Math 103b Spring 2014 Sample Midterm 2

1. (a) Define what it means for a ring R to be a PID (principal ideal domain).
(b) Define what it means for a ring R to be a UFD (unique factorization domain).
(c). Consider the following rings:

$$
\mathbb{Z}, \mathbb{Q}[x], \mathbb{Z}_{6}[x], \mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}, \mathbb{Z}[x]
$$

(c1). Which rings on the list above are UFD's? (no proof necessary)
(c2). Which rings on the list above are PID's? (no proof necessary)
2. Suppose that I is an ideal of the ring $\mathbb{Q}[x]$. You are given that $x^{3}-1 \in I$ and $x^{2}-1 \in I$. You are also given that I is a proper ideal (in other words $I \neq \mathbb{Q}[x]$.) What is I ? Prove your answer.

3(a). Let $f(x)=x^{4}+x+\overline{1} \in \mathbb{Z}_{3}[x]$. Is f irreducible in $\mathbb{Z}_{3}[x]$? Justify your answer.
(b). Let $f(x)=x^{3}-x-5 \in \mathbb{Q}[x]$. Is $\mathbb{Q}[x] /\langle f\rangle$ a field? Justify your answer.
4. This problem is about $R=\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$. Recall that the norm of any element $x=a+b \sqrt{5}$ is $N(a+b \sqrt{5})=\left|a^{2}-5 b^{2}\right|$. The following are the properties of the norm we studied, which you can assume without proof.
(i) $N(x)=0$ if and only if $x=0$;
(ii) $N(x) N(y)=N(x y)$ for all $x, y \in R$;
(iii) x is a unit in R if and only if $N(x)=1$; and
(iv) if $N(x)$ is a prime number in \mathbb{Z}, then x is irreducible in R.
(a). Prove that no element of R has norm 2. (Hint: consider the equation $a^{2}-5 b^{2}= \pm 2$ modulo 5 .)
(b). Prove that $2,1+\sqrt{5}$, and $-1+\sqrt{5}$ are irreducible in R.
(c). Note that $4=(2)(2)=(1+\sqrt{5})(-1+\sqrt{5})$. Is R a UFD? Justify your answer.

