
MATH 100C SPRING 2016 MIDTERM SAMPLE SOLUTIONS

Instructions: There are 45 points total. Justify all of your answers, and show your work.

You may use the result of one part of a problem in the proof of a later part, even if you do not

complete the proof of the earlier part. You may quote basic theorems proved in the textbook

or in class, unless the point of the problem is to reproduce the proof of such a theorem, or the

problem tells you not to. Do not quote the results of homework exercises without reproving

them. You have one hour and fifty minutes.

1 (10 pts).

(a) (5 pts). Prove Kronecker’s theorem, which states that if K is a field and f(x) ∈ K[x],

then there is a field extension K ⊆ F such that f(u) = 0 for some u ∈ F .

(b) (5 pts). Prove that if f(x) ∈ K[x], then there exists a splitting field F for f(x) over

K.

(Both parts (a) and (b) are theorems proved in class and in the book; I want you to

reprove them here).

Solution.

(a). The problem should have stated that f(x) nonconstant of course, since a constant

polynomial can’t have a root in any field. So assume that f(x) ∈ K[x] is nonconstant. Then

there is some irreducible (so also nonconstant) polynomial g(x) such that f(x) = g(x)h(x)

in K[x]. Now let F = K[x]/〈g(x)〉. Since g(x) is irreducible, the ideal 〈g(x)〉 of K[x] is

maximal as K[x] is a PID. Thus F is a field. Also, we can identify K with the subfield

{a + 〈g(x)〉|a ∈ K} of F and thus we have a field extension K ⊆ F . Now we claim that

u = x+ 〈g(x)〉 ∈ F is a root of g(x). Writing g(x) = a0 + a1x+ · · ·+ anx
n, this follows from
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the calculation

a0 + a1u+ · · ·+ anu
n = (a0 + 〈g〉) + (a1 + 〈g〉)(x+ 〈g〉) + · · ·+ (an + 〈g〉)(x+ 〈g〉)n

= a0 + a1x+ · · ·+ anx
n + 〈g〉

= g + 〈g〉

= 0 + 〈g〉.

Thus u ∈ F is a root of g(x), and hence also a root of f(x) since f(u) = g(u)h(u) = 0h(u) = 0.

(b). If f is constant, then it has no roots so taking F = K satisfies the definition of

splitting field. Now we prove the result by induction on deg f , where the base case is the

trivial one just proved where deg f = 0. Assuming now that deg f > 0, by Kronecker’s

theorem, there is a field extension K ⊆ L such that f(x) has a root r1 ∈ L. Then the

subfield K(r1) of L obviously also has the root r1 of f , so shrinking L if necessary we may

assume that L = K(r1).

Then in L[x], by the factor theorem we get f(x) = (x−r1)h(x) for some h(x) ∈ L[x]. Since

deg h = deg f − 1, by the induction hypothesis there is a splitting field F for h(x) over L.

We claim that F is then a splitting field for f(x) over K. First, since h(x) splits over F , say

h(x) = a(x− r2) . . . (x− rn) with r2, . . . , rn ∈ F , we have f(x) = a(x− r1)(x− r2) . . . (x− rn)

in F [x] with r1, . . . , rn ∈ F . So f(x) splits over F . Also, since F is the splitting field for

h(x) over L, we have F = L(r2, . . . rn). Since L = K(r1), we have F = K(r1)(r2, . . . , rn) =

K(r1, . . . , rn). Thus F is a splitting field for f(x) over K.

2 (10 pts). Recall the theorem that a real number u is constructible if and only if there

is a sequence of real numbers u1, . . . , un, such that u ∈ Q(u1, . . . , un), where u21 ∈ Q and

u2i ∈ Q(u1, . . . , ui−1) for all 2 ≤ i ≤ n.

(a) (4 pts). Prove using the theorem above that if u is a constructible number, then

[Q(u) : Q] is a power of 2. (This is a result proved in class and in the book; I want you to

reprove it here.)

