Math 203A

October 7, 2022
Recap: We defined two algebraic invariants of affine varieties
Recap: We defined two algebraic invariants of affine varieties

- coordinate ring \(A(X) \)
Recap: We defined two algebraic \textit{invariants} of affine varieties

- coordinate ring $A(X)$
- fraction field $K(X)$
Recap: We defined two algebraic invariants of affine varieties

- coordinate ring $A(X)$
- fraction field $K(X)$

We have seen that

- $A(X)$ classifies affine varieties up to isomorphism
Recap: We defined two algebraic invariants of affine varieties

- coordinate ring $A(X)$
- fraction field $K(X)$

We have seen that

- $A(X)$ classifies affine varieties up to isomorphism
- What does $K(X)$ classify?
Recap: We defined two algebraic invariants of affine varieties

- coordinate ring $A(X)$
- fraction field $K(X)$

We have seen that

- $A(X)$ classifies affine varieties up to isomorphism
- What does $K(X)$ classify?
Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function

Examples

1. For $X = \{y^2 = x^3\}$, take $\phi = \frac{y}{x} \Rightarrow \text{Dom} \phi = X \setminus \{x = y = 0\}$.

2. For $X = \{xw = yz\}$, take $\phi = \frac{x}{y} \Rightarrow \text{Dom} \phi = X \setminus \{y = w = 0\}$.
Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function

$$\phi : X \rightarrow k.$$
Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function

$$\phi : X \rightarrow k.$$

- $\text{Dom } \phi$ is the largest set where ϕ is regular.
Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function
 \[\phi : X \rightarrow k. \]

- $\text{Dom} \ \phi$ is the largest set where ϕ is regular.
- $\text{Dom} \ \phi$ is open nonempty.

Examples

1. For $X = \{y^2 = x^3\}$, take
 \[\phi = y/x \quad \Rightarrow \]

Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function

\[\phi : X \rightarrow k. \]

- $\text{Dom } \phi$ is the largest set where ϕ is regular.
- $\text{Dom } \phi$ is open nonempty.

Examples

1. For $X = \{ y^2 = x^3 \}$, take

\[\phi = y/x \implies \text{Dom } \phi = X \setminus \{ x = y = 0 \}. \]
Rational functions on affine varieties

- $\phi \in K(X)$ yields a partially defined function $\phi : X \to k$.

- $\text{Dom } \phi$ is the largest set where ϕ is regular.

- $\text{Dom } \phi$ is open nonempty.

Examples

1. For $X = \{ y^2 = x^3 \}$, take $\phi = \frac{y}{x} \implies \text{Dom } \phi = X \setminus \{ x = y = 0 \}$.

2. For $X = \{ xw = yz \}$, take $\phi = \frac{x}{y} \implies$
Rational functions on affine varieties

- \(\phi \in K(X) \) yields a partially defined function

\[\phi : X \rightarrow k. \]

- \(\text{Dom } \phi \) is the largest set where \(\phi \) is regular.
- \(\text{Dom } \phi \) is open nonempty.

Examples

1. For \(X = \{y^2 = x^3\} \), take

\[\phi = y/x \implies \text{Dom } \phi = X \setminus \{x = y = 0\}. \]

2. For \(X = \{xw = yz\} \), take

\[\phi = x/y \implies \text{Dom } \phi = X \setminus \{y = w = 0\} \]
Rational functions on affine varieties

- \(\phi \in K(X) \) yields a partially defined function

\[\phi : X \rightarrow k. \]

- \(\text{Dom } \phi \) is the largest set where \(\phi \) is regular.
- \(\text{Dom } \phi \) is open nonempty.

