Solution to additional problem B on HW \#4

4/29/2016

Since I didn't give a clear proof of this exercise in the review class on Friday April 29th, here is one possible solution.
B. Let F be a finite field of characteristic p, and let $\mathbb{Z}_{p} \subseteq F$ be its prime subfield. Suppose that $u \in F$. Show that $\left[\mathbb{Z}_{p}(u): \mathbb{Z}_{p}\right]$ is equal to the smallest positive integer n such that $u^{p^{n}}=u$, and that it divides every other such positive integer.

Solution. First, note that if n is the degree of $f(x)=\operatorname{minpoly}_{\mathbb{Z}_{p}}(u)$, then $n=\left[\mathbb{Z}_{p}(u): \mathbb{Z}_{p}\right]$. Since this is also the number of elements in a basis of $\mathbb{Z}_{p}(u)$ as a vector space over \mathbb{Z}_{p}, we also have $\left|\mathbb{Z}_{p}(u)\right|=p^{n}$. Now suppose that $u^{p^{r}}=u$ for some positive integer r. Then u is a root of $x^{p^{r}}-x$. We must have that $f(x)$ divides $x^{p^{r}}-x$, since the minimal polynomial of u over \mathbb{Z}_{p} divides every polynomial with \mathbb{Z}_{p}-coefficients which has u as a root. We also proved that $x^{p^{r}}-x$ is the product of all irreducible polynomials over \mathbb{Z}_{p} of degree dividing r (Theorem 6.6.1 in the text). Since $f(x)$ is one of those irreducible factors, we must have $n \mid r$. Thus n divides every positive integer r such that $u^{p^{r}}=u$. Conversely, since $f(x)$ is irreducible of degree n, it must be a factor of $x^{p^{n}}-x$, by the same theorem. Thus u is a root of $x^{p^{n}}-x$, so $u^{p^{n}}=u$. We conclude that $u^{p^{n}}=u$ and that n divides every positive integer r such that $u^{p^{r}}=u$. In particular, n must be the smallest such r.

