MATH 100A FALL 2015 MIDTERM 1 SOLUTIONS

1 (5 pts). Define what it means for a set G with a binary operation * to be a group.

Solution. The set G with binary operation * is a group if (i) * is associative, that is (a * b) * c = a * (b * c) for all $a, b, c \in G$; (ii) there exists an identity element $e \in G$ such that (a * e) = a = (e * a) for all $a \in G$; and (iii) for all $a \in G$ there exists an element $b \in G$ (called the inverse of a) such that a * b = e = b * a.

2 (10 pts). Let G be an Abelian group. Let $H = \{a \in G | o(a) \text{ is a finite odd integer}\}$. Prove that H is a subgroup of G.

Solution. To see that a nonempty set H is a subgroup, it is enough to prove that for $a, b \in H$, we have $ab \in H$ and $a^{-1} \in H$. That is, we need to check that H is closed under products and closed under inverses.

Note that $H \neq \emptyset$, because o(e) = 1 and hence $e \in H$.

First, if $a \in H$ then m = o(a) is odd. Then $a^m = e$, so $(a^{-1})^m = (a^m)^{-1} = e$ as well. This implies that the order $o(a^{-1})$ must be a divisor of m. Since m is odd, all of its divisors are also odd, so $o(a^{-1})$ is odd and thus $a^{-1} \in H$. (Actually it is easy to see that $o(a^{-1}) = o(a)$ but we don't need this).

Next if $a, b \in H$ with m = o(a) and n = o(b), then since ab = ba, we get that $(ab)^{mn} = a^{mn}b^{mn} = (a^m)^n(a^n)^m = e$. Thus o(ab) must be a divisor of mn. Since m and n are odd, mn is odd, and so any divisor of mn is odd. Thus o(ab) is odd and so $ab \in H$ as well. This proves that H is a subgroup using the two-step subgroup test.

3. Let G be a group and consider the function $\phi: G \to G$ given by the formula $\phi(x) = x^{-1}$.

- (a) (5 pts). Prove that ϕ is one-to-one and onto.
- (b) (5 pts). Prove that ϕ is an isomorphism if and only if the group G is Abelian.

Solution. (a). If $\phi(x) = \phi(y)$, then $x^{-1} = y^{-1}$. Then $y = xx^{-1}y = xy^{-1}y = x$. Thus ϕ is one-to-one.

Given $x \in G$, we have $xx^{-1} = e = x^{-1}x$ and thus by the definition of inverses we have $(x^{-1})^{-1} = x$. Thus $\phi(x^{-1}) = x$ and hence ϕ is onto.

(b). Suppose that G is Abelian. Then for all $x, y \in G$, $\phi(xy) = (xy)^{-1} = (yx)^{-1} = x^{-1}y^{-1} = \phi(x)\phi(y)$. Thus by definition ϕ is a homomorphism of groups. Since ϕ is one-to-one and onto by part (a), then ϕ is an isomorphism by definition.

Conversely, if ϕ is an isomorphism then we have $y^{-1}x^{-1} = (xy)^{-1} = \phi(xy) = \phi(x)\phi(y) = x^{-1}y^{-1}$, for all $x, y \in G$. Thus $yx = yxy^{-1}x^{-1}xy = yxx^{-1}y^{-1}xy = xy$ for all $x, y \in G$.

4 (10 pts). Let $G = \mathbb{Z}$ be the group of integers under addition. Prove directly that every subgroup of G is of the form $m\mathbb{Z} = \{mq | q \in \mathbb{Z}\}$ for some $m \ge 0$. (Do not quote the theorem that subgroups of cyclic groups are cyclic. Prove it directly, as you did when this was a homework exercise.)

Solution. If $H = \{0\}$ is the trivial subgroup, then $H = 0\mathbb{Z}$. So assume now that $H \neq \{0\}$. Since H is closed under inverses, if $a \in H$ then $-a \in H$. Thus H contains some positive number, and we can define m to be the smallest positive number in H. Now if $a \in H$, then we can write a = qm + r in the division algorithm, with $0 \leq r < m$. Since $m \in H$, we have $qm \in H$ since H is a subgroup (recall that qm means $m + m + \cdots + m$ if q is positive, $(-m) + (-m) + \cdots + (-m)$ if q is negative, and 0m = 0.) Since $a \in H$, we get $r = a - qm \in H$. Thus contradicts the choice of m unless r = 0. Thus a = mq and so $a \in m\mathbb{Z}$. So $H \subseteq m\mathbb{Z}$. Conversely, since $m \in H$ we get $qm \in H$ for all $q \in \mathbb{Z}$ as already noted and so $m\mathbb{Z} \subseteq H$. Thus $H = m\mathbb{Z}$.

5. For each of the following groups, decide if the group is cyclic or not and justify your answer.

- (a) (5 pts). \mathbb{Z}_{9}^{\times} .
- (b) (5 pts). $\mathbb{Z}_3 \times \mathbb{Z}_3$.

Solution.

(a). \mathbb{Z}_9^{\times} is cyclic. We have $\mathbb{Z}_9^{\times} = \{[1]_9, [2]_9, [4]_9, [5]_9, [7]_9, [8]_9\}$. Then considering the powers of [2], we have $[2]^1 = [2] \neq [1], [2]^2 = [4] \neq [1]$, and $[2]^3 = [8] \neq [1]$. Since o([2]) must divide $|\mathbb{Z}_9^{\times}| = 6$, we have o([2]) = 1, 2, 3, or 6. But o([2]) cannot be 1, 2, or 3 by the calculation above, so o([2]) = 6. This implies that $[2]^0 = [1], [2], [2]^2, [2]^3, [2]^4, [2]^5$ are all distinct and so give all 6 elements of the group. Thus $\mathbb{Z}_9^{\times} = \langle [2] \rangle$ is generated by a single element and so is cyclic.

(b). This group is not cyclic. For example, we can use the formula for the order of an element in a direct product. If $[a] \in \mathbb{Z}_3$, then we know that o([a]) = 1 or 3, since $|\mathbb{Z}_3| = 3$. Then if $([a], [b]) \in \mathbb{Z}_3 \times \mathbb{Z}_3$, we have $o(([a], [b])) = \operatorname{lcm}(o([a]), o([b]))$ as proved in class or in the textbook. But the least common multiple of two divisors of 3 is at most as large as 3, so all elements of $\mathbb{Z}_3 \times \mathbb{Z}_3$ have order at most 3. On the other hand, $|\mathbb{Z}_3 \times \mathbb{Z}_3| = 9$, so if it were cyclic the group $\mathbb{Z}_3 \times \mathbb{Z}_3$ would have to have an element of order 9.