Math 100c Spring 2016 Homework 2

Due Friday $4 / 15 / 2016$ by 3pm in HW box in basement of AP\&M

Reading

All references are to Beachy and Blair, 3rd edition. Read Sections 6.3-6.4.

Assigned Problems from the text (write up full solutions and hand in):

Section 6.1: \#7, 9
Hint for \#9: use \#7 and the results of Section 6.2.
Section 6.2: \#7

Section 6.3: \#3 (Hint: Recall that $\left(x^{n}-1\right)=(x-1)\left(x^{n-1}+x^{n-2}+\cdots+1\right)$. Thus if $\zeta^{n}=1$ and $\zeta \neq 1$, then $1+\zeta+\zeta^{2}+\cdots+\zeta^{n-1}=0$.

Addtional problems not from the text (write up full solutions and hand in):

A. (a). Let K be a field of characteristic not equal to 2 . Suppose that $K \subseteq F$ is a field extension such that $[F: K]=2$. Prove that there is some $\beta \in F$ such that $\beta^{2} \in K$ and such that $F=K(\beta)$. In other words, any extension of degree 2 of K can be generated by an element which is a square root of an element of K. (Hint: first show that $F=K(\alpha)$
for some element α, where $f=\operatorname{minpoly}_{K}(\alpha)$ has degree 2 . Then think about how α can be expressed in terms of the coefficients of f.)
(b). Let $K=\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$ be the field with 2 elements and consider $F=K[x] /\left(x^{2}+x+1\right)$. Show that F is a field with exactly four elements. As usual we can think of K as a subfield of F, so that we have a field extension $K \subseteq F$. Show that $[F: K]=2$, but there is no element $\beta \in F$ such that $F=K(\beta)$ and $\beta^{2} \in K$.
B. Let $F \subseteq \mathbb{R}$ be the field of constructible numbers, which we defined to be those $a \in \mathbb{R}$ such that the length $|a|$ occurs as the distance between two points in \mathbb{R}^{2} constructible using compass and straightedge.
(a). Show that the points in \mathbb{R}^{2} which are constructible using compass and straightedge are exactly the points (a, b) where $a, b \in F$.
(b). Identify the complex numbers \mathbb{C} with the real plane \mathbb{R}^{2}, where $a+b i$ is identified with (a, b) as usual. Define a complex number $u=a+b i$ to be constructible if (a, b) is a constructible point. Show that if u is a constructible complex number, then $[\mathbb{Q}(u): \mathbb{Q}]$ is a power of 2 .
(c). If a regular n-gon is constructible, show that the primitive nth root of unity $\zeta=e^{2 \pi i / n}$ is a constructible number and therefore that $[\mathbb{Q}(\zeta): \mathbb{Q}]$ is a power of 2 .
(d). Show that a complex number in polar form $u=r e^{i \theta}$, where $0 \leq r \in \mathbb{R}$ and $\theta \in \mathbb{R}$, is constructible if and only if r is a constructible real number and θ is a constructible angle.
C. (This is an expanded version of $6.3 \# 4$).

Let $\zeta=\cos (2 \pi / 7)+i \sin (2 \pi / 7)=e^{2 \pi i / 7}$ be a primitive 7 th root of unity in \mathbb{C}.
(a). Find a degree 3 polynomial $f(x) \in \mathbb{Q}[x]$ that $\omega=\left(\zeta+\zeta^{-1}\right)$ satisfies.
(b). Show the polynomial f you found in (a) is irreducible.
(c). Show that ζ is not constructible as a complex number as defined in problem B.
(d). Show that the regular heptagon (7 -sided polygon) is not constructible.
(e). Recall that $x^{6}+x^{5}+\cdots+x+1$ is irreducible over \mathbb{Q} by using the Eisenstein criterion after a substitution trick (Corollary 4.4.7). Conclude that $[\mathbb{Q}(\zeta): \mathbb{Q}]=6$.
(f). Show that $[\mathbb{Q}(\zeta): \mathbb{Q}(\omega)]=2$. Find the minimal polynomial of ζ over $\mathbb{Q}(\omega)$.

