
Math 100b Winter 2010 Homework 7

Due 3/5/09 in class, or by 5pm in HW box on 6th floor of AP&M

1. Suppose that F is a field with finitely many elements. First show that F has characteristic
p for some prime p > 0. Then there is an injective ring homomorphism φ : Zp → F defined by
[n] 7→ n · 1, and in this way we see that F contains a subfield, namely Imφ, which is isomorphic to
Zp. Informally we just identify Imφ with Zp and so think of Zp as a subfield of F , called the prime
subfield.

By considering F as a vector space over Zp, show that |F | = pn for some n ≥ 1.

Remark. This shows that every finite field has a prime-power number of elements. In Math
100c, you will see that for every prime power pn, there is exactly one field with that number of
elements (up to isomorphism.)

2. Prove the following “replacement lemma”, which shows that given a finite basis of a vector
space and any nonzero vector w, some basis element can be replaced by w yielding another basis.

Lemma 0.1 Let V be a vector space over a field F , such that {v1, v2, . . . , vn} is a basis for V .
Suppose that 0 6= w ∈ V is a nonzero vector, and write w = a1v1 + · · · + anvn for some ai ∈ F .
Suppose that i is any index such that ai 6= 0. Prove that {v1, v2, . . . , vi−1, w, vi+1, . . . , vn} is also a
basis for V .

3. In class, we defined dimF V to be the number of elements in a basis for V as a vector space
over F . (Recall that we usually just write dimF V = ∞ if this number is infinite, and will not
concern ourselves too much with the cardinality of infinite sets.) In this problem, you will show
that this concept of dimension is well-defined. The main work is in part (a) below; the other parts
all follow quickly from part (a).

(a). Let V be a vector space over a field F with basis {v1, v2, . . . , vn}. Suppose that {w1, w2, . . . , wm}
is a linearly independent set of vectors in V with m ≤ n. Show that, possibly after rearranging
the order of the basis vectors vi, then {w1, w2, . . . , wi, vi+1, . . . , vn} is again a basis of V for all
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1 ≤ i ≤ m. In other words, we can replace the elements of the basis {vi} one by one with the wi

and still have a basis.
(Hint: induction on i. Use the replacement lemma from problem 2 in the induction step.)

(b). Show that if V has a basis with n elements, then any linearly independent set of vectors in
V contains at most n vectors. (Hint: If S is a set of more than n independent vectors, using part
(a) you can show that that first n of them are already a basis; achieve a contradiction.)

(c). Show that if V has a finite basis, then any linearly independent set of vectors in V is
contained in some basis of V .

(d). Show that if V has a finite basis with n elements, then every basis of V is also finite and
has n elements. This completes the proof that dimF V is well-defined.

4. Suppose V is a vector space over F with basis S (which might be infinite). Note that the
sum

∑
v∈S avv makes sense (even if S is infinite), as long as only finitely many of the scalars av ∈ F

are nonzero; this is really a linear combination of finitely many vectors because the ones with zero
coefficient aren’t “really there”. (Note that we are using the notation av for the coefficient of the
basis vector v; it may seem weird to use a vector as a subscript but this is useful because then the
subscript indicates which vector the coefficient is attached to.)

(a). Show that every element w ∈ V has a unique expression of the form w =
∑

v∈S avv (where
av 6= 0 for only finitely many v ∈ S). In other words, the coefficients av are uniquely determined
by w.

(b). Let W be any other vector space over F . Show that given any function f : S → W , there
is a unique linear transformation φ : V → W such that φ(s) = f(s) for all s ∈ S.

Remark: In words, this says that to define a linear transformation, it is enough to say where
we send the elements of a basis, and moreover we can send them anywhere we please. V is said to
be free on the basis S because there is no restriction on where a homomorphism sends the elements
in S.

(c). Recall that Fn is the vector space {(b1, . . . , bn)|bi ∈ F} of n-tuples of elements of F . Let V

be any vector space with dimF V = n. Show that V ∼= Fn as vector spaces, in other words there is
a bijective linear transformation φ : V → Fn. Thus all vector spaces of dimension n are isomorphic.

5. Let V be the set of all functions f : R → R, which is a vector space over R with pointwise
defined addition [f + g](x) = f(x) + g(x) and scalar multiplication [af ](x) = af(x).

Show that dimF V = ∞. (Hint: construct an infinite linearly independent subset of V , and
then quote problem 3. Note that your functions are not required to be continuous.)
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Remarks: In fact, for students that know the theory of countability, it is not any harder to
find an uncountable linearly independent set of vectors; this shows that in fact any basis for V is
uncountable, because it is true in general that any set of linearly independent vectors has cardinality
at most as large as the cardinality of a basis. In analysis one might be more interested in the vector
space of all continuous functions f : R→ R, or even the vector space of all infinitely-differentiable
functions f : R → R. These vector spaces also have uncountable dimension, as you might be
interested in trying to show.

6. Let R = {a + b 3
√

2 + c( 3
√

2)2|a, b, c ∈ Q} ⊆ R. It is not hard to check that R is a subring of
R; you can just assume this.

Prove that R ∼= Q[x]/〈x3− 2〉 (as rings). Conclude that R is a field. Also, clearly R contains Q
as a subfield, so we can think of R as a vector space over Q. Show that dimQR = 3.
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