MATH 109 FALL 2016 MIDTERM 1 - SAMPLE SOLUTIONS

Remember that there is more than one way to do a proof. Your answer may be correct even though it differs from the one here.

1 (5 pts). A tautology is a statement involving propositional variables P, Q, \ldots which is always true no matter what propositions are substituted for the variables.

Is the statement

$$
Q \Rightarrow(P \Rightarrow Q)
$$

a tautology? Justify your answer.
Solution. We show the given statement is a tautology using a truth table:

P	Q	$P \Rightarrow Q$	$Q \Rightarrow(P \Rightarrow Q)$
T	T	T	T
T	F	F	T
F	T	T	T
F	F	T	T

(Alternatively, rather than using a truth table, it is also possible to argue this through in words, as follows. Let $R=(P \Rightarrow Q)$. For $Q \Rightarrow R$ to be false, it must be that Q is true and R is false, since this is the only case where an implication is false. But if Q is true, then $P \Rightarrow Q$ is also true (again, the only way it could be false is for P to be true and Q to be false), so if Q is true than R cannot be false. Thus $Q \Rightarrow(P \Rightarrow Q)$ is always true.)

2 (5 pts). Prove the following statement.
It is not true that for all $x \in \mathbb{R}$, there exists $y \in \mathbb{R}$ such that $x y=1$.

Solution.

We are asked to prove

$$
\operatorname{Not} \forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x y=1
$$

By the rules for interchanging Not with quantifiers, this is logically equivalent to

$$
\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, x y \neq 1
$$

To prove this, take $x=0$. Then for all $y \in \mathbb{R}$, we have $x y=0(y)=0 \neq 1$.
$3(10 \mathrm{pts})$. In this problem you may use the following fact: an integer n is odd if and only if $n=2 m+1$ for some integer m.
(a) Let m be an integer. Prove that $m^{2}+m$ is even.
(b) Let n be an integer. Prove that n is odd if and only if $8 \mid\left(n^{2}-1\right)$.

Solution.

(a). The integer m is either even or odd. Suppose first that m is even, so that $m=2 k$ for some integer k. Then

$$
m^{2}+m=(2 k)^{2}+2 k=4 k^{2}+2 k
$$

We have $4 k^{2}+2 k=2\left(2 k^{2}+k\right)$, where $2 k^{2}+k$ is an integer. thus $m^{2}+m$ is even by definition.
Otherwise m is odd. We can assume in this case that $m=2 k+1$ for some integer k. Then

$$
m^{2}+m=(2 k+1)^{2}+(2 k+1)=4 k^{2}+4 k+1+2 k+1=4 k^{2}+6 k+2 .
$$

We have $4 k^{2}+6 k+2=2\left(2 k^{2}+3 k+1\right)$, where $2 k^{2}+3 k+1$ is an integer. Thus $m^{2}+m$ is even in this case as well.
(b). Suppose first that n is an odd integer. We are allowed to assume that $n=2 m+1$ for some integer m in this case. Then

$$
n^{2}-1=(2 m+1)^{2}-1=4 m^{2}+4 m+1-1=4 m^{2}+4 m=4\left(m^{2}+m\right) .
$$

By part (a), $m^{2}+m$ is always even, so $m^{2}+m=2 k$ for some integer k. Then $n^{2}-1=$ $4\left(m^{2}+m\right)=8 k$. Thus $n^{2}-1$ is a multiple of 8 , in other words $8 \mid\left(n^{2}-1\right)$.

Conversely, suppose that $8 \mid\left(n^{2}-1\right)$; we need to show that n is odd. We have $n^{2}-1=8 k$ for some integer k, so $n^{2}=8 k+1=2(4 k)+1$. By the characterization of odd integers we are allowed to assume, this implies that n^{2} is odd. Suppose for contradiction that n is even. Then $n=2 m$ for some integer m, so $n^{2}=(2 m)^{2}=4 m^{2}=2\left(2 m^{2}\right)$ is also even. This is a contradiction since we know that n^{2} is odd. Thus n is odd as required.
$4(10 \mathrm{pts})$. Let A, B, C be sets.
(a) Show that $A \cap(B \cup C) \subseteq(A \cap B) \cup C$.
(b) Show that $A \cap(B \cup C)=(A \cap B) \cup C$ if and only if $C \subseteq A$.

Solution.