Examples

1. For \(X = \{ y^2 = x^3 \} \), take

\[\phi = y/x \quad \text{implies} \quad \text{Dom } \phi = X \setminus \{ x = y = 0 \}. \]

2. For \(X = \{ xw = yz \} \), take

\[\phi = x/y \quad \text{implies} \quad \text{Dom } \phi = X \setminus \{ y = w = 0 \}. \]
Alternatively:

- A rational function

 \[\phi : X \to k \]

 is an \textit{equivalence class} of pairs
Alternatively:

- A rational function

\[\phi : X \longrightarrow k \]

is an equivalence class of pairs

- \((U, \phi), \ U \subset X \) open, \(\phi : U \rightarrow k \) regular

This definition recovers the stalk \(O_{X, X} \) from HWK2. Thus \(O_{X, X} = A(X)(0) = K(X) \) is the old field of rational functions.

Bonus: \(K(X) \) now makes sense even if \(X \) is quasiaffine.
Alternatively:

A rational function

\[\phi : X \rightarrow k \]

is an equivalence class of pairs

\[(U, \phi), U \subset X \text{ open, } \phi : U \rightarrow k \text{ regular} \]

\[(U, \phi) \sim (V, \psi) \iff \phi\big|_W = \psi\big|_W, \quad W \subset U \cap U' \text{ open.} \]
Alternatively:

- A rational function
 \[\phi : X \longrightarrow k \]
 is an equivalence class of pairs

 - \((U, \phi), U \subset X \text{ open}, \phi : U \to k \text{ regular}\)

 - \((U, \phi) \sim (V, \psi) \iff \phi|_W = \psi|_W, \ W \subset U \cap U' \text{ open.}\)

- This definition recovers the stalk \(O_{X,X}\) from HWK2. Thus

 \[O_{X,X} = A(X)_{(0)} = K(X) \]

 is the old field of rational functions
Alternatively:

- A rational function
 \[\phi : X \rightarrow k \]
 is an equivalence class of pairs
 - \((U, \phi), U \subset X \text{ open}, \phi : U \rightarrow k \text{ regular}\)
 - \((U, \phi) \sim (V, \psi) \iff \phi|_W = \psi|_W, \quad W \subset U \cap U' \text{ open.}\)

- This definition recovers the stalk \(\mathcal{O}_{X,X}\) from HWK2. Thus
 \[\mathcal{O}_{X,X} = A(X)(0) = K(X) \]
 is the old field of rational functions

- **Bonus**: \(K(X)\) now makes sense even if \(X\) is quasiaffine.
Rational maps of affine varieties

Definition

- A rational map \(f : X \to \mathbb{A}^m \) is a partially defined map

\[
f = (f_1, \ldots, f_m) \quad \text{where} \quad f_i \in K(X).
\]
Rational maps of affine varieties

Definition

▶ A rational map \(f : X \to \mathbb{A}^m \) is a partially defined map

\[
f = (f_1, \ldots, f_m) \text{ where } f_i \in K(X).
\]

▶ \(\text{Dom } f = \bigcap_i \text{Dom}(f_i) \neq \emptyset. \)
Rational maps of affine varieties

Definition

- A rational map $f : X \rightarrow \mathbb{A}^m$ is a partially defined map
 \[f = (f_1, \ldots, f_m) \text{ where } f_i \in K(X). \]

- $\text{Dom } f = \bigcap_i \text{Dom}(f_i) \neq \emptyset$.

- A rational map $f : X \rightarrow Y$ is a rational map
 \[f : X \rightarrow \mathbb{A}^m, \text{ and } f(\text{Dom } f) \subseteq Y. \]
Rational maps of affine varieties

Definition

- A rational map $f : X \dashrightarrow \mathbb{A}^m$ is a partially defined map

 $$f = (f_1, \ldots, f_m) \text{ where } f_i \in K(X).$$

- $\text{Dom } f = \bigcap_i \text{Dom}(f_i) \neq \emptyset$.

