MATH 100A FALL 2015 MIDTERM 2 SOLUTIONS

1 Let $\phi: G_{1} \rightarrow G_{2}$ be a homomorphism between two groups.
(a) (3 pts). Prove that $\phi(e)=e$. (This is a result in the text, so you must reprove it).
(b) (3 pts). Prove that if $a \in G_{1}$ has finite order, then $o(\phi(a))$ divides $o(a)$. (This is a result in the text, so you must reprove it).
(c) (4 pts). Suppose that $\left|G_{1}\right|=m$ and $\left|G_{2}\right|=n$, with $\operatorname{gcd}(m, n)=1$. Prove that $\phi(a)=e$ for all $a \in G_{1}$.

Solution. (a). Since $e^{2}=e$, we have $\phi(e)=\phi\left(e^{2}\right)=\phi(e) \phi(e)$. Multiplying on the right by $\phi(e)^{-1}$, we get $e=\phi(e)$.
(b). Suppose that $o(a)=n$. Then in particular $a^{n}=e$. Applying ϕ to this equation and using the defining property of a homomorphism gives $(\phi(a))^{n}=\phi\left(a^{n}\right)=\phi(e)=e$ (using part (a) for the final equality). Since if $b=\phi(a)$ then $b^{n}=e$, this implies by the properties of order that $o(b)$ divides n.
(c). If $a \in G_{1}$, then by the Corollary to Lagrange's theorem we have $o(a) \mid m$. By part (b), $o(\phi(a)) \mid o(a)$, so $o(\phi(a)) \mid m$. Since $\phi(a) \in G_{2}$, we also have $o(\phi(a)) \mid n$ by the corollary to Lagrange's theorem. Since $\operatorname{gcd}(m, n)=1$, we conclude that $o(\phi(a))=1$. This forces $\phi(a)=e$, since the identity element e is the only element of order 1 in G_{2}.
2. Consider $\alpha=(14532)(251)(53) \in S_{5}$.
(a) (3 pts). Write α as a product of transpositions. Is $\alpha \in A_{5}$?
(b) (3 pts). Find o(α).
(c) (2 pts). Write α^{-1} in disjoint cycle form.
(d) (2 pts). Is there $\sigma \in S_{5}$ such that $\sigma^{2}=\alpha$? Justify your answer.

Solution. (a). Since in general $\left(a_{1} a_{2} \ldots a_{m}\right)=\left(a_{1} a_{2}\right)\left(a_{2} a_{3}\right) \ldots\left(a_{m-1} a_{m}\right)$, we get

$$
\alpha=(14)(45)(53)(32)(25)(51)(53) .
$$

Date: November 13, 2015.

Since this is a product of 7 transpositions, α is an odd permutation, so $\alpha \notin A_{5}$.
(b). We calculate that $\alpha=(1)(2345)$ in disjoint cycle form. Since a k-cycle has order k, we get $o(\alpha)=4$.
(c). We have $\alpha^{-1}=(2345)^{-1}=(5432)$ since in general $\left(a_{1} a_{2} \ldots a_{m}\right)^{-1}=\left(a_{m} \ldots a_{2} a_{1}\right)$ by a direct calculation.
(d). Since a product of two even permutations is even and a product of two odd permutations is even, regardless of whether σ is even or odd we have σ^{2} is even. Thus we cannot have $\sigma^{2}=\alpha$, since α is odd.

3 (a) (3 pts). Suppose that a is an element of a group G with $o(a)=n$ for some $n \geq 1$. If d is a positive divisor of n, find $o\left(a^{d}\right)$. Justify your answer.
(b) (7 pts). Let G be a group with p^{k} elements, where p is a prime number and $k \geq 1$. Prove that G has a subgroup H with $|H|=p$.

Solution. (a). Let $n=d q$. We claim $o\left(a^{d}\right)=q$. First note that $\left(a^{d}\right)^{q}=a^{d q}=a^{n}=e$. On the other hand, if $1 \leq i<q$ then $\left(a^{d}\right)^{i}=a^{i d}$ and $1 \leq i d<q d=n$ and so $a^{i d} \neq e$ since n is the smallest positive exponent of a for which $a^{n}=e$. Thus q is the smallest positive exponent of a^{d} which gives e and hence $o\left(a^{d}\right)=q$ as claimed.
(b). Since $k \geq 1, G$ has some non-identity element a. Consider the cyclic subgroup $\langle a\rangle$. By the Corollary to Lagrange's theorem, $o(a)$ divides p^{k} and so must be equal to some power of p as well, say $o(a)=p^{d}$. We have $d>0$ since $a \neq e$ and so $o(a) \neq 1$. Now by part (a), if $b=a^{p^{d-1}}$, then $o(b)=p^{d} / p^{d-1}=p$. So we have found an element of order p in the group. Then $H=\langle b\rangle$ is a cyclic subgroup with $|H|=p$, as required.

4 (10 pts). Let G be a finite group with $|G|>1$, such that G has no subgroup H with $\{e\} \subsetneq H \subsetneq G$. Prove that $G \cong \mathbb{Z}_{p}$ for some prime number p.

Solution. Since $|G|>1, G$ has an element other than the identity element, say a. Consider $H=\langle a\rangle$. Since $a \neq e, o(a)>1$ and so $|H| \neq\{e\}$. By hypothesis we must have $H=G$. Thus $G=\langle a\rangle$ is cyclic. By assumption G is finite and so $o(a)=n$ is finite.

Suppose that n is not prime, but rather $n=m q$ with $1<m<n, 1<q<n$. Then $K=\left\langle a^{m}\right\rangle$ is a subgroup, and clearly $o\left(a^{m}\right)=q$, by problem $3\left(\right.$ a). Since $o\left(a^{m}\right)=q,|K|=q$
and so $\{e\} \subsetneq K \subseteq G$. This contradicts the hypothesis. Thus n is prime, say $n=p$. Finally, a theorem from class and the text shows that a cyclic group of prime order p is isomorphic to \mathbb{Z}_{p} under addition.

