MATH 100A FALL 2015 MIDTERM 1 SOLUTIONS

1 (5 pts). Define what it means for a set G with a binary operation $*$ to be a group.

Solution. The set G with binary operation $*$ is a group if (i) * is associative, that is $(a * b) * c=a *(b * c)$ for all $a, b, c \in G$; (ii) there exists an identity element $e \in G$ such that $(a * e)=a=(e * a)$ for all $a \in G$; and (iii) for all $a \in G$ there exists an element $b \in G$ (called the inverse of a) such that $a * b=e=b * a$.

2 (10 pts). Let G be an Abelian group. Let $H=\{a \in G \mid o(a)$ is a finite odd integer $\}$. Prove that H is a subgroup of G.

Solution. To see that a nonempty set H is a subgroup, it is enough to prove that for $a, b \in H$, we have $a b \in H$ and $a^{-1} \in H$. That is, we need to check that H is closed under products and closed under inverses.

Note that $H \neq \emptyset$, because $o(e)=1$ and hence $e \in H$.
First, if $a \in H$ then $m=o(a)$ is odd. Then $a^{m}=e$, so $\left(a^{-1}\right)^{m}=\left(a^{m}\right)^{-1}=e$ as well. This implies that the order $o\left(a^{-1}\right)$ must be a divisor of m. Since m is odd, all of its divisors are also odd, so $o\left(a^{-1}\right)$ is odd and thus $a^{-1} \in H$. (Actually it is easy to see that $o\left(a^{-1}\right)=o(a)$ but we don't need this).

Next if $a, b \in H$ with $m=o(a)$ and $n=o(b)$, then since $a b=b a$, we get that $(a b)^{m n}=$ $a^{m n} b^{m n}=\left(a^{m}\right)^{n}\left(a^{n}\right)^{m}=e$. Thus $o(a b)$ must be a divisor of $m n$. Since m and n are odd, $m n$ is odd, and so any divisor of $m n$ is odd. Thus $o(a b)$ is odd and so $a b \in H$ as well. This proves that H is a subgroup using the two-step subgroup test.
3. Let G be a group and consider the function $\phi: G \rightarrow G$ given by the formula $\phi(x)=x^{-1}$.
(a) (5 pts). Prove that ϕ is one-to-one and onto.
(b) (5 pts). Prove that ϕ is an isomorphism if and only if the group G is Abelian.

Solution. (a). If $\phi(x)=\phi(y)$, then $x^{-1}=y^{-1}$. Then $y=x x^{-1} y=x y^{-1} y=x$. Thus ϕ is one-to-one.

Given $x \in G$, we have $x x^{-1}=e=x^{-1} x$ and thus by the definition of inverses we have $\left(x^{-1}\right)^{-1}=x$. Thus $\phi\left(x^{-1}\right)=x$ and hence ϕ is onto.
(b). Suppose that G is Abelian. Then for all $x, y \in G, \phi(x y)=(x y)^{-1}=(y x)^{-1}=$ $x^{-1} y^{-1}=\phi(x) \phi(y)$. Thus by definition ϕ is a homomorphism of groups. Since ϕ is one-toone and onto by part (a), then ϕ is an isomorphism by definition.

Conversely, if ϕ is an isomorphism then we have $y^{-1} x^{-1}=(x y)^{-1}=\phi(x y)=\phi(x) \phi(y)=$ $x^{-1} y^{-1}$, for all $x, y \in G$. Thus $y x=y x y^{-1} x^{-1} x y=y x x^{-1} y^{-1} x y=x y$ for all $x, y \in G$.

4 (10 pts). Let $G=\mathbb{Z}$ be the group of integers under addition. Prove directly that every subgroup of G is of the form $m \mathbb{Z}=\{m q \mid q \in \mathbb{Z}\}$ for some $m \geq 0$. (Do not quote the theorem that subgroups of cyclic groups are cyclic. Prove it directly, as you did when this was a homework exercise.)

Solution. If $H=\{0\}$ is the trivial subgroup, then $H=0 \mathbb{Z}$. So assume now that $H \neq\{0\}$. Since H is closed under inverses, if $a \in H$ then $-a \in H$. Thus H contains some positive number, and we can define m to be the smallest positive number in H. Now if $a \in H$, then we can write $a=q m+r$ in the division algorithm, with $0 \leq r<m$. Since $m \in H$, we have $q m \in H$ since H is a subgroup (recall that $q m$ means $\overbrace{m+m+\cdots+m}^{q}$ if q is positive, $\overbrace{(-m)+(-m)+\cdots+(-m)}^{|q|}$ if q is negative, and $0 m=0$.) Since $a \in H$, we get $r=a-q m \in H$. Thus contradicts the choice of m unless $r=0$. Thus $a=m q$ and so $a \in m \mathbb{Z}$. So $H \subseteq m \mathbb{Z}$. Conversely, since $m \in H$ we get $q m \in H$ for all $q \in \mathbb{Z}$ as already noted and so $m \mathbb{Z} \subseteq H$. Thus $H=m \mathbb{Z}$.
5. For each of the following groups, decide if the group is cyclic or not and justify your answer.
(a) (5 pts). \mathbb{Z}_{9}^{\times}.
(b) (5 pts). $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$.

Solution.

(a). \mathbb{Z}_{9}^{\times}is cyclic. We have $\mathbb{Z}_{9}^{\times}=\left\{[1]_{9},[2]_{9},[4]_{9},[5]_{9},[7]_{9},[8]_{9}\right\}$. Then considering the powers of $[2]$, we have $[2]^{1}=[2] \neq[1],[2]^{2}=[4] \neq[1]$, and $[2]^{3}=[8] \neq[1]$. Since $o([2])$ must divide $\left|\mathbb{Z}_{9}^{\times}\right|=6$, we have $o([2])=1,2,3$, or 6 . But $o([2])$ cannot be 1,2 , or 3 by the calculation above, so $o([2])=6$. This implies that $[2]^{0}=[1],[2],[2]^{2},[2]^{3},[2]^{4},[2]^{5}$ are all distinct and so give all 6 elements of the group. Thus $\mathbb{Z}_{9}^{\times}=\langle[2]\rangle$ is generated by a single element and so is cyclic.
(b). This group is not cyclic. For example, we can use the formula for the order of an element in a direct product. If $[a] \in \mathbb{Z}_{3}$, then we know that $o([a])=1$ or 3 , since $\left|\mathbb{Z}_{3}\right|=3$. Then if $([a],[b]) \in \mathbb{Z}_{3} \times \mathbb{Z}_{3}$, we have $o(([a],[b]))=\operatorname{lcm}(o([a]), o([b]))$ as proved in class or in the textbook. But the least common multiple of two divisors of 3 is at most as large as 3, so all elements of $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ have order at most 3 . On the other hand, $\left|\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right|=9$, so if it were cyclic the group $\mathbb{Z}_{3} \times \mathbb{Z}_{3}$ would have to have an element of order 9 .

