Math 103a Fall 2012 Homework 1

Due Friday 10/5/2012 by 4pm in homework box in Basement of AP\&M

Reading assignment: Read Chapters 0-2 of Gallian. This first set of exercises is related entirely to Chapter 0 and consists of problems reviewing Math 109 material.

Exercises:

1. Let a, b be integers and $d=\operatorname{gcd}(a, b)$. If $a=d a^{\prime}$ and $b=d b^{\prime}$ for some integers a^{\prime}, b^{\prime}, show that $\operatorname{gcd}\left(a^{\prime}, b^{\prime}\right)=1$.
2. Let a and b be positive integers and $d=\operatorname{gcd}(a, b)$ and $m=\operatorname{lcm}(a, b)$. If t divides both a and b, prove that t divides d. If s is a multiple of both a and b, prove that s is a multiple of m.
3. Generalize Euclid's Lemma by proving the following: If p is a prime number and p divides a product of integers $a_{1} a_{2} \ldots a_{n}$, then p divides a_{i} for some i. (This is proved for $n=2$ only in the text and in class).
4. Use the generalized Euclid's Lemma of exercise 3 to prove the uniqueness portion of the fundamental theorem of arithmetic.
5. Suppose that a, b are positive integers and that a and b have prime factorizations $a=p_{1}^{e_{1}} \ldots p_{m}^{e_{m}}, b=p_{1}^{f_{1}} \ldots p_{m}^{f_{m}}$. Here, we assume that the p_{i} are distinct primes, and we allow $e_{i} \geq 0, f_{i} \geq 0$ so that we can assume the same sets of primes occur in both factorizations. (For example, if $a=15, b=12$, then $a=2^{0} 3^{1} 5^{1}$ and $b=2^{2} 3^{1} 5^{0}$).

Show that $\operatorname{gcd}(a, b)=p_{1}^{g_{1}} \ldots p_{m}^{g_{m}}$, where $g_{i}=\min \left(e_{i}, f_{i}\right)$ for each i. Show also that $\operatorname{lcm}(a, b)=p_{1}^{h_{1}} \ldots p_{m}^{h_{m}}$, where $h_{i}=\max \left(e_{i}, f_{i}\right)$ for each i. Finally, prove that

$$
\operatorname{gcd}(a, b) \operatorname{lcm}(a, b)=a b
$$

(Hint: use the fundamental theorem of arithmetic).
6. Determine $2^{500} \bmod 7$ (in the notation of the book). In other words, (in the notation I prefer), find the unique r with $0 \leq r<7$ such that $2^{500} \equiv r(\bmod 7)$.
7. Prove that $n^{3} \equiv n(\bmod 6)$ holds for all integers n (not just positive integers.)
8. Recall that the Fibonacci sequence is $1,1,2,3,5,8, \ldots$ where we set $f_{1}=1, f_{2}=1$, and for $n \geq 3$, we inductively define $f_{n}=f_{n-1}+f_{n-2}$. Prove for all $n \geq 2$ that f_{n} is even if and only if n is a multiple of 3 .
9. Let S be the set of all real numbers. If $a, b \in S$, define $a \sim b$ if $a-b$ is an integer. Prove that \sim is an equivalence relation on S. Describe what the partition of S into equivalence classes looks like.
10. Let $S=\mathbb{R}^{2}$ be the set of all points (x, y) in the real cartesian plane. Define a relation by $(x, y) \sim(w, z)$ if $x+y=w+z$. Prove that this is an equivalence relation on S. Describe geometrically what the partition of S into equivalence classes looks like.

