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1 Background

One of the natural questions that arises in the study of abstract algebra is to describe all
the abelian extensions of Q. The celebrated Kronecker-Weber Theorem largely answers this
question by proving that any finite abelian extension of Q is contained in some cyclotomic ex-
tension, Q(ζn), where n depends on the given extension. Thus, by understanding cyclotomic
extensions, which are a managable and simpler set of objects, one, in effect, understands all
finite abelian extensions of Q.

Perhaps the next most natural base field to consider is Q(i). In asking the same question,
one again is met with a pleasant, albeit more complicated, result. We have:

Theorem 1.1. Let C : y2 = x3 + x and F/Q(i) be any finite abelian extension. Then, there
exists n ≥ 1 such that F ⊂ Q(i)(C[n]) where C[n] is the collection of x and y coordinates of
the n-torsion (nonidentity) points on C.

While these results may seem markedly different at first, when viewed under the right lens,
they are quite similar. In the first case, if we define λn : C× → C× by λn(z) = zn, then the
cyclotomic extension Q(ζn) = Q(ker(λn)). Likewise, in the second setting, define λn : C → C
via λn(P ) = nP , and we see that the above theorem states F ⊂ Q(i)(ker(λn)). So, in both
cases, we may encapsulate any finite abelian extension of our base field in a composite of
our base field and the kernel of a certain map on a certain space.

In the case of extensions of Q, one may define an injective homomorphism ρ : (Z/nZ)× →
Gal(Q(ζn)/Q) via the rule ρ(ā) = σa where σa : Q(ζn) → Q(ζn) via σa(ζn) = ζan. Showing
this map is onto, however, requires knowing that the nth cyclotomic polynomial is irreducible
over Q, which, in the case of n = p, a prime, is seen readily through Eisenstein’s criterion
with an index shift trick. This results implies |Gal(Q(ζp)/Q)| = [Q(ζp) : Q] = ϕ(p) = p− 1.
In the material to follow, we work to derive analogies of these results in the more complex
setting of abelian extensions of Q(i).

2 Set Up

We begin by defining a collection of polynomials ψn ∈ Z[x, y] based on the curve C : y2 =
x3 + x via the following recursive definitions:
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ψ0 = 1, ψ1 = 1, ψ2 = 2y, ψ3 = 3x4 + 6x2 − 1, ψ4 = 2y(2x6 + 10x4 − 10x2 − 2)

ψ2n+1 = ψn+2ψ
3
n − ψn−1ψ

3
n+1, n ≥ 2

2yψ2n = ψn(ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1), n ≥ 3

In addition, we define the polynomials:

ϕn = xψ2
n − ψn+1ψn−1, n ≥ 2

4yωn = ψn+2ψ
2
n−1 − ψn−2ψ

2
n+1, n ≥ 2

The most important properties of these polynomials, which were proved in the last submitted
homework set, are the following:

Lemma 2.1. Given the above setup:
(a) All the ψn, ϕn, ωn are in Z[x, y].
(b) If n is odd, ψn, ϕn, y

−1ωn are in Z[x, y2]. If n is even, then (2y)−1ψn, ϕn, ωn are in
Z[x, y2]. In these cases, we may replace y2 with x3 + x and get a polynomial just in x.
(c) As polynomials in x, we have that:

ϕn(x) = xn
2

+ lower degree terms

ψn(x)2 = n2xn
2−1 + lower degree terms

(d) For any P = (x, y) ∈ C, we have nP =

(
ϕn(P )

ψn(P )2
,
ωn(P )

ψn(P )3

)
.

(e) If P = (x, y) ∈ C(C), then nP is the identity if and only if ψn(x)2 = 0.

