
Math 100b Winter 2010 Homework 8

Due 3/12/09 in class, or by 5pm in HW box on 6th floor of AP&M

Throughout this homework, let F be an arbitrary field.
1. Let A = (aij) ∈ Mn(F ) be an arbitrary n× n matrix. Recall that the transpose of A is the

matrix At we get by flipping A around its main diagonal; in other words, At = (aji). For example,(
2 3
5 7

)t
=

(
2 5
3 7

)
.

Prove that detA = detAt.

Hint/Remark : I suggest you work directly from the definition of the determinant to prove this.
This result is useful, because it means that all theorems we proved about columns in class have
analogs for rows. For example, the determinant is multilinear and alternating as a function of the
rows of a matrix.

2. Let A = (aij) ∈Mn(F ) be an arbitrary n×n matrix. Prove that if you add a scalar multiple
of one column to some other column of A, the determinant remains unchanged.

3. Let A,B ∈Mn(F ) be arbitrary n× n matrices. In this problem, you will supply the details
we omitted in class in the proof of the important result that the determinant is multiplicative, i.e.
that det(AB) = det(A) det(B).

Suppose we fix the matrix A but let B vary. Consider the two functions f, g : Mn(F ) → F

where f(B) = (detA)(detB) and g(B) = det(AB). If we prove that f = g then the problem will
be solved (since the fixed matrix A was arbitrary).

We proved the following theorem in class (3/5):

Theorem 0.1 Let h : Mn(F ) → F be a function such that h is both multilinear and alternating
(when considered as a function of the n column vectors making up the matrix). Then there is
c ∈ F such that h(B) = cdet(B) for all matrices B, in other words h is a scalar multiple of the
determinant function. Moreover, c = h(I) where I is the identity matrix.
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Now use this theorem to prove that f = g.

Hint : We showed in class that the function det is both multilinear and alternating when consid-
ered as a function of the columns of the matrix. Using this, show that both f and g are also multi-
linear and alternating when considered as functions of the columns. For g, first make the following
preliminary observation: If we write B =

(
v1

... v2
... . . .

... vn

)
so that the columns of B are

the vectors vi, then AB =
(
Av1

... Av2
... . . .

... Avn

)
, in other words the columns of AB are

the vectors Avi. This means that as a function of the columns, g(v1, . . . , vn) = det(Av1, . . . , Avn).

4. Let A =




4 1 −2
3 −5 −1
1 2 0


 in M3(Q). Calculate A−1 using the cofactor formula for an inverse

that we developed in class on Monday 3/8. The point of this is just for you to see this formula in
action; there is no proof to be done here. Remember to check that the matrix you find really is the
inverse of A, since it is easy to make calculation errors.

(Recall: let Aij be the 2 × 2 matrix obtained by removing row i and column j from A, then
define cij = (−1)i+j detAij , the ij-cofactor of A. Let C = (cij) be the matrix of cofactors. Then
A−1 = 1

(detA)C
t is the cofactor formula for the inverse of A, where C t is the transpose of C.)

Remark : Just as the definition of the determinant we gave is a lousy way to actually calculate
the determinant if a matrix is large, the cofactor formula is usually a lousy way to calculate inverses
when a matrix is large. However, the formula is of theoretical interest and is often useful in proofs.
We will use it in the last week of class to prove the Cayley-Hamilton theorem.

5. Let V be a vector space of dimension n over F , and suppose we have two (ordered) bases
B1 = {v1, v2, . . . , vn} and B2 = {w1, w2, . . . , wn} for V . Write wj =

∑n
i=1 cijvi, and vj =

∑n
i=1 dijwi.

Let C = (cij) and D = (dij), which are matrices in Mn(F ).

(a) Prove that D = C−1. In particular, C is invertible.

(b). Let φ : V → V be any linear transformation and let A = MB1(φ) and B = MB2(φ) be the
matrices corresponding to φ with respect to the two different bases. Prove that A = CBC−1.

Remarks: Recall that by definition, A is the matrix (aij) where φ(vj) =
∑n

i=1 aijvi, and B is
the matrix (bij) where φ(wj) =

∑n
i=1 bijwi.
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