Math 100b Winter 2010 Homework 6

Due 2/26/09 in class, or by 5pm in HW box on 6th floor of AP&M

Reading

If you feel rusty on linear algebra, get out whatever book you learned linear algebra from and
review a bit of the basics (vector spaces, spanning, linear independence, bases) to prepare for our
unit on linear algebra.

The unit on linear algebra will be based on course notes and there will not be a text.

Assigned Problems from text
9.1: #11(a)

Suggestion for #11: construct the isomorphism using the homomorphism ¢ : Z — Z[i]/{a + bi)
defined by ¢(c) = (¢ + 0i) + (a + bi) and showing that ¢ is surjective and has kernel (n). Note that

surjectivity is not obvious in this case.

Additional Problems

These are problems related to our study of factorization of Gaussian integers in class, and the

theory of sums of two squares.

1. Find a factorization of 442 into irreducibles in the ring Z[i]. Using this, find explicit a,b € Z
so that 442 = a? + b2,

2. (Note: the hint for this problem was changed on Tuesday 2/16. The recommendation to
factor out a square is useful only in proving one direction.)
In class, we showed that a prime p is a sum of two squares if and only if p =2 or p=1 mod 4.

Using this, prove the following theorem:

Theorem 0.1 Let n > 1 be a positive integer, with prime factorization n = p{* ...p<m for distinct

Primes p1,p2, ..., Pm- (This is the prime factorization in Z.) Then n is a sum of two squares if



and only if every for every prime p; occurring such that p; =3 mod 4, then p; occurs to an even

power e;.

(For example, (23)(32)(5)(7%) is a sum of two squares, but (2%)(3%)(5)(73) is not.)

(Hint: If every prime congruent to 3 mod 4 occurs to an even power in the factorization of n,
then write n = Dt where t is a product of primes which are congruent to 2 or 1 mod 4. Use the
results we proved to show that ¢ is a sum of 2 squares, and then use that to show that n is a sum
of two squares.

Conversely, suppose that n is a sum of 2 squares, say n = a® + b%, so that n = (a + bi)(a — bi)
in Z[i]. Then just as in problem 3 step 1 below (you only have to do the argument once on your
homework), show that if (a + bi) = s1s2...s, is a factorization of (a + bi) into irreducibles in Z][i],
then (a — bi) =35753...5; is a factorization of a — bi into irreducibles. So n = s182...5,51832...5,.
On the other hand, we can also factor n into irreducibles by factoring each prime occurring in

n = pi*...pSm further into irreducibles in Z[i]. Compare the two factorizations using the fact that
Z[i] is a UFD.)

3. Recall that a pythagorean triple consists of positive integers a, b, c such that a? + b> = ¢?;
these are the possible triples of integers that can occur as the side lengths of a right triangle. Such
a triple is primitive if ged(a,b) = 1. If a triple is not primitive, say gecd(a,b) = d > 1, then d
also divides ¢, and then one easily checks that a/d,b/d,c/d is again a pythagorean triple. So to
understand pythagorean triples it is enough to find the primitive ones; then all others will just be
multiples of these by further integers. In addition, an easy argument shows that in any primitive
triple, a and b have different parity. (If @ and b are both odd, then a? and b? are both =1 mod 4;
then ¢ = 2 mod 4, which is impossible since an even square is divisible by 4. Clearly a and b
cannot both be even, since then they do not have ged(a,b) = 1.) Thus by switching a and b, it is
enough to consider triples in which b is even and a is odd (then ¢ is also odd.)

For example, 5,12,13 and 9,12, 15 are pythagorean triples; the first one is primitive but the
second one isn’t, it is rather obtained by multiplying the primitive triple 3,4,5 by 3.

The point of this problem is to prove the following result:

Theorem 0.2 Every primitive pythagorean triple a,b,c with b even is of the form a = m? — n?,

b =2mn, c = m? +n? for some m,n € Z.

The theorem thus gives a way of finding all primitive triples, by letting m,n vary. Caution, though:
the theorem does not state that for all integers m and n the triples the theorem produces are
primitive, just that all primitive triples arise in this way.

You will prove the theorem as another application of factorization in Z[i], in the following steps.



Step 1. Suppose that ¢? = a? + b? with ged(a,b) = 1 and b even. Then c? = (a + bi)(a — bi) in
Z[i]. Let (a + bi) = p1p2...pn be a factorization of (a + bi) into irreducibles in Z[i] (possibly with
repeats.) Show that (a —bi) = p1pz . . . Pn, where each p; is also irreducible in Z[i]. Let c=¢q1 ... ¢m

be a factorization of ¢ into irreducibles in Z[i] (again, possibly with repeats). Then we have

@G ... .2 =Dpip2-. . puPIPa - - Pn-

Step 2. In this step, you will show that no irreducible factor of (a — bi) is an associate (in Z[i])

of an irreducible factor of (a + bi).

Suppose that p; is an associate of p;.

Case (1): If i = j then p; is an associate of p; itself: show this can only happen if p; is an
associate of (1 +4). But then show that p;p; = 2, so that 2 occurs as a factor of ¢? in Z[i]. Show
that this forces ¢ even, which does not happen in a primitive triple, a contradiction.

Case (2): If i # j, then pj = up; where u € {£1,+i} is a unit, and then p;p; = up;p;, where
pjP; = d € Z. Since p;p; is part of the factorization of (a+ bi), show this implies that ged(a, b) > 1,

a contradiction again.

Step 3. Since each irreducible factor of ¢? occurs an even number of times, and no irreducible
factor of (a+bi) is an associate of an irreducible factor of (a — bi), use the fact that Z[i] is a UFD to
show that (a + bi) = uz? for some z = (m + ni) € Z[i] and some unit u. Now use this to complete

the proof of Theorem 0.2.