A computer program readily finds these polynomials for small values of n:

ψ1(x) = 1

ψ2(x) = 2y

ψ3(x) = 3x4 + 6x2 − 1

ψ4(x) = (2y)(2x6 + 10x4 − 10x2 − 2)

ψ5(x) = 5x12 + 62x10 − 105x8 − 300x6 − 125x4 − 50x2 + 1

ψ6(x) = (2y)(3x16 + 72x14 − 364x12 − 1288x10 − 942x8 − 1288x6 − 364x4 + 72x2 + 3)

ψ7(x) = 7x24 + 308x22−2954x20−19852x18−35231x16−82264x14−111916x12−42168x10 +
15673x8 + 14756x6 + 1302x4 + 196x2 − 1
. . .
ψ11(x) = 11x60 + 2794x58 − 207691x56 − 5092956x54 − 28366041x52 − 815789634x50 −
5391243935x48− 7864445336x46 + 50897017743x44 + 387221579866x42 + 1197743580033x40 +
2175830922716x38 + 3223489742187x36 + 5384207244702x34 + 8608181312269x32 +
9712525647792x30 + 6610669151537x28 + 1890240552750x26 − 1084042069649x24 −



1642552094436x22 − 948497199067x20 − 291359180310x18 − 57392757037x16 −
14323974808x14 − 3974726283x12 − 385382514x10 − 5093605x8 +
2923492x6 + 33033x4 + 1210x2 − 1
. . .
ψ13(x) = 13x84 + 6370x82 − 966771x80 − 40172008x78 − 302574974x76 − 25746637540x74 −
256749753910x72 − 58238066536x70 + 13732966612261x68 + 154178038516762x66 +
785812055225821x64+2479277700934112x62+7665898221693816x60+29291279621875024x58+
99093094080008600x56 + 234510906536697440x54 + 360106370579869018x52 +
292227204652497764x50 − 150573378043884614x48 − 968698282925133488x46 −
1823536524411131348x44 − 2182258606767553496x42 − 1860316858105594980x40 −
1248291077679739184x38 − 797540307628030798x36 − 562197483577820636x34 −
380108964428406590x32 − 197635149662855840x30 − 68542512916164040x28 −
12834604373175472x26 + 726553759796696x24 + 1469150719590112x22 +
534618582761913x20 + 94168981334714x18 + 8722781334553x16 + 894973190488x14 +
179986452386x12 + 10357000732x10 + 168733994x8 − 21130408x6 − 113399x4 − 2366x2 + 1

3 Irreducibility Results

In analyzing the extension degrees created by attaching the coordinates of torsion points, we
proceed in two cases. First, let p be a prime with p ≡ 3(4), so p remains prime in Z[i] Here
we claim that the polynomial ψp is irreducible over Q[i]. Since (p) ⊂ Z[i] is a prime ideal, we
aim to use Eisenstein’s criterion on the coefficients of ψp. One may show via induction that
the constant term of ψn(x) is ±1 if n is odd. Thus, if some nonconstant coefficient of ψp is
not divisible by p, then reducing this polynomial mod p produces a nonconstant polynomial
which will have a root in some extension of Fp, say Fpk . This root provides a p-torsion point,
thus showing that p divides |Epk |, where Epk is the group of points on y2 = x3 +x in Fpk . The
size of this group is well known (see Koblitz pp. 40 and 61, e.g.). If k is odd, then pk ≡ 3(4),
and so |Epk | = pk + 1, and since p 6 |pk + 1, we have a contradiction. (Note: while Koblitz
examines |Epk | for y2 = x3−n2x, his proof requires only that y2 equals an odd function, thus
applying to our elliptic curve.) If k is even, we have that |Epk | = pk + 1− αk/2 − ᾱk/2 where
α is a Gaussian integer of norm p2 satisfying a certain congruence condition. Given the only
possibilities for α are p, ip,−p,−ip, we again have a contradiction in all cases. (Again, slight
alterations are needed in Koblitz’s proof which deals with the curve y2 = x3 − n2x.) These
results are immediately seen in the cases of ψ3 and ψ7 listed above, where all the nonconstant
terms are divisible by 3 and 7 respectively.

