Math 203A

September 26, 2022
Last time

- We want to establish a geometry-algebra dictionary:

 \[
 \text{algebraic sets in } \mathbb{A}^n \leftrightarrow \text{ideals in } k[x_1, \ldots, x_n]
 \]

 via Z and I.
Last time

- We want to establish a geometry-algebra dictionary:

\[
\text{algebraic sets in } \mathbb{A}^n \leftrightarrow \text{ideals in } k[x_1, ..., x_n]
\]

via \(Z\) and \(I\).

- We know

\[
ZI(X) = X.
\]
Last time

- We want to establish a geometry-algebra dictionary:

 algebraic sets in $\mathbb{A}^n \leftrightarrow$ ideals in $k[x_1, \ldots, x_n]$

 via Z and I.

- We know

 $$ZI(X) = X.$$
Question: Is I truly the inverse of Z:

$$I(Z(i)) = i?$$
Question: Is I truly the inverse of Z:

$$I(Z(i)) = i?$$

Example: Let

$$f = (x - a)\alpha.$$
Question: Is \(I \) truly the inverse of \(Z \):

\[
I(Z(i)) = i?
\]

Example: Let

\[
f = (x - a)^\alpha.
\]

Then

\[
Z(f) = \{a\} \implies IZ(f) = \langle x - a \rangle \neq (f).
\]
Definition
The radical of an ideal i is

$$\sqrt{i} = \{ f : f^r \in i \text{ for some } r > 0 \}$$
Definition
The radical of an ideal \(i \) is

\[\sqrt{i} = \{ f : f^r \in i \text{ for some } r > 0 \} \]

Definition
An ideal \(i \) is radical if \(\sqrt{i} = i \).
Definition
The radical of an ideal i is

$$\sqrt{i} = \{ f : f^r \in i \text{ for some } r > 0 \}$$

Definition
An ideal i is \textbf{radical} if $\sqrt{i} = i$.
Nullstellensatz

Theorem (Strong Nullstellensatz)

\[I_Z(i) = \sqrt{i} \]
Nullstellensatz

Theorem (Strong Nullstellensatz)

\[IZ(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[Z(\alpha) = \emptyset \iff \alpha = (1). \]
Nullstellensatz

Theorem (Strong Nullstellensatz)

\[I_Z(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[Z(a) = \emptyset \iff a = (1). \]

Corollary

There is a 1–1 inclusion reversing correspondence between
Nullstellensatz

Theorem (Strong Nullstellensatz)

$$IZ(i) = \sqrt{i}$$

Proof uses the weak Nullstellensatz

$$Z(a) = \emptyset \iff a = (1).$$

Corollary

There is a 1 – 1 inclusion reversing correspondence between

- **algebraic sets in** \(\mathbb{A}^n \)
Nullstellensatz

Theorem (Strong Nullstellensatz)

\[I_Z(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[Z(a) = \emptyset \iff a = (1). \]

Corollary

There is a 1–1 inclusion reversing correspondence between

- algebraic sets in \(\mathbb{A}^n \)
- radical ideals in \(k[x_1, \ldots, x_n] \).
Nullstellensatz

Theorem (Strong Nullstellensatz)

\[\mathcal{I} \mathcal{Z}(i) = \sqrt{i} \]

Proof uses the weak Nullstellensatz

\[\mathcal{Z}(a) = \emptyset \iff a = (1). \]

Corollary

There is a 1 − 1 inclusion reversing correspondence between

- algebraic sets in \(\mathbb{A}^n \)
- radical ideals in \(k[x_1, \ldots, x_n] \).
Figure: David Hilbert
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.

Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then $p \in Z(i)$, $tf(p) - 1 = 0 \Rightarrow f(p) \neq 0$ contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq I_Z(i)$.

- Let $f \in I_Z(i)$. We show $f^N \in i$.

Note: $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then $p \in Z(i)$, $tf(p) - 1 = 0$ \Rightarrow $f(p) \neq 0$ contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset I_Z(i)$.

- Let $f \in I_Z(i)$. We show $f^N \in i$.

- Let

 \[j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]. \]
Proof of strong Nullstellensatz

► It is easy to see $\sqrt{i} \subset IZ(i)$.

► Let $f \in IZ(i)$. We show $f^N \in i$.

► Let

$$j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t].$$

► Note that $Z(j) = \emptyset$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subseteq I_Z(i)$.

- Let $f \in I_Z(i)$. We show $f^N \in i$.

- Let $j = i + (tf - 1) \subseteq k[x_1, \ldots, x_n, t]$.

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then $p \in Z(i), \ tf(p) - 1 = 0$.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.

- Let $f \in IZ(i)$. We show $f^N \in i$.

- Let
 \[j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]. \]

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then
 \[p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0 \]
 contradiction.
Proof of strong Nullstellensatz

- It is easy to see $\sqrt{i} \subset IZ(i)$.

- Let $f \in IZ(i)$. We show $f^N \in i$.

- Let $j = i + (tf - 1) \subset k[x_1, \ldots, x_n, t]$.

