Math 203A

October 10, 2022
Last time

- We studied affine varieties and morphisms between them.
Last time

- We studied affine varieties and morphisms between them.

- Equivalence
 - affine varieties
Last time

- We studied affine varieties and morphisms between them.

- Equivalence
 - affine varieties
 - finitely generated \(k \)-algebras
Last time

- We studied **affine varieties** and **morphisms** between them.

- Equivalence
 - affine varieties
 - finitely generated k-algebras

- We wish to define **arbitrary varieties**.
Last time

- We studied affine varieties and morphisms between them.

- Equivalence
 - affine varieties
 - finitely generated k-algebras

- We wish to define arbitrary varieties.
Roadmap:

affine varieties \mapsto ringed spaces
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto prevarieties
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevarieties \mapsto varieties
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevarieties \mapsto varieties

$schemes$ (203B)
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevarieties \mapsto varieties

schemes (203B) \mapsto algebraic spaces (203 “D”) \mapsto stacks (203 “D”)
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevarieties \mapsto varieties

schemes (203B) \mapsto algebraic spaces (203 “D”) \mapsto stacks (203 “D”)
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space
- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) is irreducible as a topological space
- \(X\) is isomorphic to an affine variety
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space

- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) is irreducible as a topological space
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space

- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) is irreducible as a topological space
- \(X\) is isomorphic to an affine variety
Abstract affine varieties

> We need a coordinate-free definition of affine varieties

> This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space

- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) is irreducible as a topological space
- \(X\) is isomorphic to an affine variety
Abstract affine varieties

- We need a coordinate-free definition of affine varieties
- This will make it easier to glue affine varieties

Definition

An abstract affine variety \((X, \mathcal{O}_X)\) is a ringed space

- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) is irreducible as a topological space
- \(X\) is isomorphic to an affine variety
Basic open sets are affine

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract affine variety.
Basic open sets are affine

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The **basic open set**

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract **affine** variety.

Proof:

$$Z \subset \mathbb{A}^{n+1}, \quad Z = \{(x, t) : x \in X, tf(x) - 1 = 0\}.$$
Basic open sets are affine

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The *basic open set*

$$X_f = \{ x \in X : f(x) \neq 0 \}$$

is an abstract *affine* variety.

Proof:

$$Z \subset \mathbb{A}^{n+1}, \quad Z = \{ (x, t) : x \in X, tf(x) - 1 = 0 \}.$$

We claim

$$Z \sim X_f \implies X_f \text{ affine}. $$
Basic open sets are affine

Lemma
Let $X \subset \mathbb{A}^n$ be an affine variety. The basic open set

$$X_f = \{x \in X : f(x) \neq 0\}$$

is an abstract affine variety.

Proof:

$$Z \subset \mathbb{A}^{n+1}, \quad Z = \{(x, t) : x \in X, \quad tf(x) - 1 = 0\}.$$

We claim

$$Z \sim X_f \implies X_f \text{ affine}.$$

- $\pi : Z \to X_f, \quad (x, t) \mapsto x$
Basic open sets are affine

Lemma

Let \(X \subset \mathbb{A}^n \) be an affine variety. The *basic open set*

\[
X_f = \{ x \in X : f(x) \neq 0 \}
\]

is an abstract *affine* variety.

Proof:

\[
Z \subset \mathbb{A}^{n+1}, \quad Z = \{ (x, t) : x \in X, tf(x) - 1 = 0 \}.
\]

We claim

\[
Z \simeq X_f \implies X_f \text{ affine}.
\]

\[
\begin{align*}
\pi : Z &\to X_f, \quad (x, t) \mapsto x \\
\tau : X_f &\to Z, \quad x \mapsto \left(x, \frac{1}{f(x)} \right)
\end{align*}
\]
Basic open sets are affine

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The basic open set

$$X_f = \{ x \in X : f(x) \neq 0 \}$$

is an abstract affine variety.