In the case of p prime with p ≡ 1(4), we know that p does not remain prime in Z[i],
and we may write p = ππ̄ where π = a + bi with a2 + b2 = p. In this case, the polynomial
ψp will not be irreducible, and will have, as two of its irreducible factors, the polynomials
ψπ and ψπ̄, which represent the polynomials in x whose roots are the x-coordinates of the
π-torsion (resp. π̄-torsion) points on C. To find a formula for ψπ observe that if (a + bi)P
equals the identity, then −bi(x, y) = a(x, y). Since we are working over Q(i), we know that
multiplication by i and the addition-b-times homomorphism commute (p. 205, Silverman
and Tate). Thus, a(x, y) = ib(x,−y), and so, using the complex multiplication of y2 = x3 +x



(one of the reasons this curve is the focus of our attention), we have(
ϕa(x, y)

ψa(x, y)2
,
ωa(x, y)

ψa(x, y)3

)
=

(
− ϕb(x,−y)

ψb(x,−y)2
,−i ωb(x,−y)

ψb(x,−y)3

)
.

We focus our attention on the x-coordinates of this expression, for if these agree, then the
y-coordinates will agree or differ by a minus sign (a situation addressed below). Next,
observe that since the ϕ’s and ψ2’s are polynomials only in x, we may ignore the y (or
−y) input. In addition, note that if ψb(x) = 0, then we have that ord(x, y)|b. Since
(a+ bi)(x, y) is the identity, then so is a(x, y), and thus ord(x, y)|a. Given that a2 + b2 = p,
we must have ord(x, y) = 1, a case we can ignore, since the roots of the ψ polynomials
are precisely for nonidentity points. Thus, we may assume that both ψa(x)2 and ψb(x)2

are nonzero, and thus cross-multiply the first coordinates of the above expression to obtain
Φ = ϕaψ

2
b + ϕbψ

2
a = 0. Part (c) of the above lemma reveals that the leading term of Φ is

xa
2
b2xb

2−1 + xb
2
a2xa

2−1 = (b2 + a2)xa
2+b2−1 = pxp−1.

Now, not every root of Φ(x) corresponds to a π-torsion point, for, as noted above, it is
possible that the x-coordinates of the critical equation agree, but not the y-coordinates. In
the case they do agree, we see (x, y) is π-torsion. If not, then starting the calculation with
a− bi instead of a+ bi yields an identical relation in the first coordinate, and an extra minus
sign in the second coordinate. This shows that each root of Φ(x) either corresponds to a
π-torsion point or a π̄-torsion point. In addition, for a fixed pair (x, y) we know: (x, y) is
π-torsion ⇔ (x,−y) is π-torsion ⇔ (x̄, ȳ) is π̄-torsion ⇔ (x̄,−ȳ) is π̄-torsion. Thus we have
an equal number of π and π̄-torsion points, and so we may write Φ(x) = ψπ(x)ψπ̄(x) where
the leading coefficient of ψπ is ηx(p−1)/2 and for ψπ̄ we have εx(p−1)/2 where ηε = p.

We now show that ψπ is Eisenstein in the Gaussian prime π. This will imply that π|η,
and a similar argument shows π̄|ε. Since ηε = p, we know η = π, up to associates, and
thus have a clearer picture of ψπ. Before proceeding, we observe two things. First, since ψp
has ±1 as a constant term, ψπ will have some unit of Z[i] as its constant term. In particu-
lar, it has a nonzero constant term. Second, if we factor ψπ(x) over C (not over Q(i)), we
may write the factorization as η

∏
(x − ai), where the ai’s are the roots of ψπ. Given the

above relationship between π and π̄-torsion points, we see that ψπ̄ must factor as ε
∏

(x− āi).

