Goal: New structures
Goal: New structures

- functions on affine sets → sheaves
Goal: New structures

- functions on affine sets → sheaves
- affine varieties → ringed spaces
Goal: New structures

- functions on affine sets \rightarrow sheaves

- affine varieties \rightarrow ringed spaces

Bonus:
Goal: New structures

- functions on affine sets \rightarrow sheaves

- affine varieties \rightarrow ringed spaces

Bonus:

- sheaves \rightarrow morphisms
Goal: New **structures**

- functions on affine sets \rightarrow sheaves
- affine varieties \rightarrow ringed spaces

Bonus:
- sheaves \rightarrow morphisms
- ringed spaces \rightarrow varieties
Goal: New structures

- functions on affine sets \rightarrow sheaves
- affine varieties \rightarrow ringed spaces

Bonus:
- sheaves \rightarrow morphisms
- ringed spaces \rightarrow varieties
Sheaves in agriculture: a bunch of stalks, bundled together.
Sheaves in agriculture: a bunch of stalks, bundled together.
Sheaves – introduced by Leray in the ’40s, work as POW.
Sheaves – introduced by Leray in the ’40s, work as POW.

The theory was furthered by Cartan, Serre and others.
Sheaves – introduced by Leray in the ’40s, work as POW.
The theory was furthered by Cartan, Serre and others.
Sheaves – introduced by Leray in the ’40s, work as POW.

The theory was furthered by Cartan, Serre and others.
Presheaves

- Regular functions are defined \textit{locally}
Presheaves

- Regular functions are defined \textit{locally}
- with an eye for \textbf{further applications}, we introduce a \textbf{framework}
 for such \textbf{local constructions}
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition

Let X be a topological space. A **presheaf** \mathcal{F} of rings over X is the datum of
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition

Let X be a topological space. A **presheaf** \mathcal{F} of rings over X is the datum of

- an **assignment** of a ring

\[U \mapsto \mathcal{F}(U) \]

for each $U \subset X$ open;
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition

Let X be a topological space. A presheaf \mathcal{F} of rings over X is the datum of

- an **assignment** of a ring

 $$U \mapsto \mathcal{F}(U)$$

 for each $U \subset X$ open;
- for each inclusion $U \subset V$, a ring homomorphism

 $$\rho_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U)$$

 called **restriction**
Presheaves

- Regular functions are defined **locally**
- with an eye for **further applications**, we introduce a **framework** for such **local constructions**

Definition

Let X be a topological space. A presheaf \mathcal{F} of rings over X is the datum of

- an **assignment** of a ring

\[U \mapsto \mathcal{F}(U) \]

for each $U \subset X$ open;

- for each inclusion $U \subset V$, a **ring homomorphism**

\[\rho_{V,U} : \mathcal{F}(V) \to \mathcal{F}(U) \]

called **restriction**
subject to the conditions
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
subject to the conditions

- $F(\emptyset) = 0$
- $\rho_{U,U} = 1$
- for $U \subset V \subset W$ we have

$$\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}.$$
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
- for $U \subset V \subset W$ we have

$$\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}.$$

Terminology:

- $s \in \mathcal{F}(U) = \Gamma(U, \mathcal{F})$ are called sections of \mathcal{F}
subject to the conditions

- \(\mathcal{F}(\emptyset) = 0 \)
- \(\rho_{U,U} = 1 \)
- for \(U \subset V \subset W \) we have

\[\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}. \]

Terminology:

- \(s \in \mathcal{F}(U) = \Gamma(U, \mathcal{F}) \) are called sections of \(\mathcal{F} \)

Notation:

- \(\rho_{V,U}(s) = s|_U \) for \(s \in \mathcal{F}(V) \)
subject to the conditions

- $\mathcal{F}(\emptyset) = 0$
- $\rho_{U,U} = 1$
- for $U \subset V \subset W$ we have

\[\rho_{V,U} \circ \rho_{W,V} = \rho_{W,U}. \]