Proof:

$$Z \subset \mathbb{A}^{n+1}, \quad Z = \{ (x,t) : x \in X, tf(x) - 1 = 0 \}.$$

We claim

$$Z \simeq X_f \implies X_f \text{ affine}.$$

$\triangleright \pi : Z \to X_f, \quad (x,t) \mapsto x$

$\triangleright \tau : X_f \to Z, \quad x \mapsto \left(x, \frac{1}{f(x)}\right)$
Example:

- $\mathbb{A}^1 \setminus \{0\}$ is isomorphic to $xy - 1 = 0$ in \mathbb{A}^2
Example:

- $\mathbb{A}^1 \setminus \{0\}$ is isomorphic to $xy - 1 = 0$ in \mathbb{A}^2

- $\mathbb{A}^2 \setminus \{(0, 0)\}$ is not affine (homework)
Example:

- $\mathbb{A}^1 \setminus \{0\}$ is isomorphic to $xy - 1 = 0$ in \mathbb{A}^2

- $\mathbb{A}^2 \setminus \{(0,0)\}$ is not affine (homework)
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevarieties \mapsto varieties
Roadmap:

affine varieties \mapsto ringed spaces \mapsto abstract affine varieties \mapsto

prevareties \mapsto varieties
Prevarieties

- We glue affine varieties to get new objects
Prevarieties

- We glue affine varieties to get new objects

Definition

A prevariety is a ringed space \((X, \mathcal{O}_X)\) such that
- \(X\) is irreducible
Prevarieties

- We glue affine varieties to get new objects

Definition

A prevariety is a ringed space (X, \mathcal{O}_X) such that

- X is irreducible
- \mathcal{O}_X is a sheaf of k-valued functions
Prevarieties

- We glue affine varieties to get new objects

Definition

A prevariety is a ringed space \((X, \mathcal{O}_X)\) such that

- \(X\) is irreducible
- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) admits a finite cover by open sets \(X = \bigcup U_i\)

such that \((U_i, \mathcal{O}_X|_{U_i})\) is an abstract affine variety.
Prevarieties

- We glue affine varieties to get new objects

Definition

A prevariety is a ringed space \((X, \mathcal{O}_X)\) such that

- \(X\) is irreducible
- \(\mathcal{O}_X\) is a sheaf of \(k\)-valued functions
- \(X\) admits a finite cover by open sets \(X = \bigcup U_i\)

such that \((U_i, \mathcal{O}_X|_{U_i})\) is an abstract affine variety.
Remarks

- An open set with \((U, \mathcal{O}_X|_U)\) abstract affine variety is called affine open.
Remarks

- An open set with \((U, \mathcal{O}_X|_U)\) abstract affine variety is called affine open.

- This is similar to the definition of (complex) manifolds via charts

\[
\phi_i : U_i \to V_i, \quad V_i \subset \mathbb{C}^n.
\]
Remarks

- An open set with \((U, \mathcal{O}_X|_U)\) abstract affine variety is called affine open.

- This is similar to the definition of (complex) manifolds via charts

\[\phi_i : U_i \to V_i, \quad V_i \subset \mathbb{C}^n. \]

- For manifolds, charts are related by (biholomorphic) transition maps

\[g_{ij} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j). \]
Remarks

- An open set with \((U, \mathcal{O}_X|_U)\) abstract affine variety is called affine open.

- This is similar to the definition of (complex) manifolds via charts

\[\phi_i : U_i \to V_i, \quad V_i \subset \mathbb{C}^n. \]

- For manifolds, charts are related by (biholomorphic) transition maps

\[g_{ij} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j). \]

- In algebraic geometry, this structure is captured by the sheaf \(\mathcal{O}_X\).
Remarks

- An open set with \((U, \mathcal{O}_X|_U)\) abstract affine variety is called affine open.