For the irreducibility, we proceed by contradiction: if π does not divide each nonconstant
term in ψπ, then we get a π-torsion point mod π, i.e. in Z[i]/(π) ∼= Fp. But noting the
factorizations of ψπ and ψπ̄, we also get a π̄-torsion point mod π̄. These two torsion points
generate a total of p2 − 1 nonidentity p-torsion points mod p, an impossibility given that
the reduction of ψp mod p has degree less than (p2 − 1)/2 (note: each x value gives rise to
two y values) since its leading coefficient is divisible by p from the above lemma. This shows
the irreducibility and confirms the leading coefficients of ψπ and ψπ̄. Thus, we know that
ψp = ψπ ·ψπ̄ · another polynomial = (πx(p−1)/2 + . . .)(π̄x(p−1)/2 + . . .)(x(p−1)2/2 + . . .). Indeed,
using Mathematica, we may factor our above expressions for ψ5(x) and ψ13(x) over Q[i]. We
have:

ψ5(x) = ((1 + 2i)x2 + 1)·
((1− 2i)x2 + 1)·
(x8 + 12x6 − 26x4 − 52x2 + 1).



ψ13(x) = ((2 + 3i)x6 + (4− 7i)x4 + (10− 11i)x2 − i)·
((2− 3i)x6 + (4 + 7i)x4 + (10 + 11i)x2 + i)·
(x72 + 492x70 − 73386x68 + . . .+ 1).

(Note that, for example: 4 + 7i = (2− 3i)(−1 + 2i) and 10 + 11i = (2− 3i)(−1 + 4i).)

4 Conclusion

We are now in a position to prove our main result.

Theorem 4.1. Let ω ∈ Z[i] be prime. Let Kω be the field obtained by adjoining the x and
y-coordinates of the nonidentity ω-torsion points on the elliptic curve C : y2 = x3 + x to the
base field Q(i). Then, [Kω : Q(i)] = N(ω)− 1, where N is the norm function on Z[i].

Proof: We begin with the case ω = 1 + i (its associates follow similarly). If (1 + i)P is
the identity, then we find that (x, y) = (−x,−iy), so (x, y) = (0, 0). Since this is the only
nonidentity torsion point, we have Kω = Q(i), and thus [Kω : Q(i)] = 1 = N(1 + i)− 1.

For the other cases, note first that attaching all the x and y-coordinates is the same as
attaching a single pair, for the collection of ω torsion points, Eω, is isomorphic to Z[i]/(ω)
as a Z[i] module. So, we may set Eω = Z[i] · P where P = (x, y) is the point we focus on
adjoining to Q(i). Now, observe that adjoining y to Q(i, x) creates a degree 2 extension
because of the following observations. First, y2 = x3 + x, so the extension is of degree at
most 2. Second, note that the homomorphism sending (x, y)→ (x,−y) on C gives rise to a
element of Gal(Kω/Q(i)) that fixes x but not y. (Note: We can be sure that (x, y) 6= (x,−y),
because if not, then y = 0, and we are not in the case of points whose order divides 2.) We
now proceed in two cases, using the irreducibility results from above:

Case 1: ω = p ≡ 3(4)

We have: [Kω : Q(i)] = [Q(i, x, y) : Q(i, x)] · [Q(i, x) : Q(i)] = 2 · p
2 − 1

2
= N(ω)− 1.

Case 2: ω = a+ bi where N(ω) = p ≡ 1(4)

We have: [Kω : Q(i)] = [Q(i, x, y) : Q(i, x)] · [Q(i, x) : Q(i)] = 2 · p− 1

2
= N(ω)− 1. �

Finally, observe that this theorem generalizes the case of adjoining the roots of the equation
xp−1 = 0 to the base field Q. In this setting, as above, one must only adjoin a single x-value,
ζp, and the irreducibility of Φp shows [Q(ζp) : Q] = p − 1 = N(p) − 1, where N(p) = |p| is
the norm function on Z.