- A rational map $f : X \dashrightarrow Y$ is a rational map

 $$f : X \dashrightarrow \mathbb{A}^m, \text{ and } f(\text{Dom } f) \subseteq Y.$$

- We can also think in terms of equivalence classes of pairs

 $$(f, U), \quad f : U \rightarrow Y \text{ morphism, } \quad U \subset X \text{ open.}$$
Remark
BEWARE!!!! Composition of rational maps requires care.
Remark
BEWARE!!!! Composition of rational maps requires care. If

\[f : X \to Y, \quad g : Y \to Z \]

then \(g \circ f \) may be undefined
Remark
BEWARE!!!! Composition of rational maps requires care.
If
\[f : X \to Y, \ g : Y \to Z \]
then \(g \circ f \) may be undefined because
\[\text{Im(Dom } f \text{)} \cap \text{Dom } g \text{ may be } \emptyset. \]
Remark
BEWARE!!!! Composition of rational maps requires care. If

\[f : X \to Y, \ g : Y \to Z \]

then \(g \circ f \) may be undefined because

\[\text{Im}(\text{Dom } f) \cap \text{Dom } g \text{ may be } \emptyset. \]

Definition

\(f : X \to Y \) is dominant if \(\text{Im}(\text{Dom } f) \) is dense in \(Y \).
Remark
BEWARE!!!! Composition of rational maps requires care. If
\[f : X \to Y, \; g : Y \to Z \]
then \(g \circ f \) may be undefined because
\[\text{Im}(\text{Dom } f) \cap \text{Dom } g \text{ may be } \emptyset. \]

Definition

\(f : X \to Y \) is dominant if \(\text{Im}(\text{Dom } f) \) is dense in \(Y \).

Remark

- \(f : X \to Y, \; g : Y \to Z, \)
- \(f \) is dominant
Remark
BEWARE!!!! Composition of rational maps requires care.
If
\[f : X \to Y, \quad g : Y \to Z \]
then \(g \circ f \) may be undefined because
\[\text{Im}(\text{Dom} \ f) \cap \text{Dom} \ g \text{ may be } \emptyset. \]

Definition

\(f : X \to Y \) is dominant if \(\text{Im}(\text{Dom} \ f) \) is dense in \(Y \).

Remark

\(f : X \to Y, \quad g : Y \to Z, \)
\(f \) is dominant

then \(g \circ f : X \to Z \).
Remark
BEWARE!!!! Composition of rational maps requires care.
If
\[f : X \rightarrow Y, \ g : Y \rightarrow Z \]
then \(g \circ f \) may be undefined because
\[\text{Im(Dom } f \text{)} \cap \text{Dom } g \text{ may be } \emptyset. \]

Definition
\[f : X \rightarrow Y \text{ is dominant if } \text{Im(Dom } f \text{)} \text{ is dense in } Y. \]

Remark
\[\bullet \ f : X \rightarrow Y, \ g : Y \rightarrow Z, \]
\[\bullet \ f \text{ is dominant} \]
then \(g \circ f : X \rightarrow Z \).
Lemma

If $f : X \to Y$ is a dominant map, then

$$f^* : K(Y) \to K(X), \quad \phi \mapsto f^* \phi = \phi \circ f$$

is k-algebra homomorphism.
Lemma

If $f : X \rightarrow Y$ is a dominant map, then

$$f^* : K(Y) \rightarrow K(X), \quad \phi \mapsto f^* \phi = \phi \circ f$$

is k-algebra homomorphism. All homomorphisms arise this way.
Lemma

If \(f : X \twoheadrightarrow Y \) is a dominant map, then

\[f^* : K(Y) \to K(X), \quad \phi \mapsto f^*\phi = \phi \circ f \]

is \(k \)-algebra homomorphism. All homomorphisms arise this way.

Proof: If \(F : K(Y) \to K(X) \) let \(f_i = F(y_i) \). Let \(f = (f_1, \ldots, f_m) \).
Lemma

If \(f : X \rightarrow Y \) is a dominant map, then

\[
f^* : K(Y) \rightarrow K(X), \quad \phi \mapsto f^*\phi = \phi \circ f
\]

is \(k \)-algebra homomorphism. All homomorphisms arise this way.

