 2k ≤ vk, and multiplying by 2 we get 2k+1 ≤ 2vk. We also have

2k−1 ≤ vk−1, so in particular 0 ≤ vk−1. Thus 2k+1 ≤ 2vk ≤ 2vk + vk−1 = vk+1, proving the

induction step. Thus 2n ≤ vn for all n ≥ 1, by induction.

Next, v1 = 3 ≤ 31 = 3 and v2 = 5 ≤ 32 = 9, so the base cases are correct. For the induction

step, assume that vm ≤ 3m for all 1 ≤ m ≤ k, some k ≥ 2. We have vk+1 = 2vk + vk−1. By

the induction hypothesis, vk ≤ 3k and vk−1 ≤ 3k−1. Thus vk+1 = 2vk + vk−1 ≤ 2(3k) + 3k−1.

Multiplying both sides of 1 < 3 by 3k−1, we also get 3k−1 < 3k, so 2(3k)+3k−1 ≤ 2(3k)+3k =

3(3k) = 3k+1. Putting these inequalities together we get vk+1 ≤ 3k+1, proving the induction

step. Thus vn ≤ 3n for all n ≥ 1 by induction as well.
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