Terminology:

- $s \in \mathcal{F}(U) = \Gamma(U, \mathcal{F})$ are called sections of \mathcal{F}

Notation:

- $\rho_{V,U}(s) = s|_U$ for $s \in \mathcal{F}(V)$
Sheaves

Definition

A presheaf \(\mathcal{F} \to X \) is said to be a sheaf provided that for all open covers

\[
U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j
\]
Sheaves

Definition

A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_{i} U_{i}, \quad U_{ij} = U_{i} \cap U_{j}$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_{i}) \to \prod \mathcal{F}(U_{ij}).$$
Sheaves

Definition

A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod \mathcal{F}(U_i) \to \prod \mathcal{F}(U_{ij}).$$

Concretely, given

- $s_i \in \mathcal{F}(U_i)$ with

 $s_i|_{U_{ij}} = s_j|_{U_{ij}}$
Sheaves

Definition

A presheaf \(\mathcal{F} \rightarrow X \) is said to be a sheaf provided that for all open covers

\[
U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j
\]

the sequence is exact

\[
0 \rightarrow \mathcal{F}(U) \rightarrow \prod_i \mathcal{F}(U_i) \rightarrow \prod_{i,j} \mathcal{F}(U_{ij}).
\]

Concretely, given

- \(s_i \in \mathcal{F}(U_i) \) with
- \(s_i|_{U_{ij}} = s_j|_{U_{ij}} \)
Sheaves

Definition

A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_{ij} \mathcal{F}(U_{ij}).$$

Concretely, given

- $s_i \in \mathcal{F}(U_i)$ with
- $s_i|_{U_{ij}} = s_j|_{U_{ij}}$

there exists a unique $s \in \mathcal{F}(U)$ with

$$s|_{U_i} = s_i.$$
Sheaves

Definition

A presheaf $\mathcal{F} \to X$ is said to be a sheaf provided that for all open covers

$$U = \bigcup_i U_i, \quad U_{ij} = U_i \cap U_j$$

the sequence is exact

$$0 \to \mathcal{F}(U) \to \prod_i \mathcal{F}(U_i) \to \prod_i \mathcal{F}(U_{ij}).$$

Concretely, given

- $s_i \in \mathcal{F}(U_i)$ with
- $s_i|_{U_{ij}} = s_j|_{U_{ij}}$

there exists a unique $s \in \mathcal{F}(U)$ with

$$s|_{U_i} = s_i.$$
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.$$
Example: \(X \) topological space, \(\mathcal{C} \) is the sheaf of continuous functions

\[
\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.
\]

Example: \(X \subset \mathbb{R}^n \) open, or \(X \) smooth manifold, \(\mathcal{C}^\infty \) is the sheaf of smooth functions

\[
\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.
\]
Example: \(X \) topological space, \(\mathcal{C} \) is the sheaf of continuous functions
\[
\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.
\]

Example: \(X \subset \mathbb{R}^n \) open, or \(X \) smooth manifold, \(\mathcal{C}^\infty \) is the sheaf of smooth functions
\[
\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.
\]

Example: \(X \) real-analytic manifold, \(\mathcal{C}^\omega \) is the sheaf of real analytic functions
\[
\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \}.
\]
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{f : U \to \mathbb{C} \text{ continuous}\}.$$

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions

$$\mathcal{C}^\infty(U) = \{f : U \to \mathbb{C} \text{ smooth}\}.$$

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of real analytic functions

$$\mathcal{C}^\omega(U) = \{f : U \to \mathbb{R} \text{ real analytic}\}.$$

Example: $X \subset \mathbb{C}^n$ open, or X complex manifold, \mathcal{O}^{an} is the sheaf of holomorphic functions.
Example: X topological space, \mathcal{C} is the sheaf of continuous functions

$$\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.$$

Example: $X \subset \mathbb{R}^n$ open, or X smooth manifold, \mathcal{C}^∞ is the sheaf of smooth functions

$$\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.$$

Example: X real-analytic manifold, \mathcal{C}^ω is the sheaf of real analytic functions

$$\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \}.$$

Example: $X \subset \mathbb{C}^n$ open, or X complex manifold, \mathcal{O}^an is the sheaf of holomorphic functions.