Proof: If \(F : K(Y) \rightarrow K(X) \) let \(f_i = F(y_i) \). Let \(f = (f_1, \ldots, f_m) \).

- As in the proof for coordinate rings, show \(f : X \rightarrow Y \).
Lemma

If \(f : X \rightarrow Y \) is a dominant map, then

\[
f^* : K(Y) \rightarrow K(X), \quad \phi \mapsto f^* \phi = \phi \circ f
\]

is \(k \)-algebra homomorphism. All homomorphisms arise this way.

Proof: If \(F : K(Y) \rightarrow K(X) \) let \(f_i = F(y_i) \). Let \(f = (f_1, \ldots, f_m) \).

- As in the proof for coordinate rings, show \(f : X \rightarrow Y \).
- \(f \) is dominant since else \(f(\text{Dom } f) \subset W \) with \(W \subset Y \) closed.
Lemma

If $f : X \to Y$ is a dominant map, then

$$f^* : K(Y) \to K(X), \quad \phi \mapsto f^*\phi = \phi \circ f$$

is k-algebra homomorphism. All homomorphisms arise this way.

Proof: If $F : K(Y) \to K(X)$ let $f_i = F(y_i)$. Let $f = (f_1, \ldots, f_m)$.

- As in the proof for coordinate rings, show $f : X \to Y$.
- f is dominant since else $f(\text{Dom } f) \subset W$ with $W \subset Y$ closed.
- Let h be an equation for W. Then h is invertible in $K(Y)$ but
 $F(h) = f^*h = 0$

 not invertible. Contradiction.
Definition

A birational isomorphism

\[f : X \to Y \]

is a dominant map with a dominant rational inverse \(g : Y \to X \)

\[f \circ g = 1, \quad g \circ f = 1 \]

as rational maps.
Definition

A birational isomorphism

\[f : X \rightarrow Y \]

is a dominant map with a dominant rational inverse \(g : Y \rightarrow X \)

\[f \circ g = 1, g \circ f = 1 \]

as rational maps.
Corollary

X, Y are \textit{birational} iff $K(X) \cong K(Y)$ as k-algebras.
Corollary

\(X, Y \) are \textit{birational} iff \(K(X) \cong K(Y) \) as \(k \)-algebras.

Remark

Note that

\[X \cong Y \iff A(X) \cong A(Y). \]
Corollary

X, Y are \textit{birational} iff $K(X) \cong K(Y)$ as k-algebras.

Remark

Note that

$$X \cong Y \iff A(X) \cong A(Y).$$

Remark

\begin{itemize}
 \item X and Y are \textit{birational} iff there exist open
 $$U \subseteq X, \ V \subseteq Y, \ U \cong V.$$
\end{itemize}
Corollary

X, Y are birational iff $K(X) \cong K(Y)$ as k-algebras.

Remark

Note that

$$X \cong Y \iff A(X) \cong A(Y).$$

Remark

- X and Y are birational iff there exist open

 $$U \subseteq X, V \subseteq Y, \quad U \cong V.$$

- X is rational if X is birational to \mathbb{A}^n
Corollary

\(X, Y \) are birational iff \(K(X) \cong K(Y) \) as \(k \)-algebras.

Remark

Note that

\[X \cong Y \iff A(X) \cong A(Y). \]

Remark

- \(X \) and \(Y \) are birational iff there exist open

 \[U \subseteq X, V \subseteq Y, \quad U \cong V. \]

- \(X \) is rational if \(X \) is birational to \(\mathbb{A}^n \)

 \[K(X) \cong k(t_1, \ldots, t_n). \]
Corollary

X, Y are birational iff $K(X) \simeq K(Y)$ as k-algebras.

