Math 103a Fall 2012 Homework 6

Due Friday 11/9/2012 by 4pm in homework box in Basement of AP\&M

Warning: I am posting this homework early. If this is the week of Halloween and I am away, make sure you are doing Homework 5 which is due on November 2 and not this one. This one is due the end of the week that I return, on November 9.

Reading assignment: Read Chapter 5, and begin to read Chapter 8.

Exercises related to Chapter 5:

1. Let α and β be the permutations given in "box notation" as

$$
\alpha=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
2 & 3 & 4 & 5 & 1 & 7 & 8 & 6
\end{array}\right] \text { and } \beta=\left[\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
1 & 3 & 8 & 7 & 6 & 5 & 2 & 4
\end{array}\right]
$$

Write α, β, and $\alpha \beta$ as
(a). Products of disjoint cycles;
(b). Products of 2-cycles.
2. Write the following permutations in disjoint cycle form, and then determine the order of each permutation.
(a). $\alpha=(124)(3451)(25)$
(b). $\gamma=(12)(23)(34)(45)(15)$
3. Determine whether the following permutation is even or odd:
$\alpha=(12)(134)(15247)$.
4. Let $\beta=(123)(145)$. Write β^{99} in disjoint cycle form.
5. In S_{n}, let α be an r-cycle, β an s-cycle, and γ a t-cycle. Complete the following statements (and justify your answer:)
$\alpha \beta$ is an even permutation if and only if $r+s$ is \ldots.
$\alpha \beta \gamma$ is an even permutation if and only if $r+s+t$ is \ldots.
6. Show that A_{8} contains an element of order 15 .
7. What is the maximum possible order of an element in A_{10} ?
8. How many elements of order 5 does S_{7} have?
9. In S_{4}, find a cyclic subgroup of order 4 and a non-cyclic subgroup of order 4.
10. Prove that (1234) cannot be written as a product of (some number of) 3-cycles.
11. Suppose that H is a subgroup of S_{n} of odd order. Prove that $H \subseteq A_{n}$.
12. Show that for $n \geq 3, Z\left(S_{n}\right)=\{\epsilon\}$.

