On attaching coordinates of Gaussian prime torsion points of $y^{2}=x^{3}+x$ to $\mathbb{Q}(i)$

Gordan Savin and David Quarfoot

March 29, 2010

1 Background

One of the natural questions that arises in the study of abstract algebra is to describe all the abelian extensions of \mathbb{Q}. The celebrated Kronecker-Weber Theorem largely answers this question by proving that any finite abelian extension of \mathbb{Q} is contained in some cyclotomic extension, $\mathbb{Q}\left(\zeta_{n}\right)$, where n depends on the given extension. Thus, by understanding cyclotomic extensions, which are a managable and simpler set of objects, one, in effect, understands all finite abelian extensions of \mathbb{Q}.

Perhaps the next most natural base field to consider is $\mathbb{Q}(i)$. In asking the same question, one again is met with a pleasant, albeit more complicated, result. We have:

Theorem 1.1. Let $C: y^{2}=x^{3}+x$ and $F / \mathbb{Q}(i)$ be any finite abelian extension. Then, there exists $n \geq 1$ such that $F \subset \mathbb{Q}(i)(C[n])$ where $C[n]$ is the collection of x and y coordinates of the n-torsion (nonidentity) points on C.
While these results may seem markedly different at first, when viewed under the right lens, they are quite similar. In the first case, if we define $\lambda_{n}: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$by $\lambda_{n}(z)=z^{n}$, then the cyclotomic extension $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\operatorname{ker}\left(\lambda_{n}\right)\right)$. Likewise, in the second setting, define $\lambda_{n}: C \rightarrow C$ via $\lambda_{n}(P)=n P$, and we see that the above theorem states $F \subset \mathbb{Q}(i)\left(\operatorname{ker}\left(\lambda_{n}\right)\right)$. So, in both cases, we may encapsulate any finite abelian extension of our base field in a composite of our base field and the kernel of a certain map on a certain space.

In the case of extensions of \mathbb{Q}, one may define an injective homomorphism $\rho:(\mathbb{Z} / n \mathbb{Z})^{\times} \rightarrow$ $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ via the rule $\rho(\bar{a})=\sigma_{a}$ where $\sigma_{a}: \mathbb{Q}\left(\zeta_{n}\right) \rightarrow \mathbb{Q}\left(\zeta_{n}\right)$ via $\sigma_{a}\left(\zeta_{n}\right)=\zeta_{n}^{a}$. Showing this map is onto, however, requires knowing that the nth cyclotomic polynomial is irreducible over \mathbb{Q}, which, in the case of $n=p$, a prime, is seen readily through Eisenstein's criterion with an index shift trick. This results implies $\left|\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)\right|=\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]=\varphi(p)=p-1$. In the material to follow, we work to derive analogies of these results in the more complex setting of abelian extensions of $\mathbb{Q}(i)$.

2 Set Up

We begin by defining a collection of polynomials $\psi_{n} \in \mathbb{Z}[x, y]$ based on the curve $C: y^{2}=$ $x^{3}+x$ via the following recursive definitions:

$$
\begin{gathered}
\psi_{0}=1, \psi_{1}=1, \psi_{2}=2 y, \psi_{3}=3 x^{4}+6 x^{2}-1, \psi_{4}=2 y\left(2 x^{6}+10 x^{4}-10 x^{2}-2\right) \\
\psi_{2 n+1}=\psi_{n+2} \psi_{n}^{3}-\psi_{n-1} \psi_{n+1}^{3}, n \geq 2 \\
2 y \psi_{2 n}=\psi_{n}\left(\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}\right), n \geq 3
\end{gathered}
$$

In addition, we define the polynomials:

$$
\begin{gathered}
\varphi_{n}=x \psi_{n}^{2}-\psi_{n+1} \psi_{n-1}, n \geq 2 \\
4 y \omega_{n}=\psi_{n+2} \psi_{n-1}^{2}-\psi_{n-2} \psi_{n+1}^{2}, n \geq 2
\end{gathered}
$$

The most important properties of these polynomials, which were proved in the last submitted homework set, are the following:

Lemma 2.1. Given the above setup:
(a) All the $\psi_{n}, \varphi_{n}, \omega_{n}$ are in $\mathbb{Z}[x, y]$.
(b) If n is odd, $\psi_{n}, \varphi_{n}, y^{-1} \omega_{n}$ are in $\mathbb{Z}\left[x, y^{2}\right]$. If n is even, then $(2 y)^{-1} \psi_{n}, \varphi_{n}, \omega_{n}$ are in $\mathbb{Z}\left[x, y^{2}\right]$. In these cases, we may replace y^{2} with $x^{3}+x$ and get a polynomial just in x.
(c) As polynomials in x, we have that:

$$
\begin{gathered}
\varphi_{n}(x)=x^{n^{2}}+\text { lower degree terms } \\
\psi_{n}(x)^{2}=n^{2} x^{n^{2}-1}+\text { lower degree terms }
\end{gathered}
$$

(d) For any $P=(x, y) \in C$, we have $n P=\left(\frac{\varphi_{n}(P)}{\psi_{n}(P)^{2}}, \frac{\omega_{n}(P)}{\psi_{n}(P)^{3}}\right)$.
(e) If $P=(x, y) \in C(\mathbb{C})$, then $n P$ is the identity if and only if $\psi_{n}(x)^{2}=0$.

A computer program readily finds these polynomials for small values of n :

$$
\begin{aligned}
& \psi_{1}(x)=1 \\
& \psi_{2}(x)=2 y \\
& \psi_{3}(x)=3 x^{4}+6 x^{2}-1 \\
& \psi_{4}(x)=(2 y)\left(2 x^{6}+10 x^{4}-10 x^{2}-2\right) \\
& \psi_{5}(x)=5 x^{12}+62 x^{10}-105 x^{8}-300 x^{6}-125 x^{4}-50 x^{2}+1 \\
& \psi_{6}(x)=(2 y)\left(3 x^{16}+72 x^{14}-364 x^{12}-1288 x^{10}-942 x^{8}-1288 x^{6}-364 x^{4}+72 x^{2}+3\right) \\
& \psi_{7}(x)=7 x^{24}+308 x^{22}-2954 x^{20}-19852 x^{18}-35231 x^{16}-82264 x^{14}-111916 x^{12}-42168 x^{10}+ \\
& 15673 x^{8}+14756 x^{6}+1302 x^{4}+196 x^{2}-1 \\
& \cdots \\
& \psi_{11}(x)=11 x^{60}+2794 x^{58}-207691 x^{56}-5092956 x^{54}-28366041 x^{52}-815789634 x^{50}- \\
& 5391243935 x^{48}-7864445336 x^{46}+50897017743 x^{44}+387221579866 x^{42}+1197743580033 x^{40}+ \\
& 2175830922716 x^{38}+3223489742187 x^{36}+5384207244702 x^{34}+8608181312269 x^{32}+ \\
& 9712525647792 x^{30}+6610669151537 x^{28}+1890240552750 x^{26}-1084042069649 x^{24}-
\end{aligned}
$$

```
\(1642552094436 x^{22}-948497199067 x^{20}-291359180310 x^{18}-57392757037 x^{16}-\)
\(14323974808 x^{14}-3974726283 x^{12}-385382514 x^{10}-5093605 x^{8}+\)
\(2923492 x^{6}+33033 x^{4}+1210 x^{2}-1\)
```

```
\psi (3 (x) = 13x 84 + 6370x 82 - 966771\mp@subsup{x}{}{80}-40172008\mp@subsup{x}{}{78}-302574974\mp@subsup{x}{}{76}-25746637540}\mp@subsup{x}{}{74}
256749753910x 年 - 58238066536x 70 + 13732966612261x 68 + 154178038516762x 66 +
785812055225821 每+2479277700934112x 62 +7665898221693816x 60 +29291279621875024x 58}
99093094080008600 每 + 234510906536697440 年 + 360106370579869018x 52 +
292227204652497764x 50 - 150573378043884614x 48 - 968698282925133488x 46 -
1823536524411131348x 44 - 2182258606767553496 午 - 1860316858105594980 年 -
1248291077679739184x 38 - 797540307628030798x 36 - 562197483577820636 34 -
380108964428406590 年 - 197635149662855840 年 - 68542512916164040 年 -
12834604373175472x 26 + 726553759796696 年 + 1469150719590112x 22 +
534618582761913x 20 + 94168981334714x 18 + 8722781334553x 16 + 894973190488x 14}
179986452386 午 + 10357000732 年 + 168733994x 8}-21130408\mp@subsup{x}{}{6}-113399\mp@subsup{x}{}{4}-2366\mp@subsup{x}{}{2}+
```