(a). Let $x \in A \cap(B \cup C)$. Then $x \in A$ and $x \in(B \cup C)$. Since $x \in(B \cup C)$, either $x \in B$ or $x \in C$. Suppose that $x \in B$. Then $x \in A$ and $x \in B$, so $x \in(A \cap B)$. Otherwise $x \in C$. We see that either $x \in(A \cap B)$, or $x \in C$. Thus $x \in(A \cap B) \cup C$. We have proved that $A \cap(B \cup C) \subseteq(A \cap B) \cup C$ as required.
(b). Suppose that $C \subseteq A$. To show that $A \cap(B \cup C)=(A \cap B) \cup C$, since we have already shown one inclusion in part (a), we just need to show that $(A \cap B) \cup C) \subseteq A \cap(B \cup C)$. Suppose that $x \in(A \cap B) \cup C$. Either $x \in(A \cap B)$ or $x \in C$. If $x \in(A \cap B)$, then $x \in A$
and $x \in B$. Since $x \in B$, certainly $x \in(B \cup C)$. So $x \in A$ and $x \in(B \cup C)$, and thus $x \in A \cap(B \cup C)$. Otherwise $x \in C$. In this case, by the hypothesis $C \subseteq A$, we get also that $x \in A$. Since $x \in C$, certainly $x \in(B \cup C)$. Again we get $x \in A$ and $x \in(B \cup C)$ and so $x \in A \cap(B \cup C)$. This proves that $(A \cap B) \cup C) \subseteq A \cap(B \cup C)$.

Conversely, suppose that $A \cap(B \cup C)=(A \cap B) \cup C$. If $x \in C$, then certainly $x \in(A \cap B) \cup C$. Thus $x \in A \cap(B \cup C)$, since this set is assumed equal. But this means that $x \in A$ and $x \in(B \cup C)$, so in particular $x \in A$. Since $x \in C$ implies $x \in A$, we have $C \subseteq A$ in this case as we wished.

5 (10 pts). We define a sequence of numbers by induction as follows. Let $v_{1}=3, v_{2}=5$, and define $v_{n+1}=2 v_{n}+v_{n-1}$ for all $n \geq 2$.
(a) Calculate v_{5}.
(b) Prove that $2^{n} \leq v_{n} \leq 3^{n}$ for all $n \geq 1$.

Solution.

(a) By the inductive definition of the v_{n}, we have
$v_{3}=2 v_{2}+v_{1}=2(5)+3=13$,
$v_{4}=2 v_{3}+v_{2}=2(13)+5=31$, and finally
$v_{5}=2 v_{4}+v_{3}=2(31)+13=75$.
(b) For clarity, we prove that $2^{n} \leq v_{n}$ for all $n \geq 1$ and that $v_{n} \leq 3^{n}$ for all $n \geq 1$ in two separate (strong) induction proofs.

First, $2=2^{1} \leq v_{1}=3$ and $4=2^{2} \leq v_{2}=5$, proving the base cases. For the induction step, assume that $2^{m} \leq v_{m}$ for all $1 \leq m \leq k$, some $k \geq 2$. We have $v_{k+1}=2 v_{k}+v_{k-1}$. By the induction hypothesis, $2^{k} \leq v_{k}$, and multiplying by 2 we get $2^{k+1} \leq 2 v_{k}$. We also have $2^{k-1} \leq v_{k-1}$, so in particular $0 \leq v_{k-1}$. Thus $2^{k+1} \leq 2 v_{k} \leq 2 v_{k}+v_{k-1}=v_{k+1}$, proving the induction step. Thus $2^{n} \leq v_{n}$ for all $n \geq 1$, by induction.

Next, $v_{1}=3 \leq 3^{1}=3$ and $v_{2}=5 \leq 3^{2}=9$, so the base cases are correct. For the induction step, assume that $v_{m} \leq 3^{m}$ for all $1 \leq m \leq k$, some $k \geq 2$. We have $v_{k+1}=2 v_{k}+v_{k-1}$. By the induction hypothesis, $v_{k} \leq 3^{k}$ and $v_{k-1} \leq 3^{k-1}$. Thus $v_{k+1}=2 v_{k}+v_{k-1} \leq 2\left(3^{k}\right)+3^{k-1}$. Multiplying both sides of $1<3$ by 3^{k-1}, we also get $3^{k-1}<3^{k}$, so $2\left(3^{k}\right)+3^{k-1} \leq 2\left(3^{k}\right)+3^{k}=$ $3\left(3^{k}\right)=3^{k+1}$. Putting these inequalities together we get $v_{k+1} \leq 3^{k+1}$, proving the induction step. Thus $v_{n} \leq 3^{n}$ for all $n \geq 1$ by induction as well.

