Math 103b Spring 2014 Sample Exam 1

April 18, 2014

1. For each part, give an example of the requested type, with brief justification, if one exists; or else explain why no such example exists.
(a). A commutative ring R with an ideal I which is prime but not maximal.
(b). A commutative ring R with an ideal I which is maximal but not prime.
(c). A field with 7 elements.
(d). An integral domain of characteristic 6 .
2. Let $R=\mathbb{Q}(\sqrt{3})=\{a+b \sqrt{3} \mid a, b \in \mathbb{Q}\}$.
(a). Prove that R is a subring of the ring \mathbb{R} of real numbers.
(b). Prove that R is a field.
3. Let F be a commutative ring with unity. Show that F is a field if and only if 0 and F are the only ideals of F. (This was a theorem in class. I want you to reprove it here from scratch).
4. Let $R=\mathbb{Z}[i]$ be the Gaussian integers. Consider the principal ideal $I=\langle 4+i\rangle$ of R.

Show that the factor ring R / I has exactly 17 elements.