(b) (3 pts). Prove that an angle θ is a constructible angle if and only if the angle 2θ is

constructible. (Hint: cos(2θ) = 2 cos2 θ − 1.)
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(c) (3 pts). Suppose that u is a real number which is a root of the polynomial x4−4x2 +2.

Is u constructible? Why or why not?

Solution. (a). Let i ≥ 2. Since u2i ∈ Q(u1, . . . , ui−1), setting a = u2i , we have that ui is a

root of the polynomial x2− a ∈ Q(u1, . . . , ui−1)[x]. Thus ui is algebraic over Q(u1, . . . , ui−1)

and has minimal polynomial over Q(u1, . . . , ui−1) of degree at most 2. Then the degree

[Q(u1, . . . , ui−1)(ui) : Q(u1, . . . , ui−1)] ≤ 2 since the degree of this field extension is the same

as the degree of the minimal polynomial of ui over Q(u1, . . . , ui−1). Similarly, [Q(u1) : Q] ≤ 2.

Now since if K ⊆ E ⊆ F we have [F : E][E : K] = [F : K], by induction a similar

formula holds for a longer chain of field extensions. Since Q ⊆ Q(u1) ⊆ Q(u1, u2) ⊆ · · · ⊆

Q(u1, . . . , un), we get

[Q(u1, . . . , un) : Q] = [Q(u1) : Q][Q(u1, u2) : Q(u1)] . . . [Q(u1, . . . , un) : Q(u1, . . . , un−1)].

Since this is a product of numbers which are 1 or 2, we have [Q(u1, . . . , un) : Q] is a power

of 2. Now since u ∈ Q(u1, . . . , un), we have Q ⊆ Q(u) ⊆ Q(u1, . . . , un). Then by the same

formula as above [Q(u) : Q] is a divisor of [Q(u1, . . . , un) : Q]. Since any divisor of a power

of 2 is a power of 2, [Q(u) : Q] is a power of 2.

(b). We showed in class that an angle θ is constructible if and only if the number cos θ is

a constructible number.

If cos θ is constructible, then so is cos(2θ) = 2 cos2 θ − 1 since the set of constructible

numbers is a field. If cos(2θ) is constructible, then we have cos θ =
√

cos(2θ)+1
2

. Since the

set of constructible numbers is a field and we also proved it is closed under taking square

roots (this is also an immediate consequence of the theorem stated at the beginning of the

problem), we see that cos θ is also constructible.

(c). In this case, because of the special form of the polynomial, we may set z = x2 and

then f = z2 − 4z + 2 is quadratic in z. By the quadratic formula, we get the roots of

this polynomial are z = 2 ±
√

2. Thus x = ±
√

2±
√

2, and so we have found the four

roots of f(x) in C explicity (and we see that all four roots are real). Again since the set of

constructible real numbers is a field containing the rational numbers and closed under taking

square roots, we see that all of the numbers ±
√

2±
√

2 are constructible.
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(It is tempting to argue as follows: the polynomial f(x) = x4 − 4x2 + 2 is irreducible

over Q by the Eisenstein criterion applied to the prime 2. Thus if u is a root of f(x) then

minpolyQ(u) = f(x) and so [Q(u) : Q] = 4, which is a power of 2. However, we only proved

that constructible numbers have degree over Q which is a power of 2, not the converse, so

knowing that u has degree 4 over Q does not immediately imply that u is constructible.)

3 (5 pts). Let K ⊆ E ⊆ F where K,E, and F are fields. Suppose that K ⊆ E is

an algebraic field extension. Show that if u ∈ F is transcendental over K, then u is also

transcendental over E.

Solution. Suppose that u is algebraic over E. Then [E(u) : E] is finite, equal to the degree

of the minimal polynomial of u over E. Since finite extensions are algebraic, E ⊆ E(u)

is an algebraic extension. Now by a theorem we proved, since K ⊆ E and E ⊆ E(u) are

algebraic extensions, the extension K ⊆ E(u) is also algebraic. By definition, this means

that the element u ∈ E(u) must be algebraic over K. This contradicts the hypothesis that

u is transcendental over K.

