Math 103b Spring 2014 Sample Midterm 2

- 1. (a) Define what it means for a ring R to be a PID (principal ideal domain).
- (b) Define what it means for a ring R to be a UFD (unique factorization domain).
 - (c). Consider the following rings:

$$\mathbb{Z}$$
, $\mathbb{Q}[x]$, $\mathbb{Z}_6[x]$, $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$, $\mathbb{Z}[x]$.

- (c1). Which rings on the list above are UFD's? (no proof necessary)
- (c2). Which rings on the list above are PID's? (no proof necessary)
- 2. Suppose that I is an ideal of the ring $\mathbb{Q}[x]$. You are given that $x^3-1 \in I$ and $x^2-1 \in I$. You are also given that I is a proper ideal (in other words $I \neq \mathbb{Q}[x]$.) What is I? Prove your answer.
- 3(a). Let $f(x) = x^4 + x + \overline{1} \in \mathbb{Z}_3[x]$. Is f irreducible in $\mathbb{Z}_3[x]$? Justify your answer.
- (b). Let $f(x) = x^3 x 5 \in \mathbb{Q}[x]$. Is $\mathbb{Q}[x]/\langle f \rangle$ a field? Justify your answer.
- 4. This problem is about $R = \mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{5} | a, b \in \mathbb{Z}\}$. Recall that the *norm* of any element $x = a + b\sqrt{5}$ is $N(a + b\sqrt{5}) = |a^2 5b^2|$. The following are the properties of the norm we studied, which you can assume without proof.
 - (i) N(x) = 0 if and only if x = 0;
 - (ii) N(x)N(y) = N(xy) for all $x, y \in R$;
 - (iii) x is a unit in R if and only if N(x) = 1; and

- (iv) if N(x) is a prime number in \mathbb{Z} , then x is irreducible in R.
- (a). Prove that no element of R has norm 2. (Hint: consider the equation
- (a). Frow that no defined of the second $a^2 5b^2 = \pm 2 \mod 5$.)

 (b). Prove that $2, 1 + \sqrt{5}$, and $-1 + \sqrt{5}$ are irreducible in R.

 (c). Note that $4 = (2)(2) = (1 + \sqrt{5})(-1 + \sqrt{5})$. Is R a UFD? Justify your answer.