Math 100c Spring 2016 Homework 4

Due Friday 4/29/2016 by 3pm in HW box in basement of AP\&M

Reading

Review Chapter 6 in preparation for the midterm on Monday May 2, which will cover the first four homeworks (including this one) and all of the material from Chapter 6 we covered. Then begin to read Chapter 8.

Assigned Problems from the text (write up full solutions):

Section 6.5: \#2, 4, 9, 10
Section $6.6 \# 3,5,6$

Addtional problems not from the text (write up full solutions):

A. How many irreducible polynomials of degree 16 over \mathbb{Z}_{2} are there?
B. Let F be a finite field of characteristic p, and let $\mathbb{Z}_{p} \subseteq F$ be its prime subfield. Suppose that $u \in F$. Show that $\left[\mathbb{Z}_{p}(u): \mathbb{Z}_{p}\right]$ is equal to the smallest positive integer n such that $u^{p^{n}}=u$, and that it divides every other such positive integer.
C. (This is $6.5 \# 11$ with hints).

Let p be prime, and consider the polynomial $f(x)=x^{p}-x+a \in \mathbb{Z}_{p}[x]$, where $0 \neq a \in \mathbb{Z}_{p}$.
(a). Let $\mathbb{Z}_{p} \subseteq F$ be a field extension such that $f(x)$ has a root $u \in F$. Show that $u+b$ is also a root of f, for all $b \in \mathbb{Z}_{p}$, and conclude that f splits in $F[x]$ as

$$
f(x)=(x-u)(x-u-1) \ldots(x-u-p+1)
$$

(b). Show that f is irreducible over \mathbb{Z}_{p}. (let $g(x)$ be a nonconstant factor of $f(x)$ in $\mathbb{Z}_{p}[x]$. In $F[x], g(x)$ is a product of some of the factors $(x-u-i)$. Writing $g(x)=$ $b_{0}+\cdots+b_{m-1} x^{m-1}+x^{m}$, show that b_{m-1} cannot belong to \mathbb{Z}_{p} unless $g(x)=f(x)$.)

