Math 100b Winter 2010 Homework 7

Due $3 / 5 / 09$ in class, or by 5 pm in HW box on 6 th floor of AP\&M

1. Suppose that F is a field with finitely many elements. First show that F has characteristic p for some prime $p>0$. Then there is an injective ring homomorphism $\phi: \mathbb{Z}_{p} \rightarrow F$ defined by $[n] \mapsto n \cdot 1$, and in this way we see that F contains a subfield, namely $\operatorname{Im} \phi$, which is isomorphic to \mathbb{Z}_{p}. Informally we just identify $\operatorname{Im} \phi$ with \mathbb{Z}_{p} and so think of \mathbb{Z}_{p} as a subfield of F, called the prime subfield.

By considering F as a vector space over \mathbb{Z}_{p}, show that $|F|=p^{n}$ for some $n \geq 1$.
Remark. This shows that every finite field has a prime-power number of elements. In Math 100 c , you will see that for every prime power p^{n}, there is exactly one field with that number of elements (up to isomorphism.)
2. Prove the following "replacement lemma", which shows that given a finite basis of a vector space and any nonzero vector w, some basis element can be replaced by w yielding another basis.

Lemma 0.1 Let V be a vector space over a field F, such that $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V. Suppose that $0 \neq w \in V$ is a nonzero vector, and write $w=a_{1} v_{1}+\cdots+a_{n} v_{n}$ for some $a_{i} \in F$. Suppose that i is any index such that $a_{i} \neq 0$. Prove that $\left\{v_{1}, v_{2}, \ldots, v_{i-1}, w, v_{i+1}, \ldots, v_{n}\right\}$ is also a basis for V.
3. In class, we defined $\operatorname{dim}_{F} V$ to be the number of elements in a basis for V as a vector space over F. (Recall that we usually just write $\operatorname{dim}_{F} V=\infty$ if this number is infinite, and will not concern ourselves too much with the cardinality of infinite sets.) In this problem, you will show that this concept of dimension is well-defined. The main work is in part (a) below; the other parts all follow quickly from part (a).
(a). Let V be a vector space over a field F with basis $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Suppose that $\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ is a linearly independent set of vectors in V with $m \leq n$. Show that, possibly after rearranging the order of the basis vectors v_{i}, then $\left\{w_{1}, w_{2}, \ldots, w_{i}, v_{i+1}, \ldots, v_{n}\right\}$ is again a basis of V for all
$1 \leq i \leq m$. In other words, we can replace the elements of the basis $\left\{v_{i}\right\}$ one by one with the w_{i} and still have a basis.
(Hint: induction on i. Use the replacement lemma from problem 2 in the induction step.)
(b). Show that if V has a basis with n elements, then any linearly independent set of vectors in V contains at most n vectors. (Hint: If S is a set of more than n independent vectors, using part (a) you can show that that first n of them are already a basis; achieve a contradiction.)
(c). Show that if V has a finite basis, then any linearly independent set of vectors in V is contained in some basis of V.
(d). Show that if V has a finite basis with n elements, then every basis of V is also finite and has n elements. This completes the proof that $\operatorname{dim}_{F} V$ is well-defined.
4. Suppose V is a vector space over F with basis S (which might be infinite). Note that the sum $\sum_{v \in S} a_{v} v$ makes sense (even if S is infinite), as long as only finitely many of the scalars $a_{v} \in F$ are nonzero; this is really a linear combination of finitely many vectors because the ones with zero coefficient aren't "really there". (Note that we are using the notation a_{v} for the coefficient of the basis vector v; it may seem weird to use a vector as a subscript but this is useful because then the subscript indicates which vector the coefficient is attached to.)
(a). Show that every element $w \in V$ has a unique expression of the form $w=\sum_{v \in S} a_{v} v$ (where $a_{v} \neq 0$ for only finitely many $v \in S$). In other words, the coefficients a_{v} are uniquely determined by w.
(b). Let W be any other vector space over F. Show that given any function $f: S \rightarrow W$, there is a unique linear transformation $\phi: V \rightarrow W$ such that $\phi(s)=f(s)$ for all $s \in S$.

Remark: In words, this says that to define a linear transformation, it is enough to say where we send the elements of a basis, and moreover we can send them anywhere we please. V is said to be free on the basis S because there is no restriction on where a homomorphism sends the elements in S.
(c). Recall that F^{n} is the vector space $\left\{\left(b_{1}, \ldots, b_{n}\right) \mid b_{i} \in F\right\}$ of n-tuples of elements of F. Let V be any vector space with $\operatorname{dim}_{F} V=n$. Show that $V \cong F^{n}$ as vector spaces, in other words there is a bijective linear transformation $\phi: V \rightarrow F^{n}$. Thus all vector spaces of dimension n are isomorphic.
5. Let V be the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, which is a vector space over \mathbb{R} with pointwise defined addition $[f+g](x)=f(x)+g(x)$ and scalar multiplication $[a f](x)=a f(x)$.

Show that $\operatorname{dim}_{F} V=\infty$. (Hint: construct an infinite linearly independent subset of V, and then quote problem 3. Note that your functions are not required to be continuous.)

Remarks: In fact, for students that know the theory of countability, it is not any harder to find an uncountable linearly independent set of vectors; this shows that in fact any basis for V is uncountable, because it is true in general that any set of linearly independent vectors has cardinality at most as large as the cardinality of a basis. In analysis one might be more interested in the vector space of all continuous functions $f: \mathbb{R} \rightarrow \mathbb{R}$, or even the vector space of all infinitely-differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$. These vector spaces also have uncountable dimension, as you might be interested in trying to show.
6. Let $R=\left\{a+b \sqrt[3]{2}+c(\sqrt[3]{2})^{2} \mid a, b, c \in \mathbb{Q}\right\} \subseteq \mathbb{R}$. It is not hard to check that R is a subring of \mathbb{R}; you can just assume this.

Prove that $R \cong \mathbb{Q}[x] /\left\langle x^{3}-2\right\rangle$ (as rings). Conclude that R is a field. Also, clearly R contains \mathbb{Q} as a subfield, so we can think of R as a vector space over \mathbb{Q}. Show that $\operatorname{dim}_{\mathbb{Q}} R=3$.