This in fact u cannot be algebraic over E, so it must be transcendental over E as required.

4 (10 pts). Let ζ = e2πi/6 be a primitive sixth root of unity. Explicitly,

ζ = cos(π/3) + i sin(π/3) = 1/2 + (
√

3/2)i.

(a) (5 pts). Show that Q(ζ) is the splitting field of f(x) = x6 − 1 over Q. Prove that

[Q(ζ) : Q] = 2.

(b) (5 pts). Let g(x) = x6 − 2. Find the splitting field F of g(x) over Q, and prove that

[F : Q] = 12.

Solution. (a) We have seen in class that over C the polynomial x6 − 1 factors as

x6 − 1 = (x− 1)(x− ζ) . . . (x− ζ5).

(This is because the numbers 1, ζ, . . . , ζ5 are distinct and are all roots of x6 − 1). Thus

constructing the splitting field F of f(x) inside of C, we have F = Q(1, ζ, . . . , ζ5). But

obviously Q(ζ) ⊆ Q(1, ζ, . . . , ζ5). The reverse inclusion Q(1, ζ, . . . , ζ5) ⊆ Q(ζ) holds since the

field Q(ζ) contains ζ so must contain all powers of ζ since it is a field; but Q(1, ζ, . . . , ζ5) is the
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smallest field containing Q and 1, ζ, . . . , ζ5. Thus F = Q(ζ). Now since ζ = 1/2 + (
√

3/2)i,

we can also see that F = Q(
√

3i). This is a similar argument as above: clearly Q(
√

3i)

contains the number (1 +
√

3i)/2, so Q(ζ) ⊆ Q(
√

3i). Conversely Q(ζ) contains
√

3i so that

Q(
√

3i) ⊆ Q(ζ).

Now u =
√

3i is a root of x2 +3 ∈ Q[x]. Since
√

3i is not even real, it cannot have degree 1

over Q. Thus it has degree 2 over Q and [F : Q] = [Q(u) : Q] = 2 (and x2+3 = minpolyQ(u).)

(With more work, one can also do this by showing directly that ζ satisfies a polynomial

of degree 2 over Q. To find it, one may recall that roots of polynomials with real coefficients

occur in conjugate pairs. Thus any polynomial with Q-coefficients that has ζ as a root will

also have ζ as a root. Thus since we know we are looking for a polynomial of degree 2, it

must be

(x− ζ)(x− ζ) = x2 − (ζ + ζ)x+ ζζ = x2 − (2 Re ζ)x+ |ζ|2 = x2 − x+ 1.

The same calculation shows that ζ is indeed a root of this polynomial, so it must be the

minimal polynomial of ζ over Q.)

(b) We have seen in class that over C the polynomial x6 − 2 factors as

x6 − 2 = (x− 6
√

2)(x− 6
√

2ζ) . . . (x− 6
√

2ζ5)

where 6
√

2 is the positive real sixth root of 2.

Then the splitting field of x6 − 2 over Q can be constructed inside C as

F = Q(
6
√

2,
6
√

2ζ, . . . ,
6
√

2ζ5).

Note that this field contains ζ also (as the ratio 6
√

2ζ( 6
√

2)−1) and so Q(ζ, 6
√

2) ⊆ F . On the

other hand, the field Q(ζ, 6
√

2) will contain 6
√

2ζ i for all i and so we get F = Q(ζ, 6
√

2).

Now since 6
√

2 satisfies x6 − 2, and x6 − 2 is irreducible over Q by the Eisenstein criterion

applied at the prime 2, we see that x6−2 = minpolyQ( 6
√

2). Thus [Q( 6
√

2) : Q] = 6. Since we

already know that ζ satisfies a polynomial of degree 2 over Q, its minimal polynomial over

Q( 6
√

2) will be of degree 1 or 2, and the degree 1 case occurs if and only if ζ ∈ Q( 6
√

2). But

ζ is not a real number and so cannot be contained in Q( 6
√

2) which consists of real numbers.