Remark

Note that

$$X \cong Y \iff A(X) \cong A(Y).$$

Remark

- X and Y are birational iff there exist open

 $$U \subseteq X, \ V \subseteq Y, \ U \cong V.$$

- X is rational if X is birational to \mathbb{A}^n

 $$K(X) \cong k(t_1, \ldots, t_n).$$

Thus “most” of X can be “parametrized” by rational functions.
Proof of the remark

- **reverse direction:**

\[f : U \to V, \quad g : V \to U \]

give birational maps

\[f : X \dashrightarrow Y, \quad g : Y \dashrightarrow X. \]
Proof of the remark

▶ reverse direction:

\[f : U \to V, \ g : V \to U \]

give birational maps

\[f : X \dashrightarrow Y, \ g : Y \dashrightarrow X. \]

▶ forward direction: Let

\[f : U \to Y, \ \ g : V \to X \quad U \subset X \quad V \subset Y \text{ nonempty open.} \]
Proof of the remark

- **reverse direction:**

 \[f : U \to V, \ g : V \to U \]

 give birational maps

 \[f : X -> Y, \ g : Y -> X. \]

- **forward direction:** Let

 \[f : U \to Y, \quad g : V \to X \quad U \subset X \quad V \subset Y \text{ nonempty open.} \]

- **Know:** \(f \circ g = 1 \) on some open set \(W \)
Proof of the remark

- reverse direction:
 \[f : U \rightarrow V, g : V \rightarrow U \]
 give birational maps
 \[f : X \dashrightarrow Y, g : Y \dashrightarrow X. \]

- forward direction: Let
 \[f : U \rightarrow Y, \quad g : V \rightarrow X \quad U \subset X, \quad V \subset Y \text{ nonempty open.} \]

- Know: \(f \circ g = 1 \) on some open set \(W \)
\[g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y \] is the inclusion on \(g^{-1}(U) \cap W \) open,

Also \(f(\{ V \}) \subset g^{-1}(U) \subset V = \Rightarrow g(\{ g^{-1}(U) \}) \subset f^{-1}(\{ V \}) \).

Define the open sets \(U' = f^{-1}(\{ V \}) \), \(V' = g^{-1}(\{ U \}) \).

\(f: U' \to V' \), \(g: V' \to U' \) are well-defined and inverses.

Thus \(U' \cong V' \).
$g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y$ is the inclusion on $g^{-1}(U) \cap W$ open, so everywhere on $g^{-1}(U)$ by density.
\(g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y \) is the inclusion on \(g^{-1}(U) \cap W \) open, so everywhere on \(g^{-1}(U) \) by density.

Thus

\[
f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V).
\]
$g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y$ is the inclusion on $g^{-1}(U) \cap W$ open, so everywhere on $g^{-1}(U)$ by density.

Thus

$$f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V).$$

Also $f(f^{-1}(V)) \subset g^{-1}(U)$.

\[g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y \] is the inclusion on \(g^{-1}(U) \cap W \) open, so everywhere on \(g^{-1}(U) \) by density.

Thus

\[
f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V).
\]

Also \(f(f^{-1}(V)) \subset g^{-1}(U) \).

Define the open sets

\[
U' = f^{-1}(V), \quad V' = g^{-1}(U).
\]
\[g^{-1}(U) \xrightarrow[]{g} U \xrightarrow[]{f} Y \text{ is the inclusion on } g^{-1}(U) \cap W \text{ open, so everywhere on } g^{-1}(U) \text{ by density.} \]

\[f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V). \]

Also \(f(f^{-1}(V)) \subset g^{-1}(U) \).

Define the open sets
\[U' = f^{-1}(V), \quad V' = g^{-1}(U). \]

\(f : U' \to V', g : V' \to U' \) are well-defined and inverses.
\[g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y \] is the inclusion on \(g^{-1}(U) \cap W \) open, so everywhere on \(g^{-1}(U) \) by density.

Thus

\[f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V). \]

Also \(f(f^{-1}(V)) \subset g^{-1}(U). \)

Define the open sets

\[U' = f^{-1}(V), \quad V' = g^{-1}(U). \]

\[f : U' \rightarrow V', g : V' \rightarrow U' \] are well-defined and inverses.

