X is a prevariety.
X is a prevariety.

Last time: each $U \subset X$ open is a prevariety

Claim: each $Y \subset X$ closed irreducible is a prevariety.

Need: the sheaf \mathcal{O}_Y.

Affine case: regular functions on $U \subset Y$ are locally $f = \phi \psi$.

These extend locally to $g = \phi \psi$ on the subset $V = \{x \in X: \psi(x) \neq 0\}$ of X.
X is a prevariety.

Last time: each $U \subset X$ open is a prevariety

Claim: each $Y \subset X$ closed irreducible is a prevariety.
X is a prevariety.

Last time: each $U \subseteq X$ open is a prevariety.

Claim: each $Y \subseteq X$ closed irreducible is a prevariety.

Need: the sheaf \mathcal{O}_Y
X is a prevariety.

Last time: each $U \subset X$ open is a prevariety

Claim: each $Y \subset X$ closed irreducible is a prevariety.

Need: the sheaf \mathcal{O}_Y

Affine case: regular functions on $U \subset Y$ are locally $f = \frac{\phi}{\psi}$.
X is a prevariety.

Last time: each $U \subset X$ open is a prevariety

Claim: each $Y \subset X$ closed irreducible is a prevariety.

Need: the sheaf \mathcal{O}_Y

Affine case: regular functions on $U \subset Y$ are locally $f = \frac{\phi}{\psi}$.

These extend locally to $g = \frac{\phi}{\psi}$ the subset $V = \{x \in X : \psi(x) \neq 0\}$ of X.
X is a prevariety.

Last time: each $U \subseteq X$ open is a prevariety

Claim: each $Y \subseteq X$ closed irreducible is a prevariety.

Need: the sheaf O_Y

Affine case: regular functions on $U \subseteq Y$ are locally $f = \frac{\phi}{\psi}$.

These extend locally to $g = \frac{\phi}{\psi}$ the subset $V = \{x \in X : \psi(x) \neq 0\}$ of X.
In general,

- for $U \subset Y$ open, $\mathcal{O}_Y(U) = $ functions $f : U \to k$ which are locally restrictions of regular functions on open subsets of X.

X can be covered by affine opens U_i so Y can be covered by opens $U_i \cap Y$ is closed in U_i hence affine.
In general,

- for $U \subset Y$ open, $\mathcal{O}_Y(U)$ = functions $f : U \to k$ which are locally restrictions of regular functions on open subsets of X

- that is, for all $p \in U$, there exist

 - $p \in V \subset X$ open, $V \cap Y \subset U$
In general,

- for \(U \subset Y \) open, \(\mathcal{O}_Y(U) \) = functions \(f : U \to k \) which are locally restrictions of regular functions on open subsets of \(X \)

- that is, for all \(p \in U \), there exist

 - \(p \in V \subset X \) open, \(V \cap Y \subset U \)

 - \(g \in \mathcal{O}_X(V) \) with

 \[f|_{V \cap Y} = g|_{V \cap Y}. \]
In general,

- for $U \subseteq Y$ open, $\mathcal{O}_Y(U) = \text{functions } f : U \to k$ which are locally restrictions of regular functions on open subsets of X

- that is, for all $p \in U$, there exist

 - $p \in V \subseteq X$ open, $V \cap Y \subseteq U$

 - $g \in \mathcal{O}_X(V)$ with $f|_{V \cap Y} = g|_{V \cap Y}$

- X can be covered by affine opens U_i
In general,

- for $U \subset Y$ open, $\mathcal{O}_Y(U)$ = functions $f : U \rightarrow k$ which are locally restrictions of regular functions on open subsets of X

- that is, for all $p \in U$, there exist

 - $p \in V \subset X$ open, $V \cap Y \subset U$

 - $g \in \mathcal{O}_X(V)$ with $f|_{V \cap Y} = g|_{V \cap Y}$.

- X can be covered by affine opens U_i

- so Y can be covered by opens $U_i \cap Y$
In general,

- for $U \subset Y$ open, $\mathcal{O}_Y(U) = \text{functions } f : U \to k$ which are locally restrictions of regular functions on open subsets of X

- that is, for all $p \in U$, there exist
 - $p \in V \subset X$ open, $V \cap Y \subset U$
 - $g \in \mathcal{O}_X(V)$ with $f|_{V \cap Y} = g|_{V \cap Y}$.

- X can be covered by affine opens U_i

- so Y can be covered by opens $U_i \cap Y$

- $U_i \cap Y$ is closed in U_i hence affine.
In general,

- for $U \subset Y$ open, $\mathcal{O}_Y(U) = \text{functions } f : U \to k$ which are locally restrictions of regular functions on open subsets of X

- that is, for all $p \in U$, there exist
 - $p \in V \subset X$ open, $V \cap Y \subset U$
 - $g \in \mathcal{O}_X(V)$ with $f|_{V \cap Y} = g|_{V \cap Y}$.