3 Irreducibility Results

In analyzing the extension degrees created by attaching the coordinates of torsion points，we proceed in two cases．First，let p be a prime with $p \equiv 3(4)$ ，so p remains prime in $\mathbb{Z}[i]$ Here we claim that the polynomial ψ_{p} is irreducible over $\mathbb{Q}[i]$ ．Since $(p) \subset \mathbb{Z}[i]$ is a prime ideal，we aim to use Eisenstein＇s criterion on the coefficients of ψ_{p} ．One may show via induction that the constant term of $\psi_{n}(x)$ is ± 1 if n is odd．Thus，if some nonconstant coefficient of ψ_{p} is not divisible by p ，then reducing this polynomial mod p produces a nonconstant polynomial which will have a root in some extension of \mathbb{F}_{p} ，say $\mathbb{F}_{p^{k}}$ ．This root provides a p－torsion point， thus showing that p divides $\left|E_{p^{k}}\right|$ ，where $E_{p^{k}}$ is the group of points on $y^{2}=x^{3}+x$ in $\mathbb{F}_{p^{k}}$ ．The size of this group is well known（see Koblitz pp． 40 and 61 ，e．g．）．If k is odd，then $p^{k} \equiv 3(4)$ ， and so $\left|E_{p^{k}}\right|=p^{k}+1$ ，and since $p \nmid p^{k}+1$ ，we have a contradiction．（Note：while Koblitz examines $\left|E_{p^{k}}\right|$ for $y^{2}=x^{3}-n^{2} x$ ，his proof requires only that y^{2} equals an odd function，thus applying to our elliptic curve．）If k is even，we have that $\left|E_{p^{k}}\right|=p^{k}+1-\alpha^{k / 2}-\bar{\alpha}^{k / 2}$ where α is a Gaussian integer of norm p^{2} satisfying a certain congruence condition．Given the only possibilities for α are $p, i p,-p,-i p$ ，we again have a contradiction in all cases．（Again，slight alterations are needed in Koblitz＇s proof which deals with the curve $y^{2}=x^{3}-n^{2} x$ ．）These results are immediately seen in the cases of ψ_{3} and ψ_{7} listed above，where all the nonconstant terms are divisible by 3 and 7 respectively．

In the case of p prime with $p \equiv 1(4)$ ，we know that p does not remain prime in $\mathbb{Z}[i]$ ， and we may write $p=\pi \bar{\pi}$ where $\pi=a+b i$ with $a^{2}+b^{2}=p$ ．In this case，the polynomial ψ_{p} will not be irreducible，and will have，as two of its irreducible factors，the polynomials ψ_{π} and $\psi_{\bar{\pi}}$ ，which represent the polynomials in x whose roots are the x－coordinates of the π－torsion（resp． $\bar{\pi}$－torsion）points on C ．To find a formula for ψ_{π} observe that if $(a+b i) P$ equals the identity，then $-b i(x, y)=a(x, y)$ ．Since we are working over $\mathbb{Q}(i)$ ，we know that multiplication by i and the addition－b－times homomorphism commute（p．205，Silverman and Tate）．Thus，$a(x, y)=i b(x,-y)$ ，and so，using the complex multiplication of $y^{2}=x^{3}+x$
(one of the reasons this curve is the focus of our attention), we have

$$
\left(\frac{\varphi_{a}(x, y)}{\psi_{a}(x, y)^{2}}, \frac{\omega_{a}(x, y)}{\psi_{a}(x, y)^{3}}\right)=\left(-\frac{\varphi_{b}(x,-y)}{\psi_{b}(x,-y)^{2}},-i \frac{\omega_{b}(x,-y)}{\psi_{b}(x,-y)^{3}}\right) .
$$