- This is similar to the definition of (complex) manifolds via charts

 \[\phi_i : U_i \to V_i, \quad V_i \subset \mathbb{C}^n. \]

- For manifolds, charts are related by (biholomorphic) transition maps

 \[g_{ij} : \phi_i(U_i \cap U_j) \to \phi_j(U_i \cap U_j). \]

- In algebraic geometry, this structure is captured by the sheaf \(\mathcal{O}_X\).

In our case, \(V_i\) are affine varieties, and the transition maps are isomorphisms of ringed spaces a.k.a. isomorphisms.
Construction of prevarieties – Gluing

▶ How do we construct prevarieties?
Construction of prevarieties – Gluing

- How do we construct prevarieties?

We form **prevarieties** by **gluing** two or several affine varieties.
Construction of prevarieties – Gluing

▶ How do we construct prevarieties?

We form prevarieties by gluing two or several affine varieties.

▶ How about gluing prevarietites?
Gluing data

- Let X_1, X_2 be prevarieties,
Gluing data

- Let X_1, X_2 be prevarieties,

- $U_1 \subset X_1$ and $U_2 \subset X_2$ be non-empty open subsets,
Gluing data

- Let X_1, X_2 be prevarieties,
- $U_1 \subset X_1$ and $U_2 \subset X_2$ be non-empty open subsets,
- $f : (U_1, \mathcal{O}_{X_1}|_{U_1}) \rightarrow (U_2, \mathcal{O}_{X_2}|_{U_2})$ an isomorphism.
Gluing data

- Let X_1, X_2 be prevarieties,

- $U_1 \subset X_1$ and $U_2 \subset X_2$ be non-empty open subsets,

- $f : (U_1, \mathcal{O}_{X_1}|_{U_1}) \to (U_2, \mathcal{O}_{X_2}|_{U_2})$ an isomorphism.
Construct the prevariety X:

- **set:** X is the disjoint union $X_1 \cup X_2$ modulo the equivalence $p \sim f(p)$, $p \in U_1$.

- **topology:** X carries the quotient topology induced by \sim.

- **sheaf** \mathcal{O}_X: $\mathcal{O}_X(U) = \{(g_1, g_2), g_1 \in \mathcal{O}_X(U \cap X_1), g_2 \in \mathcal{O}_X(U \cap X_2) | g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}$.

- **Check:** \mathcal{O}_X is a sheaf, X is irreducible, every point of X has an affine neighborhood.
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

 $$p \sim f(p), \ p \in U_1.$$
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

 $$p \sim f(p), \quad p \in U_1.$$

- **topology**: X carries the quotient topology induced by \sim.

 $\check{\mathcal{O}}_X \colon \mathcal{O}_X(U) = \{(g_1, g_2) \mid g_1 \in \mathcal{O}_{X_1}(U \cap X_1), g_2 \in \mathcal{O}_{X_2}(U \cap X_2), g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}$.

 Check:

 - \mathcal{O}_X is a sheaf,
 - X is irreducible,
 - every point of X has an affine neighborhood.
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

 $$p \sim f(p), \quad p \in U_1.$$

- **topology**: X carries the quotient topology induced by \sim.

- **sheaf \mathcal{O}_X**:

 $$\mathcal{O}_X(U) = \{(g_1, g_2), g_1 \in \mathcal{O}_{X_1}(U \cap X_1), g_2 \in \mathcal{O}_{X_2}(U \cap X_2) \mid g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}.$$

Check:

- \mathcal{O}_X is a sheaf,
- X is irreducible,
- every point of X has an affine neighborhood.
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

 $$p \sim f(p), \quad p \in U_1.$$

- **topology**: X carries the quotient topology induced by \sim.

- **sheaf** \mathcal{O}_X:

 $$\mathcal{O}_X(U) = \{(g_1, g_2), \quad g_1 \in \mathcal{O}_{X_1}(U \cap X_1), \quad g_2 \in \mathcal{O}_{X_2}(U \cap X_2) \mid g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}.$$

Check:

- \mathcal{O}_X is a sheaf,
Construct the prevariety X:

- **set:** X is the disjoint union X_1, X_2 modulo the equivalence
 \[p \sim f(p), \quad p \in U_1. \]

- **topology:** X carries the quotient topology induced by \sim.