- X can be covered by affine opens U_i
- so Y can be covered by opens $U_i \cap Y$
- $U_i \cap Y$ is closed in U_i hence affine.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying **ringed spaces**.

We can **glue** prevarieties.

Lemma (Gluing of morphisms)

Let $f: X \to Y$ be a set-theoretic map of prevarieties. Let $\{U_i\}$ be an open cover of X. Assume $f_i = f|_{U_i}: U_i \to Y$. Then f is a morphism iff f_i are morphisms.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?

Lemma (Gluing of morphisms)

Let $f : X \rightarrow Y$ be a set-theoretic map of prevarieties.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?

Lemma (Gluing of morphisms)

Let $f : X \to Y$ be a set-theoretic map of prevarieties. Let $\{U_i\}$ be open cover of X.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?

Lemma (Gluing of morphisms)

Let $f : X \to Y$ be a set-theoretic map of prevarieties. Let $\{U_i\}$ be open cover of X. Assume

$$f_i = f|_{U_i} : U_i \to Y.$$
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?

Lemma (Gluing of morphisms)

Let $f : X \to Y$ be a set-theoretic map of prevarieties. Let $\{U_i\}$ be open cover of X. Assume

$$f_i = f|_{U_i} : U_i \to Y.$$

Then f is a morphism iff f_i are morphisms.
Morphisms of prevarieties

Morphisms of prevarieties are morphisms of underlying ringed spaces.

We can glue prevarieties.

Can we glue morphisms?

Lemma (Gluing of morphisms)

Let $f : X \to Y$ be a set-theoretic map of prevarieties. Let $\{U_i\}$ be open cover of X. Assume

$$f_i = f|_{U_i} : U_i \to Y.$$

Then f is a morphism iff f_i are morphisms.
If f_i are morphisms, f_i continuous, so f is continuous.
If f_i are morphisms, f_i continuous, so f is continuous

We show

$$\phi \in \mathcal{O}_Y(V) \implies f^*\phi \in \mathcal{O}_X(f^{-1}(V))$$
If f_i are morphisms, f_i continuous, so f is continuous.

We show

$$\phi \in \mathcal{O}_Y(V) \implies f^*\phi \in \mathcal{O}_X(f^{-1}(V))$$

Know

$$f_i^*\phi \in \mathcal{O}_X(f_i^{-1}(V)) \implies f^*\phi|_{U_i} \in \mathcal{O}_X(f^{-1}(V) \cap U_i)$$
If \(f_i \) are morphisms, \(f_i \) continuous, so \(f \) is continuous

We show

\[
\phi \in \mathcal{O}_Y(V) \implies f^* \phi \in \mathcal{O}_X(f^{-1}(V))
\]

Know

\[
f_i^* \phi \in \mathcal{O}_X(f_i^{-1}(V)) \implies f^* \phi \big|_{U_i} \in \mathcal{O}_X(f^{-1}(V) \cap U_i)
\]

Since \(\mathcal{O}_X \) is sheaf, \(f^* \phi \big|_{U_i} \) glue to a unique regular section

\[
f^* \phi \in \mathcal{O}_X(f^{-1}(V)).
\]
If f_i are morphisms, f_i continuous, so f is continuous

We show

$$\phi \in \mathcal{O}_Y(V) \implies f^*\phi \in \mathcal{O}_X(f^{-1}(V))$$

Know

$$f_i^*\phi \in \mathcal{O}_X(f_i^{-1}(V)) \implies f^*\phi|_{U_i} \in \mathcal{O}_X(f^{-1}(V) \cap U_i)$$

Since \mathcal{O}_X is sheaf, $f^*\phi|_{U_i}$ glue to a unique regular section

$$f^*\phi \in \mathcal{O}_X(f^{-1}(V)).$$
Lemma

Any morphism

\[f : \mathbb{P}^1 \to \mathbb{A}^1 \] is constant.

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[f \mid_{X_1} : X_1 \to \mathbb{A}^1 \text{ is morphism } f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1. \]

\[f \mid_{X_2} : X_2 \to \mathbb{A}^1 \text{ is morphism } f(y) = q(y) \text{ for } y \in X_2 = \mathbb{A}^1. \]

\[\text{over overlap } y = 1 \text{ and } p(x) = q(y) = q(1x). \]

\[p, q \text{ are constant } \Rightarrow f \text{ is constant.} \]
Lemma

Any morphism

\[f : \mathbb{P}^1 \to \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.
Lemma

Any morphism

\[f : \mathbb{P}^1 \to \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[f\mid_{X_1} : X_1 \to \mathbb{A}^1 \text{ is morphism} \]
Lemma
Any morphism
\[f : \mathbb{P}^1 \to \mathbb{A}^1 \] is constant.