Example: $X \subset \mathbb{A}^n$ affine variety, \mathcal{O}_X the sheaf of regular functions

$$U \mapsto \mathcal{O}_X(U).$$
Example: \(X \) topological space, \(\mathcal{C} \) is the sheaf of continuous functions
\[
\mathcal{C}(U) = \{ f : U \to \mathbb{C} \text{ continuous} \}.
\]

Example: \(X \subset \mathbb{R}^n \) open, or \(X \) smooth manifold, \(\mathcal{C}^\infty \) is the sheaf of smooth functions
\[
\mathcal{C}^\infty(U) = \{ f : U \to \mathbb{C} \text{ smooth} \}.
\]

Example: \(X \) real-analytic manifold, \(\mathcal{C}^\omega \) is the sheaf of real analytic functions
\[
\mathcal{C}^\omega(U) = \{ f : U \to \mathbb{R} \text{ real analytic} \}.
\]

Example: \(X \subset \mathbb{C}^n \) open, or \(X \) complex manifold, \(\mathcal{O}^{\text{an}} \) is the sheaf of holomorphic functions.

Example: \(X \subset \mathbb{A}^n \) affine variety, \(\mathcal{O}_X \) the sheaf of regular functions
\[
U \mapsto \mathcal{O}_X(U).
\]
Example: $p \in X$, the skyscraper sheaf

$$
\mathbb{C}_p(U) = \begin{cases}
0 & \text{if } p \not\in U \\
\mathbb{C} & \text{if } p \in U
\end{cases}
$$
Example: \(p \in X \), the skyscraper sheaf

\[
C_p(U) = \begin{cases}
0 & \text{if } p \notin U \\
\mathbb{C} & \text{if } p \in U
\end{cases}
\]

Example: \(\mathcal{F} \to X \) sheaf, \(U \subset X \) open, then the restriction \(\mathcal{F}|_U \) is a sheaf given by

\[
\mathcal{F}|_U(V) = \mathcal{F}(V)
\]

for \(V \subset U \) open.
Example: \mathbb{R} the presheaf of constant functions

$$\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant} \}$$

is not a sheaf.
Example: \mathbb{R} the presheaf of constant functions

$$\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant} \}$$

is not a sheaf.

If $W = U \cup V$ is a disjoint union, gluing fails.
Example: \(\mathbb{R} \) the presheaf of constant functions

\[\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant} \} \]

is not a sheaf.

If \(W = U \cup V \) is a disjoint union, gluing fails.

Example: \(\mathbb{R} \) the sheaf of locally constant functions

\[\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is locally constant} \} \]
Example: \(\mathbb{R} \) the presheaf of constant functions

\[
\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is constant} \}
\]

is not a sheaf.

If \(W = U \cup V \) is a disjoint union, gluing fails.

Example: \(\mathbb{R} \) the sheaf of locally constant functions

\[
\mathbb{R}(U) = \{ f : U \to \mathbb{R} : f \text{ is locally constant} \}
\]
Philosophy:

- function-like objects give presheaves
Philosophy:

- function-like objects give presheaves

- global conditions give presheaves, local conditions give sheaves
Philosophy:

- function-like objects give presheaves
- global conditions give presheaves, local conditions give sheaves
- sheafification!
Philosophy:

- function-like objects give presheaves

- global conditions give presheaves, local conditions give sheaves

- sheafification!
Stalks: For $p \in X$, $\mathcal{F} \to X$ a presheaf, define the stalks

$$\mathcal{F}_p = \lim_{\to p \in U} \mathcal{F}(U).$$
Stalks: For \(p \in X \), \(\mathcal{F} \to X \) a presheaf, define the stalks

\[
\mathcal{F}_p = \lim_{\rightarrow \ p \in U} \mathcal{F}(U).
\]