- Note that $Z(j) = \emptyset$. Indeed, if $(p, t) \in Z(j)$ then

 $$p \in Z(i), \quad tf(p) - 1 = 0 \implies f(p) \neq 0$$

 contradiction.
Proof

- Hence $j = (1)$:
Proof

Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.

Let $t \mapsto ft - 1$ and $t \mapsto f_1$.
Proof

- Hence $j = (1)$:

 $$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)$$

 with $f_i \in i$.

- Let

 $$R[t] \rightarrow R_f, \ t \mapsto \frac{1}{f}$$
Proof

- Hence $j = (1)$:

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with $f_i \in i$.

- Let

\[
R[t] \rightarrow R_f, t \mapsto \frac{1}{f}
\]

- \[
1 = f_1 \cdot g_1(x_1, \ldots, x_n, 1/f) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, 1/f).
\]
Proof

▶ Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.

▶ Let

$$R[t] \rightarrow R_f, \ t \mapsto \frac{1}{f}$$

▶

$$1 = f_1 \cdot g_1(x_1, \ldots, x_n, \frac{1}{f}) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, \frac{1}{f}).$$

▶ Let t^N the highest power of t occurring in the g_i
Proof

- Hence $j = (1)$:

$$1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots$$

$$+ f_m \cdot g_m(x_1, \ldots, x_n, t)$$

with $f_i \in i$.

- Let

$$R[t] \to R_f, t \mapsto \frac{1}{f}$$

-

$$1 = f_1 \cdot g_1(x_1, \ldots, x_n, 1/f) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, 1/f).$$

- Let t^N the highest power of t occurring in the g_i

-

$$f^N = f_1 \cdot G_1(x_1, \ldots, x_n) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n).$$
Proof

Hence \(j = (1) \):

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with \(f_i \in i \).

Let

\[
R[t] \to R_f, \ t \mapsto \frac{1}{f}
\]

Let \(t^N \) the highest power of \(t \) occurring in the \(g_i \)

\[
f^N = f_1 \cdot G_1(x_1, \ldots, x_n) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n).
\]

\[
f_i \in i \implies f^N \in i.
\]
Proof

- Hence \(j = (1) \):

\[
1 = (ft - 1) \cdot g_0(x_1, \ldots, x_n, t) + f_1 \cdot g_1(x_1, \ldots, x_n, t) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, t)
\]

with \(f_i \in i \).

- Let

\[
R[t] \to R_f, t \mapsto \frac{1}{f}
\]

- \(1 = f_1 \cdot g_1(x_1, \ldots, x_n, 1/f) + \ldots + f_m \cdot g_m(x_1, \ldots, x_n, 1/f) \).

- Let \(t^N \) the highest power of \(t \) occurring in the \(g_i \)

\[
f^N = f_1 \cdot G_1(x_1, \ldots, x_n) + \ldots + f_m \cdot G_m(x_1, \ldots, x_n).
\]

- \(f_i \in i \implies f^N \in i \).
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: \(X = \mathbb{Z}(xy) \subset \mathbb{A}^2 \) is the union of the two coordinate axes: \(X = X_1 \cup X_2 \) where \(X_1 = \mathbb{Z}(y) \), \(X_2 = \mathbb{Z}(x) \). The set \(X \) is said to be reducible, and \(X_1 \) and \(X_2 \) are its irreducible components.

Definition A topological space \(X \) is reducible if \(X = X_1 \cup X_2 \) for two proper closed subsets \(X_1 \) and \(X_2 \).
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: $X = Z(xy) \subset \mathbb{A}^2$ is the union of the two coordinate axes:
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: \(X = Z(xy) \subset \mathbb{A}^2 \) is the union of the two coordinate axes:

\[X = X_1 \cup X_2 \]

where \(X_1 = Z(y) \), \(X_2 = Z(x) \).
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: \(X = Z(xy) \subseteq \mathbb{A}^2 \) is the union of the two coordinate axes:

\[
X = X_1 \cup X_2
\]

where \(X_1 = Z(y), X_2 = Z(x) \).

The set \(X \) is said to be reducible, and \(X_1 \) and \(X_2 \) are its irreducible components.
Irreducibility

We study affine algebraic sets by breaking them into smaller pieces.

Example: $X = Z(xy) \subset \mathbb{A}^2$ is the union of the two coordinate axes:

$$X = X_1 \cup X_2$$

where $X_1 = Z(y)$, $X_2 = Z(x)$.

The set X is said to be reducible, and X_1 and X_2 are its irreducible components.

Definition

A topological space X is reducible if $X = X_1 \cup X_2$ for two proper closed subsets X_1 and X_2.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set is reducible.
Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set is reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set is reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology.
Irreducibility

Remark: If \(X_1 \) and \(X_2 \) are required disjoint, \(X \) is said to be disconnected.

A disconnected set is reducible.

Remark: The affine line \(\mathbb{A}^1 \) is irreducible in the Zariski topology (cofinite topology).