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[f|_{X_1} : X_1 \to \mathbb{A}^1 \] is morphism
\[f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \]
Lemma

Any morphism

\[f : \mathbb{P}^1 \rightarrow \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

- \(f|_{X_1} : X_1 \rightarrow \mathbb{A}^1 \) is morphism
 \[f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \]

- \(f|_{X_2} : X_2 \rightarrow \mathbb{A}^1 \) is morphism

\[p, q \text{ are constant } \Rightarrow f \text{ is constant.} \]
Lemma

Any morphism

\[f : \mathbb{P}^1 \to \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[\begin{align*}
\text{\(f|_{X_1} : X_1 \to \mathbb{A}^1 \) is morphism} \\
& f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \\
\text{\(f|_{X_2} : X_2 \to \mathbb{A}^1 \) is morphism} \\
& f(y) = q(y) \text{ for } y \in X_2 = \mathbb{A}^1
\end{align*} \]
Lemma

Any morphism

\[f : \mathbb{P}^1 \rightarrow \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[f|_{X_1} : X_1 \rightarrow \mathbb{A}^1 \text{ is morphism} \]
\[f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \]

\[f|_{X_2} : X_2 \rightarrow \mathbb{A}^1 \text{ is morphism} \]
\[f(y) = q(y) \text{ for } y \in X_2 = \mathbb{A}^1 \]

\[\text{over overlap } y = \frac{1}{x} \text{ and} \]
\[p(x) = q(y) = q \left(\frac{1}{x} \right) \]
Lemma

Any morphism

\[f : \mathbb{P}^1 \to \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

- \(f|_{X_1} : X_1 \to \mathbb{A}^1 \) is morphism
 \[f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \]

- \(f|_{X_2} : X_2 \to \mathbb{A}^1 \) is morphism
 \[f(y) = q(y) \text{ for } y \in X_2 = \mathbb{A}^1 \]

- over overlap \(y = \frac{1}{x} \) and
 \[p(x) = q(y) = q \left(\frac{1}{x} \right) \]

- \(p, q \) are constant \(\implies f \) is constant.
Lemma
Any morphism
\[f : \mathbb{P}^1 \to \mathbb{A}^1 \text{ is constant.} \]

Proof: Let \(\mathbb{P}^1 = X_1 \cup X_2 \) be the standard charts.

\[f|_{X_1} : X_1 \to \mathbb{A}^1 \text{ is morphism} \]
\[f(x) = p(x) \text{ for } x \in X_1 = \mathbb{A}^1 \]

\[f|_{X_2} : X_2 \to \mathbb{A}^1 \text{ is morphism} \]
\[f(y) = q(y) \text{ for } y \in X_2 = \mathbb{A}^1 \]

\[\text{over overlap } y = \frac{1}{x} \text{ and} \]
\[p(x) = q(y) = q \left(\frac{1}{x} \right) \]

\[p, q \text{ are constant } \implies f \text{ is constant.} \]
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
- Want $f(X) \subset Y$.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
- Want $f(X) \subset Y$.
- Affine cover $X = \bigcup X_i$.

Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
- Want $f(X) \subset Y$.
- Affine cover $X = \bigcup X_i$.
- Restriction $A(Y) \to \mathcal{O}_X(X) \to \mathcal{O}_X(X_i) = A(X_i)$
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.

Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
- Want $f(X) \subset Y$.
- Affine cover $X = \bigcup X_i$.
- Restriction $A(Y) \to \mathcal{O}_X(X) \to \mathcal{O}_X(X_i) = A(X_i)$
- corresponds to $f|_{X_i} : X_i \to Y$.
Lemma
Let X be a prevariety, Y affine variety. Each $f : X \to Y$ induces

$$F : A(Y) \to \mathcal{O}_X(X)$$

and conversely, all k-algebra homomorphisms F arise this way.

Proof: Forward direction is the definition.
Conversely, let $F : A(Y) \to \mathcal{O}_X(X)$ and $Y \subset \mathbb{A}^m$.