- **sheaf \mathcal{O}_X:**
 \[
 \mathcal{O}_X(U) = \{(g_1, g_2), g_1 \in \mathcal{O}_{X_1}(U \cap X_1), g_2 \in \mathcal{O}_{X_2}(U \cap X_2) \mid g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}.
 \]

Check:

- \mathcal{O}_X is a sheaf,

- X is irreducible,
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

$$p \sim f(p), \ p \in U_1.$$

- **topology**: X carries the quotient topology induced by \sim.

- **sheaf \mathcal{O}_X**:

$$\mathcal{O}_X(U) = \{(g_1, g_2), g_1 \in \mathcal{O}_{X_1}(U \cap X_1), g_2 \in \mathcal{O}_{X_2}(U \cap X_2)$$

$$g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}.$$

Check:

- \mathcal{O}_X is a sheaf,

- X is irreducible,

- every point of X has an affine neighborhood.
Construct the prevariety X:

- **set**: X is the disjoint union X_1, X_2 modulo the equivalence

 $$p \sim f(p), \ p \in U_1.$$

- **topology**: X carries the quotient topology induced by \sim.

- **sheaf \mathcal{O}_X**:

 $$\mathcal{O}_X(U) = \{(g_1, g_2), g_1 \in \mathcal{O}_{X_1}(U \cap X_1), g_2 \in \mathcal{O}_{X_2}(U \cap X_2)$$

 $$g_1|_{U \cap U_1} = g_2|_{U \cap U_2}\}.$$

Check:

- \mathcal{O}_X is a sheaf,

- X is irreducible,

- every point of X has an **affine** neighborhood.
More gluing

Lemma

Let

- \(X_1, \ldots, X_r \) be *prevarieties*,

There is a prevariety \(X \), obtained by gluing the \(X_i \) along the morphisms \(f_{ij} \).
More gluing

Lemma

Let

- X_1, \ldots, X_r be prevarieties,
- $U_{ij} \subset X_i$ non-empty open subsets
More gluing

Lemma

Let

- X_1, \ldots, X_r be *prevarieties*,
- $U_{ij} \subset X_i$ non-empty *open subsets*
- *isomorphisms*

\[f_{ij} : U_{ij} \rightarrow U_{ji} \]
More gluing

Lemma

Let

- X_1, \ldots, X_r be prevarieties,
- $U_{ij} \subset X_i$ non-empty open subsets
- isomorphisms

\[
f_{ij} : U_{ij} \to U_{ji}
\]

such that

- $f_{ij} = f_{ji}^{-1}$
More gluing

Lemma

Let

- X_1, \ldots, X_r be *prevarieties*,
- $U_{ij} \subset X_i$ non-empty *open* subsets
- *isomorphisms*
 \[f_{ij} : U_{ij} \to U_{ji} \]

such that

- $f_{ij} = f_{ji}^{-1}$
- $f_{ij}^{-1}(U_{jk}) \subset U_{ik}$
More gluing

Lemma

Let

- X_1, \ldots, X_r be prevarieties,
- $U_{ij} \subset X_i$ non-empty open subsets
- isomorphisms $f_{ij} : U_{ij} \to U_{ji}$ such that
- $f_{ij} = f_{ji}^{-1}$
- $f_{ij}^{-1}(U_{jk}) \subset U_{ik}$
- $f_{ik} = f_{jk} \circ f_{ij}$ on $f^{-1}(U_{jk})$.

There is a prevariety X, obtained by gluing the X_i along the morphisms f_{ij}.
More gluing

Lemma

Let

- X_1, \ldots, X_r be prevarieties,
- $U_{ij} \subset X_i$ non-empty open subsets
- isomorphisms $f_{ij} : U_{ij} \to U_{ji}$

such that

- $f_{ij} = f_{ji}^{-1}$
- $f_{ij}^{-1}(U_{jk}) \subset U_{ik}$
- $f_{ik} = f_{jk} \circ f_{ij}$ on $f^{-1}(U_{jk})$.