Concretely, consider pairs

\[
(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)
\]
Stalks: For \(p \in X, \mathcal{F} \to X \) a presheaf, define the stalks

\[
\mathcal{F}_p = \lim_{\to \ p \in U} \mathcal{F}(U).
\]

Concretely, consider pairs

\[(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)\]

modulo equivalence

\[(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', s|_W = s'|_W.\]
Stalks: For \(p \in X \), \(\mathcal{F} \to X \) a presheaf, define the **stalks**

\[\mathcal{F}_p = \lim_{\rightarrow p \in U} \mathcal{F}(U). \]

Concretely, consider **pairs**

\[(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U) \]

modulo **equivalence**

\[(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', s|_W = s'|_W. \]

The **germ** of a section of \(\mathcal{F} \) at \(p \) is an equivalence class \([((U, s)]\).
Stalks: For \(p \in X, \mathcal{F} \to X \) a presheaf, define the stalks

\[
\mathcal{F}_p = \lim_{\rightarrow p \in U} \mathcal{F}(U).
\]

Concretely, consider pairs

\[
(U, s), \ p \in U \subset X, \ s \in \mathcal{F}(U)
\]

modulo equivalence

\[
(U, s) \equiv (U', s') \iff \text{there exists } p \in W \subset U \cap U', s|_W = s'|_W.
\]

The germ of a section of \(\mathcal{F} \) at \(p \) is an equivalence class \([U, s]\).

The stalks are also rings e.g.

\[
[(U, s)] + [(U', s')] = [(U \cap U', s|_{U \cap U'} + s'|_{U \cap U'})].
\]
Philosophy:
- germs of functions in \mathcal{O}_X can be evaluated at p
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there's more information than the value at p
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there's more information than the value at p

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The stalk of the sheaf \mathcal{O}_X at p is the local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} = A(X)_m$$

where m is the maximal ideal in $A(X)$ corresponding to $p \in X$.
Philosophy:

- germs of functions in \mathcal{O}_X can be evaluated at p
- there’s more information than the value at p

Lemma

Let $X \subset \mathbb{A}^n$ be an affine variety. The stalk of the sheaf \mathcal{O}_X at p is the local ring

$$\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} = A(X)_m$$

where m is the maximal ideal in $A(X)$ corresponding to $p \in X$.
(e.g. $m =$ functions vanishing at p).
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), \; g(p) \neq 0 \right\} \]
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{ g \neq 0 \} \).
Proof:

\[O_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{g \neq 0\} \).

- Conversely, a germ on the left is represented by a regular function \((\phi, U)\) for \(p \in U \).
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{g \neq 0\} \).

- Conversely, a germ on the left is represented by a regular function \((\phi, U)\) for \(p \in U \).

- Shrinking \(U \), we may assume \(\phi = \frac{f}{g} \) with \(g \) not zero on \(U \),
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{g \neq 0\} \).

- Conversely, a germ on the left is represented by a regular function \((\phi, U)\) for \(p \in U \).

- Shrinking \(U \), we may assume \(\phi = \frac{f}{g} \) with \(g \) not zero on \(U \), hence \(g(p) \neq 0 \),

...
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{g \neq 0\} \).

- Conversely, a germ on the left is represented by a regular function \((\phi, U)\) for \(p \in U \).

- Shrinking \(U \), we may assume \(\phi = \frac{f}{g} \) with \(g \) not zero on \(U \), hence \(g(p) \neq 0 \), hence an element on the right.
Proof:

\[\mathcal{O}_{X,p} = \left\{ \frac{f}{g} : f, g \in A(X), g(p) \neq 0 \right\} \]

- An element on the right \(\phi = \frac{f}{g} \) gives a germ \((U, \phi)\) where \(p \in U = \{g \neq 0\} \).

