Math 100c Spring 2016 Homework 5

Due Friday $5 / 13 / 2016$ by 3pm in HW box in basement of AP\&M

Reading

Read Sections 8.1-8.2 and begin to read Section 8.3 in the text.

Assigned Problems from the text (write up full solutions):

Section 8.1: \#5, 6, 7
Section $8.2 \# 1,4,5$

Addtional problems not from the text (write up full solutions):

A. Suppose that $f(x) \in K[x]$ is a monic irreducible polynomial of degree n. Let F be a splitting field for $f(x)$ over K, and suppose that $f(x)=\left(x-r_{1}\right)\left(x-r_{2}\right) \ldots\left(x-r_{n}\right) \in F[x]$, where the roots r_{1}, \ldots, r_{n} of $f(x)$ in F are distinct. As we have seen, if $\theta \in \operatorname{Gal}(F / K)$ then θ permutes the set $\mathcal{R}=\left\{r_{1}, \ldots, r_{n}\right\}$ of roots of $f(x)$ in F. In other words, any such θ gives a permutation $s_{\theta} \in S_{n}$, where S_{n} is the symmetric group on $\{1, \ldots, n\}$, by tracking the subscripts of how θ moves \mathcal{R} around; explicitly, $s_{\theta}(i)=j$ if $\theta\left(r_{i}\right)=r_{j}$.

Show that the function $f: \operatorname{Gal}(F / K) \rightarrow S_{n}$ given by $\theta \mapsto s_{\theta}$ is a homomorphism of groups which is always injective (one-to-one). Conclude that the group $\operatorname{Gal}(F / K)$ is isomorphic to a subgroup of S_{n}.
B. Show that the Galois group of $x^{3}-5$ over \mathbb{Q} is isomorphic to S_{3}. (Hint: use problem A).
C. Consider the field extension $\mathbb{Q} \subseteq \mathbb{Q}(\sqrt[4]{2})$, where $[\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}]=4$ since the minimal polynomial of $\sqrt[4]{2}$ over \mathbb{Q} is $x^{4}-2$.

Consider the Galois group $\operatorname{Gal}(\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q})$. How many elements does this group have?
D. Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ be an automorphism of the real numbers. This problem assumes a little bit of analysis (From Math 140a or Math 142a).
(a). Prove that $\sigma(q)=q$ for any rational number $q \in \mathbb{Q}$.
(b). Prove that σ takes squares to squares and hence takes the set of positive real numbers to itself. Conclude that $a<b$ implies that $\sigma(a)<\sigma(b)$.
(c). Prove that $-1 / m<a-b<1 / m$ implies that $-1 / m<\sigma(a)-\sigma(b)<1 / m$ for every positive integer m. Conclude that σ is a continuous function.
(d). Prove that since σ is continuous and fixes the set of rational numbers which is dense in \mathbb{R}, that σ is just the identity map on \mathbb{R}. Hence $\operatorname{Aut}(\mathbb{R})$ is the trivial group.