We focus our attention on the x-coordinates of this expression, for if these agree, then the y-coordinates will agree or differ by a minus sign (a situation addressed below). Next, observe that since the φ^{\prime} 's and ψ^{2} 's are polynomials only in x, we may ignore the y (or $-y)$ input. In addition, note that if $\psi_{b}(x)=0$, then we have that $\operatorname{ord}(x, y) \mid b$. Since $(a+b i)(x, y)$ is the identity, then so is $a(x, y)$, and thus ord $(x, y) \mid a$. Given that $a^{2}+b^{2}=p$, we must have $\operatorname{ord}(x, y)=1$, a case we can ignore, since the roots of the ψ polynomials are precisely for nonidentity points. Thus, we may assume that both $\psi_{a}(x)^{2}$ and $\psi_{b}(x)^{2}$ are nonzero, and thus cross-multiply the first coordinates of the above expression to obtain $\Phi=\varphi_{a} \psi_{b}^{2}+\varphi_{b} \psi_{a}^{2}=0$. Part (c) of the above lemma reveals that the leading term of Φ is $x^{a^{2}} b^{2} x^{b^{2}-1}+x^{b^{2}} a^{2} x^{a^{2}-1}=\left(b^{2}+a^{2}\right) x^{a^{2}+b^{2}-1}=p x^{p-1}$.

Now, not every root of $\Phi(x)$ corresponds to a π-torsion point, for, as noted above, it is possible that the x-coordinates of the critical equation agree, but not the y-coordinates. In the case they do agree, we see (x, y) is π-torsion. If not, then starting the calculation with $a-b i$ instead of $a+b i$ yields an identical relation in the first coordinate, and an extra minus sign in the second coordinate. This shows that each root of $\Phi(x)$ either corresponds to a π-torsion point or a $\bar{\pi}$-torsion point. In addition, for a fixed pair (x, y) we know: (x, y) is π-torsion $\Leftrightarrow(x,-y)$ is π-torsion $\Leftrightarrow(\bar{x}, \bar{y})$ is $\bar{\pi}$-torsion $\Leftrightarrow(\bar{x},-\bar{y})$ is $\bar{\pi}$-torsion. Thus we have an equal number of π and $\bar{\pi}$-torsion points, and so we may write $\Phi(x)=\psi_{\pi}(x) \psi_{\bar{\pi}}(x)$ where the leading coefficient of ψ_{π} is $\eta x^{(p-1) / 2}$ and for $\psi_{\bar{\pi}}$ we have $\epsilon x^{(p-1) / 2}$ where $\eta \epsilon=p$.

We now show that ψ_{π} is Eisenstein in the Gaussian prime π. This will imply that $\pi \mid \eta$, and a similar argument shows $\bar{\pi} \mid \epsilon$. Since $\eta \epsilon=p$, we know $\eta=\pi$, up to associates, and thus have a clearer picture of ψ_{π}. Before proceeding, we observe two things. First, since ψ_{p} has ± 1 as a constant term, ψ_{π} will have some unit of $\mathbb{Z}[i]$ as its constant term. In particular, it has a nonzero constant term. Second, if we factor $\psi_{\pi}(x)$ over \mathbb{C} (not over $\mathbb{Q}(i)$), we may write the factorization as $\eta \Pi\left(x-a_{i}\right)$, where the a_{i} 's are the roots of ψ_{π}. Given the above relationship between π and $\bar{\pi}$-torsion points, we see that $\psi_{\bar{\pi}}$ must factor as $\epsilon \prod\left(x-\bar{a}_{i}\right)$.

For the irreducibility, we proceed by contradiction: if π does not divide each nonconstant term in ψ_{π}, then we get a π-torsion point $\bmod \pi$, i.e. in $\mathbb{Z}[i] /(\pi) \cong \mathbb{F}_{p}$. But noting the factorizations of ψ_{π} and $\psi_{\bar{\pi}}$, we also get a $\bar{\pi}$-torsion point $\bmod \bar{\pi}$. These two torsion points generate a total of $p^{2}-1$ nonidentity p-torsion points $\bmod p$, an impossibility given that the reduction of $\psi_{p} \bmod p$ has degree less than $\left(p^{2}-1\right) / 2$ (note: each x value gives rise to two y values) since its leading coefficient is divisible by p from the above lemma. This shows the irreducibility and confirms the leading coefficients of ψ_{π} and $\psi_{\bar{\pi}}$. Thus, we know that $\psi_{p}=\psi_{\pi} \cdot \psi_{\bar{\pi}} \cdot$ another polynomial $=\left(\pi x^{(p-1) / 2}+\ldots\right)\left(\bar{\pi} x^{(p-1) / 2}+\ldots\right)\left(x^{(p-1)^{2} / 2}+\ldots\right)$. Indeed, using Mathematica, we may factor our above expressions for $\psi_{5}(x)$ and $\psi_{13}(x)$ over $\mathbb{Q}[i]$. We have:

$$
\begin{aligned}
\psi_{5}(x)= & \left((1+2 i) x^{2}+1\right) \\
& \left((1-2 i) x^{2}+1\right) \\
& \left(x^{8}+12 x^{6}-26 x^{4}-52 x^{2}+1\right) .
\end{aligned}
$$

$$
\begin{aligned}
\psi_{13}(x)= & \left((2+3 i) x^{6}+(4-7 i) x^{4}+(10-11 i) x^{2}-i\right) \\
& \left((2-3 i) x^{6}+(4+7 i) x^{4}+(10+11 i) x^{2}+i\right) \\
& \left(x^{72}+492 x^{70}-73386 x^{68}+\ldots+1\right)
\end{aligned}
$$

(Note that, for example: $4+7 i=(2-3 i)(-1+2 i)$ and $10+11 i=(2-3 i)(-1+4 i)$.

4 Conclusion

We are now in a position to prove our main result.

Theorem 4.1. Let $\omega \in \mathbb{Z}[i]$ be prime. Let K_{ω} be the field obtained by adjoining the x and y-coordinates of the nonidentity ω-torsion points on the elliptic curve $C: y^{2}=x^{3}+x$ to the base field $\mathbb{Q}(i)$. Then, $\left[K_{\omega}: \mathbb{Q}(i)\right]=N(\omega)-1$, where N is the norm function on $\mathbb{Z}[i]$.

Proof: We begin with the case $\omega=1+i$ (its associates follow similarly). If $(1+i) P$ is the identity, then we find that $(x, y)=(-x,-i y)$, so $(x, y)=(0,0)$. Since this is the only nonidentity torsion point, we have $K_{\omega}=\mathbb{Q}(i)$, and thus $\left[K_{\omega}: \mathbb{Q}(i)\right]=1=N(1+i)-1$.

For the other cases, note first that attaching all the x and y-coordinates is the same as attaching a single pair, for the collection of ω torsion points, E_{ω}, is isomorphic to $\mathbb{Z}[i] /(\omega)$ as a $\mathbb{Z}[i]$ module. So, we may set $E_{\omega}=\mathbb{Z}[i] \cdot P$ where $P=(x, y)$ is the point we focus on adjoining to $\mathbb{Q}(i)$. Now, observe that adjoining y to $\mathbb{Q}(i, x)$ creates a degree 2 extension because of the following observations. First, $y^{2}=x^{3}+x$, so the extension is of degree at most 2. Second, note that the homomorphism sending $(x, y) \rightarrow(x,-y)$ on C gives rise to a element of $G a l\left(K_{\omega} / \mathbb{Q}(i)\right)$ that fixes x but not y. (Note: We can be sure that $(x, y) \neq(x,-y)$, because if not, then $y=0$, and we are not in the case of points whose order divides 2.) We now proceed in two cases, using the irreducibility results from above:

Case 1: $\omega=p \equiv 3(4)$
We have: $\left[K_{\omega}: \mathbb{Q}(i)\right]=[\mathbb{Q}(i, x, y): \mathbb{Q}(i, x)] \cdot[\mathbb{Q}(i, x): \mathbb{Q}(i)]=2 \cdot \frac{p^{2}-1}{2}=N(\omega)-1$.
Case 2: $\omega=a+b i$ where $N(\omega)=p \equiv 1(4)$
We have: $\left[K_{\omega}: \mathbb{Q}(i)\right]=[\mathbb{Q}(i, x, y): \mathbb{Q}(i, x)] \cdot[\mathbb{Q}(i, x): \mathbb{Q}(i)]=2 \cdot \frac{p-1}{2}=N(\omega)-1$.

Finally, observe that this theorem generalizes the case of adjoining the roots of the equation $x^{p}-1=0$ to the base field \mathbb{Q}. In this setting, as above, one must only adjoin a single x-value, ζ_{p}, and the irreducibility of Φ_{p} shows $\left[\mathbb{Q}\left(\zeta_{p}\right): \mathbb{Q}\right]=p-1=N(p)-1$, where $N(p)=|p|$ is the norm function on \mathbb{Z}.