There is a prevariety X, obtained by gluing the X_i along the morphisms f_{ij}.
Lemma

Let
- X_1, \ldots, X_r be prevarieties,
- $U_{ij} \subset X_i$ non-empty open subsets
- isomorphisms $f_{ij} : U_{ij} \rightarrow U_{ji}$ such that

\[
\begin{align*}
f_{ij} &= f_{ji}^{-1} \\
f_{ij}^{-1}(U_{jk}) &\subset U_{ik} \\
f_{ik} &= f_{jk} \circ f_{ij} \text{ on } f^{-1}(U_{jk}).
\end{align*}
\]

There is a prevariety X, obtained by gluing the X_i along the morphisms f_{ij}.
More gluing
Examples

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]
Examples

$X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\}$

$f : U_1 \to U_2, \quad x \mapsto 1/x.$
Examples

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \quad x \mapsto 1/x. \]

Projective line

\[X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} \]
Examples

\[X_1 = X_2 = \mathbb{A}^1, \ U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \ x \mapsto 1/x. \]

Projective line

\[X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} \]

where

\[\infty = \frac{1}{0}. \]
Examples

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \quad x \mapsto 1/x. \]

Projective line

\[X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} \]

where

\[\infty = \frac{1}{0}. \]

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \quad x \mapsto x. \]
Examples

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \quad x \mapsto 1/x. \]

Projective line

\[X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} \]

where

\[\infty = \frac{1}{0}. \]

Affine line with double origin.

\[X_1 = X_2 = \mathbb{A}^1, \quad U_1 = U_2 = \mathbb{A}^1 \setminus \{0\} \]

\[f : U_1 \to U_2, \quad x \mapsto x. \]
Examples

$X_1 = X_2 = \mathbb{A}^1$, $U_1 = U_2 = \mathbb{A}^1 \setminus \{0\}$

\[f : U_1 \to U_2, \; x \mapsto 1/x. \]

Projective line

\[X = \mathbb{P}^1 = \mathbb{A}^1 \cup \{\infty\} \]

where

\[\infty = \frac{1}{0}. \]

Affine line with double origin.

$X_1 = X_2 = \mathbb{A}^1$, $U_1 = U_2 = \mathbb{A}^1 \setminus \{0\}$

\[f : U_1 \to U_2, \; x \mapsto x. \]
How do we visualize the affine line with double origin?
How do we visualize the affine line with double origin?
How do we visualize the affine line with double origin?
if we have a sequence of points tending to the zero, there could be two possible limits, the two zero points.
if we have a sequence of points tending to the zero, there could be two possible limits, the two zero points.

we will exclude this later!
if we have a sequence of points tending to the zero, there could be two possible limits, the two zero points.

we will exclude this later!
X is a prevariety.
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by **affine opens**
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by **affine** opens
- so U can be covered by **quasi-affine** opens
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be *covered* by affine opens
- so U can be *covered* by quasi-affine opens
- each quasiaffine can be *covered* by basic open sets
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by **affine** opens

- so U can be covered by **quasi-affine** opens

- each quasi-affine can be covered by **basic open sets** $=$**affine**.
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by affine opens
- so U can be covered by quasi-affine opens
- each quasi affine can be covered by basic open sets $=$ affine.
- thus U can be covered by affine opens too.
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by affine opens
- so U can be covered by quasi-affine opens
- each quasi-affine can be covered by basic open sets = affine.
- thus U can be covered by affine opens too.

Affine and quasi-affine varieties are prevarieties.
X is a prevariety.

Claim: all $U \subset X$ open $\implies (U, O_X|_U)$ is prevariety.

- X can be covered by affine opens
- so U can be covered by quasi-affine opens
- each quasi-affine can be covered by basic open sets = affine.
- thus U can be covered by affine opens too.

Affine and quasi-affine varieties are prevarieties.