When \(k = \mathbb{C} \), \(\mathbb{A}^1 \) is reducible in the usual topology. Set

\[
X_1 = \{ z \in \mathbb{C} : |z| \geq 1 \}, \quad X_2 = \{ z \in \mathbb{C} : |z| \leq 1 \}.
\]
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. Set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \quad X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

However, \mathbb{A}^1 is connected.
Irreducibility

Remark: If X_1 and X_2 are required disjoint, X is said to be disconnected.

A disconnected set it reducible.

Remark: The affine line \mathbb{A}^1 is irreducible in the Zariski topology (cofinite topology).

When $k = \mathbb{C}$, \mathbb{A}^1 is reducible in the usual topology. Set

$$X_1 = \{z \in \mathbb{C} : |z| \geq 1\}, \quad X_2 = \{z \in \mathbb{C} : |z| \leq 1\}.$$

However, \mathbb{A}^1 is connected.
Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.

Definition

An irreducible affine algebraic set is called an affine variety.
Irreducibility

Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.
Irreducibility

Lemma
Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.
Lemma

Let X be irreducible.

- U and V are nonempty open subsets of X, then $U \cap V \neq \emptyset$.
- Nonempty open sets U of X are dense.

Proof: Assume otherwise. Then the closed sets \overline{U} and $X \setminus U$ would cover X.

Definition

An irreducible affine algebraic set is called an affine variety.
Prime ideals

Affine algebraic sets are in 1 – 1 correspondence with radical ideals.
Prime ideals

Affine algebraic sets are in 1 – 1 correspondence with radical ideals.

How about affine varieties?
Prime ideals

Affine algebraic sets are in 1 – 1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals.

How about affine varieties?

Theorem
An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.
Prime ideals

Affine algebraic sets are in 1 – 1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.
Prime ideals

Affine algebraic sets are in 1 − 1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set \(X \subset \mathbb{A}^n \) is irreducible \(\iff \) \(I(X) \) is a prime ideal of \(k[X_1, \ldots, X_n] \)

Proof: We prove \(X \) is reducible \(\iff \) \(I(X) \) is not prime.

Assume \(X = X_1 \cup X_2 \), with \(X_1, X_2 \neq X \) proper closed subsets.

Find \(f \in I(X_1) \setminus I(X) \) and \(g \in I(X_2) \setminus I(X) \).
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.
Prime ideals

Affine algebraic sets are in $1-1$ correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \notin I(X)$.
Prime ideals

Affine algebraic sets are in 1−1 correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \notin I(X)$. Thus $I(X)$ is not prime.
Prime ideals

Affine algebraic sets are in $1 - 1$ correspondence with radical ideals.

How about affine varieties?

Theorem

An affine algebraic set $X \subset \mathbb{A}^n$ is irreducible $\iff I(X)$ is a prime ideal of $k[X_1, \ldots, X_n]$

Proof: We prove X is reducible $\iff I(X)$ is not prime.

Assume $X = X_1 \cup X_2$, with $X_1, X_2 \neq X$ proper closed subsets.

Find $f \in I(X_1) \setminus I(X)$ and $g \in I(X_2) \setminus I(X)$. Since $f = 0$ on X_1 and $g = 0$ on X_2, the product $fg = 0$ on $X_1 \cup X_2 = X$.

Therefore $fg \in I(X)$, while $f, g \notin I(X)$. Thus $I(X)$ is not prime.
Example: The curve $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.
Example: The curve $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.
Example: The curve $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.

Lemma

If $f : \mathbb{A}^n \to \mathbb{A}^m$ is a polynomial map and X is irreducible in \mathbb{A}^n, then $f(X)$ is also irreducible.
Example: The curve \(y^2 - x^3 = 0 \) in \(\mathbb{A}^2 \) is irreducible.

Example: The only proper irreducible closed subsets of \(\mathbb{A}^1 \) are single points.

Lemma

If \(f : \mathbb{A}^n \to \mathbb{A}^m \) is a polynomial map and \(X \) is irreducible in \(\mathbb{A}^n \), then \(f(X) \) is also irreducible.

Proof: This follows from HWK Problem 2(i) and Problem 7.
Example: The curve $y^2 - x^3 = 0$ in \mathbb{A}^2 is irreducible.

Example: The only proper irreducible closed subsets of \mathbb{A}^1 are single points.

Lemma

If $f : \mathbb{A}^n \rightarrow \mathbb{A}^m$ is a polynomial map and X is irreducible in \mathbb{A}^n, then $f(X)$ is also irreducible.

Proof: This follows from HWK Problem 2(i) and Problem 7.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), \ t \in k.$$
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.
Example: Let C be the curve given parametrically by
\[(t^2, t^4, t^5), t \in k.\]

We claim C is irreducible.

Proof: This curve is the image of the polynomial map
\[f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).\]
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \to (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$
Example: Let C be the curve given parametrically by

$$(t^2, t^4, t^5), t \in k.$$

We claim C is irreducible.

Proof: This curve is the image of the polynomial map

$$f : \mathbb{A}^1 \to \mathbb{A}^3, t \mapsto (t^2, t^4, t^5).$$

By the lemma, C is irreducible.

Remark: It is harder to see C is irreducible using the equations of the curve

$$y = x^2, x^5 = z^2.$$