Thus \(U' \simeq V' \).
\(g^{-1}(U) \xrightarrow{g} U \xrightarrow{f} Y \) is the inclusion on \(g^{-1}(U) \cap W \) open, so everywhere on \(g^{-1}(U) \) by density.

Thus

\[
f(g(g^{-1}(U))) \subset g^{-1}(U) \subset V \implies g(g^{-1}(U)) \subset f^{-1}(V).
\]

Also \(f(f^{-1}(V)) \subset g^{-1}(U) \).

Define the open sets

\[
U' = f^{-1}(V), \quad V' = g^{-1}(U).
\]

\(f : U' \to V', g : V' \to U' \) are well-defined and inverses.

Thus \(U' \cong V' \).
Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

$y - x^2 = 0$
Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

$\quad y - x^2 = 0$
(HWK3) All conics in \mathbb{A}^2 are isomorphic to

- $y - x^2 = 0$
- $xy - 1 = 0$
Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

- $y - x^2 = 0$
- $xy - 1 = 0$

All plane conics are isomorphic to \mathbb{A}^1 or $\mathbb{A}^1 \setminus \{0\}$.

Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

- $y - x^2 = 0$
- $xy - 1 = 0$

All plane conics are isomorphic to \mathbb{A}^1 or $\mathbb{A}^1 \setminus \{0\}$.

Rational!
Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

- $y - x^2 = 0$
- $xy - 1 = 0$

All plane conics are isomorphic to \mathbb{A}^1 or $\mathbb{A}^1 \setminus \{0\}$.

Rational!

Plane cubics

$$X = \{y^2 = f(x)\}$$
Plane conics

(HWK3) All conics in \mathbb{A}^2 are isomorphic to

- $y - x^2 = 0$
- $xy - 1 = 0$

All plane conics are isomorphic to \mathbb{A}^1 or $\mathbb{A}^1 \setminus \{0\}$.

Rational!

Plane cubics

$$X = \{ y^2 = f(x) \}$$

- distinct roots
- double root
- triple root
Plane conics

(HWK3) All **conics** in \mathbb{A}^2 are **isomorphic** to

- $y - x^2 = 0$
- $xy - 1 = 0$

All plane conics are isomorphic to \mathbb{A}^1 or $\mathbb{A}^1 \setminus \{0\}$.

Rational!

Plane cubics

$$X = \{ y^2 = f(x) \}$$

- distinct roots
- double root
- triple root
Plane cubics

- **Cusp.** Let $X = \{y^2 = x^3\}$.
Plane cubics

- **Cusp.** Let $X = \{y^2 = x^3\}$. Define

$$f : \mathbb{A}^1 \rightarrow X, \quad t \mapsto (t^2, t^3).$$
Cusp. Let \(X = \{ y^2 = x^3 \} \). Define

\[
f: \mathbb{A}^1 \rightarrow X, \quad t \mapsto (t^2, t^3).
\]

Then \(f \) is a birational map with inverse

\[
g: X \rightarrow \mathbb{A}^1, \quad (x, y) \mapsto y/x.
\]
Plane cubics

- **Cusp.** Let \(X = \{ y^2 = x^3 \} \). Define

 \[
 f : \mathbb{A}^1 \to X, \quad t \mapsto (t^2, t^3).
 \]

 Then \(f \) is a *birational* map with inverse

 \[
 g : X \dashrightarrow \mathbb{A}^1, \quad (x, y) \mapsto y/x.
 \]

 \(X \) is *rational*.
Plane cubics

- **Cusp.** Let \(X = \{ y^2 = x^3 \} \). Define

\[
 f : \mathbb{A}^1 \to X, \quad t \mapsto (t^2, t^3).
\]

Then \(f \) is a birational map with inverse

\[
 g : X \to \mathbb{A}^1, \quad (x, y) \mapsto y/x.
\]

\(X \) is rational.