Thus ζ has degree 2 over Q( 6
√

2) and hence [F : Q( 6
√

2)] = 2. Then

[F : Q] = [F : Q(
6
√

2)][Q(
6
√

2) : Q] = 12.
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5 (10 pts). Consider the field Z3 of integers mod 3.

(a) (3 pts). Let I3(n) be the number of irreducible polynomials of degree n over Z3.

Calculate I3(1), I3(2), and I3(4).

(b) (3 pts). Let Z3 ⊆ L where L is a field with |L| = 34 = 81. How many u ∈ L are there

such that Z3(u) = L?

(c) (4 pts). Let F be the splitting field of x4 + 2 over Z3. Find [F : Z3].

Solution.

(a). Note that the problem should have defined I3(n) as the number of monic irreducible

polynomials of degree n over Z3.

There are clearly 3 monic irreducible polynomials of degree 1: x, x + 1, x + 2. Since

x9 − x is the product of all monic irreducible polynomials of degree 1 or 2 over Z3, we have

x9 − x = (x)(x + 1)(x + 2)h(x) where h(x) has degree 6 and is the product of all monic

irreducible polynomials of degree 2. Thus there must be 3 monic irreducible polynomials of

degree 2. Similarly, x81−x is the product of all monic irreducible polynomials of degree 1, 2,

or 4, so x81− x = (x9− x)j(x) where j(x) has degree 72 and is the product of all irreducible

monic polynomials of degree 4. So there are 18 such monic degree 4 irreducibles.

Alternatively, one may use the formula for I3(n) that comes from the mobius inversion

formula. It shows that

I3(1) =
∑
d|1

µ(1/d)3d = µ(1)3 = 3,

I3(2) = (1/2)
∑
d|2

µ(2/d)3d = (1/2)(µ(2)3 + µ(1)9) = (1/2)(−3 + 9) = 3,

I3(4) = (1/4)
∑
d|4

µ(4/d)3d = (1/4)(µ(4)3 + µ(2)9 + µ(1)81) = (1/4)(0− 9 + 81) = 18.

(b). By the theorem on subfields of finite fields, since |L| = 34, it has precisely one subfield

with 3d elements, for each d dividing 4. Thus its subfields are Z3, L, and a subfield E with

|E| = 9. Now for u ∈ L, clearly Z3(u) = L if and only if u is not contained in a proper

subfield of L. Since Z3 ⊆ E ⊆ L and these are all of the subfields of L, then Z3(u) = L if

and only if u 6∈ E. So there are 81− 9 = 72 elements u ∈ L such that Z3(u) = L.

Alternatively, one may notice that Z3(u) = L if and only if the minimal polyomial of u

over Z3 has degree 4. Since |L| = 34, every element of L is a root of x81 − x and hence
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every u ∈ L has a minimal polynomial which divides x81 − x. Thus u ∈ L has a minimal

polynomial which is of degree 1, 2, or 4, and the number of u such that u ∈ L has a minimal

polynomial of degree 4 is the same as the total number of roots of all of the irreducible

polynomials of degree 4. As calculated above, there are 18 irreducible polynomials of degree

4, and each has 4 roots, for a total of 72 such elements u.

(c) (This was a homework problem).

Since x4+2 has 1 and 2 as roots over Z3, we have x4+2 = (x+1)(x+2)h(x) = (x2+2)h(x)

for some h(x) ∈ Z3[x] by the factor theorem. Polynomial long division (or just guess and

check) gives h(x) = x2 + 1. Then the splitting field of x4 + 2 over Z3 is the same as the

splitting field of h(x) over Z3, since 1, 2 ∈ Z3 already. Now h(x) has degree 2 and is easily

seen to have no roots in Z3. Thus it must be irreducible over Z3. If F is the splitting field of

h(x) over Z3, and u ∈ F is a root of h(x), then in the ring Z3(u)[x] we have h(x) = (x−u)j(x)

and since j(x) is linear h(x) already splits over Z3(u). So F = Z3(u) and hence since u has

degree 2 over Z3, we have [F : Z3] = [Z3(u) : Z3] = 2.
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