- Conversely, a germ on the left is represented by a regular function \((\phi, U)\) for \(p \in U \).

- Shrinking \(U \), we may assume \(\phi = \frac{f}{g} \) with \(g \) not zero on \(U \), hence \(g(p) \neq 0 \), hence an element on the right.

- This is independent of choices since if

\[
\phi = \frac{f}{g} \text{ in } U, \quad \phi = \frac{f'}{g'} \text{ in } V,
\]

then \(\frac{f}{g} = \frac{f'}{g'} \) in \(U \cap V \), hence also in \(K(X) \) (last time).
Ringed spaces

Definition

A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf of rings \(\mathcal{O}_X\) is called a ringed space.
Ringed spaces

Definition

A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf of rings \(\mathcal{O}_X\) is called a ringed space.

Example: An affine variety is a ringed space.
Ringed spaces

Definition

A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf of rings \(\mathcal{O}_X\) is called a ringed space.

Example: An affine variety is a ringed space.

Example: A topological/real/complex manifold is a ringed space.
Ringed spaces

Definition

A pair \((X, \mathcal{O}_X)\) consisting of a topological space \(X\) together with a sheaf of rings \(\mathcal{O}_X\) is called a ringed space.

Example: An affine variety is a ringed space.

Example: A topological/real/complex manifold is a ringed space.
We defined new structures:
We defined new *structures*:

- **Sheaves**
We defined new structures:

- Sheaves
- Ringed spaces
We defined new \textit{structures}:

- Sheaves
- Ringed spaces

\textbf{Advantages:} this language allows us to introduce
We defined new structures:

- Sheaves
- Ringed spaces

Advantages: this language allows us to introduce

- prevarieties/varieties
We defined new structures:

- Sheaves
- Ringed spaces

Advantages: this language allows us to introduce

- prevarieties/varieties
- morphisms
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

Remark: There is an induced pullback on stalks (check) \(f^*: \mathcal{O}_Y, p \rightarrow \mathcal{O}_X, p\).
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

A morphism \(f : X \to Y\) is a set-theoretic map such that

- \(f\) is continuous,
- for a regular section \(\phi \in \mathcal{O}_Y(U)\), the pullback \(f^*\phi = \phi \circ f : f^{-1}(U) \to k\) is also regular:

\[f^* : \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U)). \]
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

A morphism \(f : X \to Y\) is a set-theoretic map such that

- \(f\) is continuous

Remark: There is an induced pullback on stalks (check) \(f^* : \mathcal{O}_Y, f(p) \to \mathcal{O}_X, p\).
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

A morphism \(f : X \to Y\) is a set-theoretic map such that

- \(f\) is continuous
- for a regular section \(\phi \in \mathcal{O}_Y(U)\), the pullback

\[f^*\phi = \phi \circ f : f^{-1}(U) \to k \]
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

A morphism \(f : X \to Y\) is a set-theoretic map such that

- \(f\) is continuous
- for a regular section \(\phi \in \mathcal{O}_Y(U)\), the pullback
 \[
 f^*\phi = \phi \circ f : f^{-1}(U) \to k
 \]

 is also regular:

 \[
 f^* : \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U)).
 \]
Definition

Let \((X, \mathcal{O}_X), (Y, \mathcal{O}_Y)\) be ringed spaces endowed with sheaves of \(k\)-valued functions.

A morphism \(f : X \to Y\) is a set-theoretic map such that

\begin{itemize}
 \item \(f\) is continuous
 \item for a regular section \(\phi \in \mathcal{O}_Y(U)\), the pullback

\[f^*\phi = \phi \circ f : f^{-1}(U) \to k \]

is also regular:

\[f^* : \mathcal{O}_Y(U) \to \mathcal{O}_X(f^{-1}(U)). \]

\end{itemize}

Remark: There is an induced pullback on stalks (check)

\[f^* : \mathcal{O}_{Y,f(p)} \to \mathcal{O}_{X,p}. \]