- **Node.** Let \(X = \{ y^2 = x^2(x + 1) \} \).
Plane cubics

- **Cusp.** Let $X = \{y^2 = x^3\}$. Define

 $$f: \mathbb{A}^1 \to X, \ t \mapsto (t^2, t^3).$$

 Then f is a birational map with inverse

 $$g: X \dashrightarrow \mathbb{A}^1, \ (x, y) \mapsto y/x.$$

 X is rational.

- **Node.** Let $X = \{y^2 = x^2(x + 1)\}$. Let

 $$f: \mathbb{A}^1 \to X, \ t \mapsto (t^2 - 1, t(t^2 - 1)).$$
Plane cubics

- **Cusp.** Let $X = \{ y^2 = x^3 \}$. Define

 $$ f : \mathbb{A}^1 \to X, \quad t \mapsto (t^2, t^3). $$

 Then f is a birational map with inverse

 $$ g : X \to \mathbb{A}^1, \quad (x, y) \mapsto y/x. $$

 X is rational.

- **Node.** Let $X = \{ y^2 = x^2(x + 1) \}$. Let

 $$ f : \mathbb{A}^1 \to X, \quad t \mapsto (t^2 - 1, t(t^2 - 1)). $$

 f is birational with inverse

 $$ g : X \to \mathbb{A}^1, \quad (x, y) \mapsto y/x. $$
Plane cubics

- **Cusp.** Let $X = \{y^2 = x^3\}$. Define

$$f: \mathbb{A}^1 \rightarrow X, \ t \mapsto (t^2, t^3).$$

Then f is a birational map with inverse

$$g: X \dashrightarrow \mathbb{A}^1, \ (x, y) \mapsto y/x.$$

X is rational.

- **Node.** Let $X = \{y^2 = x^2(x + 1)\}$. Let

$$f: \mathbb{A}^1 \rightarrow X, \ t \mapsto (t^2 - 1, t(t^2 - 1)).$$

f is birational with inverse

$$g: X \dashrightarrow \mathbb{A}^1, \ (x, y) \mapsto y/x.$$

X is rational.
Plane cubics

- **Cusp.** Let \(X = \{ y^2 = x^3 \} \). Define
 \[
 f : \mathbb{A}^1 \rightarrow X, \quad t \mapsto (t^2, t^3).
 \]

 Then \(f \) is a birational map with inverse
 \[
 g : X \dasharrow \mathbb{A}^1, \quad (x, y) \mapsto y/x.
 \]

 \(X \) is rational.

- **Node.** Let \(X = \{ y^2 = x^2(x + 1) \} \). Let
 \[
 f : \mathbb{A}^1 \rightarrow X, \quad t \mapsto (t^2 - 1, t(t^2 - 1)).
 \]

 \(f \) is birational with inverse
 \[
 g : X \dasharrow \mathbb{A}^1, \quad (x, y) \mapsto y/x.
 \]

 \(X \) is rational.
Let $X = \{y^2 = f(x)\}$ where $\deg f = 3$ with distinct roots.
Let $X = \{y^2 = f(x)\}$ where $\deg f = 3$ with distinct roots.

X is said to be an elliptic curve.
Let $X = \{y^2 = f(x)\}$ where $\deg f = 3$ with distinct roots.

X is said to be an elliptic curve.

There are no nontrivial rational maps $\mathbb{A}^1 \to X$.
Let $X = \{ y^2 = f(x) \}$ where $\deg f = 3$ with distinct roots.

X is said to be an elliptic curve.

There are no nontrivial rational maps $\mathbb{A}^1 \to X$.

In particular X is not rational.
Let \(X = \{ y^2 = f(x) \} \) where \(\deg f = 3 \) with distinct roots.

\(X \) is said to be an elliptic curve.

There are no nontrivial rational maps \(\mathbb{A}^1 \to X \).

In particular \(X \) is not rational.