Math 103A Fall 2006 Exam 1 NAME: Answers | Problem 1 /30 | | |---------------|--| | Problem 2 /20 | | | Problem 3 /30 | | | Problem 4 /20 | | | Total /100 | | #### Problem 1 (30 points) 1 Let $D_4 = \{R_0, R_{90}, R_{180}, R_{270}, S_1, S_2, S_3, S_4\}$ be the dihedral group of order 8, which consists of symmetries of a square. Here, each R_i is the symmetry of the square given by *counterclockwise* rotation by i degrees. Each S_i is a reflection about an axis of symmetry of the square, labeled as follows: (On the actual exam, pictures indicated the axis of reflection. In the notation of Chapter 1 of Gallian, $S_1 = H$, $S_2 = V$, $S_3 = D$, $S_4 = D'$.) (a) (10 pts). Calculate the products $R_{270}S_1$ and S_1R_{270} in D_4 . Show your work. (b) (10 pts). Complete the following Cayley table of the group D_4 , using part (a) and your knowledge of Cayley tables. (Remember that the product g_1g_2 is written in row g_1 and column g_2 of the Cayley table.) Mention briefly (without proof) what facts about Cayley tables you relied on to complete the diagram. | | R_0 | R_{90} | R_{180} | R_{270} | S_1 | S_2 | S_3 | S_4 | |-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------| | R_0 | R_0 | R_{90} | R_{180} | R_{270} | S_1 | S_2 | S_3 | S_4 | | R_{90} | R_{90} | R_{180} | R_{270} | R_0 | S_4 | S_3 | S_1 | S_2 | | R_{180} | R_{180} | R_{270} | R_0 | R_{90} | | | | | | R_{270} | R_{270} | R_0 | R_{90} | R_{180} | | | | | | S_1 | S_1 | S_3 | | | R_0 | R_{180} | R_{90} | R_{270} | | S_2 | S_2 | S_4 | | | R_{180} | R_0 | R_{270} | R_{90} | | S_3 | S_3 | S_2 | | | R_{270} | R_{90} | R_0 | R_{180} | | S_4 | S_4 | S_1 | | | R_{90} | R_{270} | R_{180} | R_0 | (c) (10 pts). Prove that the group D_4 is not cyclic. # Problem 2 (20 points) (a) (10 pts) Give an example of an infinite cyclic group. Explain how you know it is cyclic. (b) (10 pts) Give an example of an infinite non-Abelian group. Prove your example is non-Abelian. ## Problem 3 (30 points) (a) (10 pts). Consider the group U(20). List the elements of U(20). What is the order of U(20)? (b) (10 pts). Find (by inspection, say) the inverse in U(20) of the element [13], and show that your answer really is the inverse of [13]. (c) (10 pts). Let H be a subgroup of U(20) such that $[9] \in H$ and $[11] \in H$, but $H \neq U(20)$. Find such an H, and prove that you answer is the *only* subgroup of U(20) with those properties. ### Problem 4 (20 points) Let $G = (\mathbb{Q}, +)$ be the group of all rational numbers under the operation of addition. Explicitly, $$\mathbb{Q} = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b \neq 0 \right\}.$$ Let H be the subset of all rational numbers which can be written as a fraction where the denominator is 2 to some nonnegative integer power. In other words, $$H = \left\{ \frac{a}{b} \mid a, b \in \mathbb{Z}, b = 2^n \text{ for some } n \ge 0 \right\}.$$ (a) (15 pts). Prove that H is a subgroup of G. (Remember the operation is addition!) (b) (5 pts). Consider the left cosets of H in $(\mathbb{Q}, +)$. Are the two cosets (3/5) + H and (17/20) + H equal or not? Justify your answer.