- Let $F(y_i) = f_i$.
- Let $f = (f_1, \ldots, f_m) : X \to \mathbb{A}^m$.
- Want $f(X) \subset Y$.
- Affine cover $X = \bigcup X_i$.
- Restriction $A(Y) \to \mathcal{O}_X(X) \to \mathcal{O}_X(X_i) = A(X_i)$
- corresponds to $f|_{X_i} : X_i \to Y$.
- hence $f : X \to Y$.
Roadmap:
Additional constructions: products

Goal: if X, Y are prevarieties, we define $X \times Y$ as a prevariety
Additional constructions: products

Goal: if X, Y are prevarieties, we define $X \times Y$ as a prevariety

- we know the set $X \times Y$
Additional constructions: products

Goal: if X, Y are prevarieties, we define $X \times Y$ as a prevariety

- we know the set $X \times Y$
- we need a topology
Additional constructions: products

Goal: if X, Y are prevarieties, we define $X \times Y$ as a prevariety

- we know the set $X \times Y$
- we need a topology
- and a sheaf of functions
Goal: if \(X, Y \) are prevarieties, we define \(X \times Y \) as a prevariety

- we know the set \(X \times Y \)
- we need a topology
- and a sheaf of functions

WANT: \(\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2 \)
Additional constructions: products

Goal: if X, Y are prevarieties, we define $X \times Y$ as a prevariety

- we know the set $X \times Y$
- we need a topology
- and a sheaf of functions

WANT: $\mathbb{A}^1 \times \mathbb{A}^1 = \mathbb{A}^2$ so we can’t use product topology.
Universal property of products

- there are natural morphisms

\[p : X \times Y \to X, \quad q : X \times Y \to Y \]
Universal property of products

- there are natural morphisms

\[p : X \times Y \to X, \quad q : X \times Y \to Y \]

- given morphisms

\[f : Z \to X, \quad g : Z \to Y, \]
Universal property of products

- there are natural morphisms

 \[p : X \times Y \to X, \quad q : X \times Y \to Y \]

- given morphisms

 \[f : Z \to X, \quad g : Z \to Y, \]

 there exists a unique morphism

 \[h : Z \to X \times Y \]
Universal property of products

▶ there are natural morphisms

\[p : X \times Y \rightarrow X, \quad q : X \times Y \rightarrow Y \]

▶ given morphisms

\[f : Z \rightarrow X, \quad g : Z \rightarrow Y, \]

there exists a unique morphism

\[h : Z \rightarrow X \times Y \]

such that

\[h \circ p = f, \quad h \circ q = g. \]
Universal property of products

- there are natural morphisms
 \[p : X \times Y \rightarrow X, \quad q : X \times Y \rightarrow Y \]

- given morphisms
 \[f : Z \rightarrow X, \quad g : Z \rightarrow Y, \]

there exists a unique morphism

\[h : Z \rightarrow X \times Y \]

such that
\[h \circ p = f, \quad h \circ q = g. \]
Universal diagram

Note that $X \times Y$ is unique up to unique isomorphism, if it exists.
Note that $X \times Y$ is unique up to unique isomorphism, if it exists.
Universal diagram

Note that $X \times Y$ is unique up to unique isomorphism, if it exists.
Strategy

(i) X, Y affine
Strategy

(i) X, Y affine

(ii) restriction: if $U \subset Y$ open,

$$X \times Y \text{ exists } \implies X \times U \text{ exists}$$
Strategy

(i) X, Y affine

(ii) restriction: if $U \subset Y$ open,

$$X \times Y \text{ exists } \implies X \times U \text{ exists}$$

(iii) gluing: if Y is covered by opens Y_i, then

$$X \times Y_i \text{ exists } \implies X \times Y \text{ exists}$$
Strategy

(i) X, Y affine

(ii) restriction: if $U \subset Y$ open,

$$X \times Y \text{ exists } \implies X \times U \text{ exists}$$

(iii) gluing: if Y is covered by opens Y_i, then

$$X \times Y_i \text{ exists } \implies X \times Y \text{ exists}$$

(iv) X affine, Y arbitrary

(v) X, Y arbitrary

$(i) + (iii) \implies (iv)$,

$(iv) + (iii) \implies (v)$
Strategy

(i) X, Y affine

(ii) restriction: if $U \subset Y$ open,

$$X \times Y \text{ exists } \implies X \times U \text{ exists}$$

(iii) gluing: if Y is covered by opens Y_i, then

$$X \times Y_i \text{ exists } \implies X \times Y \text{ exists}$$

(iv) X affine, Y arbitrary

(v) X, Y arbitrary
Strategy

(i) X, Y affine

(ii) restriction: if $U \subset Y$ open,

$$X \times Y \text{ exists } \implies X \times U \text{ exists}$$

(iii) gluing: if Y is covered by opens Y_i, then

$$X \times Y_i \text{ exists } \implies X \times Y \text{ exists}$$

(iv) X affine, Y arbitrary

(v) X, Y arbitrary

$(i) + (iii) \implies (iv), (iv) + (iii) \implies (v)$