Math 203A
Last time

- $\dim \mathbb{P}^n = n$
Last time

- \(\dim \mathbb{P}^n = n \)

If \(X = \bigcup_{i=1}^{r} U_i \) is an open cover,

\[
\dim X = \max_i \dim U_i.
\]
Last time

- $\dim \mathbb{P}^n = n$

- If $X = \bigcup_{i=1}^{r} U_i$ is an open cover,
 \[\dim X = \max_i \dim U_i. \]

- For $X = \mathbb{P}^n$ and $U_i = \{x_i \neq 0\} \simeq \mathbb{A}^n$, we have
 \[\dim \mathbb{P}^n = \dim \mathbb{A}^n \implies \dim \mathbb{A}^n = n. \]
Last time

- \(\dim \mathbb{P}^n = n \)

- If \(X = \bigcup_{i=1}^{r} U_i \) is an open cover,
 \[
 \dim X = \max_i \dim U_i.
 \]

- For \(X = \mathbb{P}^n \) and \(U_i = \{ x_i \neq 0 \} \simeq \mathbb{A}^n \), we have
 \[
 \dim \mathbb{P}^n = \dim \mathbb{A}^n \implies \dim \mathbb{A}^n = n.
 \]
Proposition (Noether normalization)

Let \(X \subseteq \mathbb{P}^n \) be irreducible, and \(p \notin X, p = [0 : \ldots : 0 : 1] \).
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$. Let $f \in k[x_0, \ldots, x_n]$ homogeneous.
Proposition (Noether normalization)

Let \(X \subsetneq \mathbb{P}^n \) be irreducible, and \(p \notin X, p = [0 : \ldots : 0 : 1] \).
Let \(f \in k[x_0, \ldots, x_n] \) homogeneous. There exists \(D > 0 \) and
\[
a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}] \text{ homogeneous}
\]
such that
\[
f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.
\]

Remark:

- Take \(f = x_n \).

Then, fibers of \(\pi : X \to \mathbb{P}^{n-1} \) have \(D \) points (counted with multiplicity).
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \not\in X$, $p = [0 : \ldots : 0 : 1]$.
Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and $a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$ homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Remark:

- Take $f = x_n$.

Then, fibers of $\pi : X \to \mathbb{P}^{n-1}$ have D points (counted with multiplicity).

- A morphism with finite fibers will be called quasi-finite.
Proposition (Noether normalization)

Let $X \subset \mathbb{P}^n$ be irreducible, and $p \notin X$, $p = [0 : \ldots : 0 : 1]$. Let $f \in k[x_0, \ldots, x_n]$ homogeneous. There exists $D > 0$ and $a_1, \ldots, a_D \in k[x_0, \ldots, x_{n-1}]$ homogeneous such that

$$f^D + a_1 f^{D-1} + \ldots + a_D = 0 \text{ on } X.$$

Remark:

- Take $f = x_n$.

Then, fibers of $\pi : X \to \mathbb{P}^{n-1}$ have D points (counted with multiplicity).

- A morphism with finite fibers will be called quasi-finite.
Proof:

- $d = \text{deg } f$. Define

\[\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f]. \]
Proof:

\[d = \deg f. \text{ Define} \]

\[\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f]. \]

\[\Phi \text{ is well-defined} \]
Proof:

- $d = \deg f$. Define

 \[
 \Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].
 \]

- Φ is well-defined since $p \not\in X$.

- Φ is well-defined since $p \not\in X$.

Proof:

- \(d = \deg f \). Define

\[
\Phi : X \rightarrow \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].
\]

- \(\Phi \) is well-defined since \(p \not\in X \).

- Image of \(\Phi \):

\[
y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).
\]
Proof:

- $d = \deg f$. Define

$$\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].$$

- Φ is well-defined since $p \notin X$.

- Image of Φ:

$$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$

- $\Phi(X)$ is projective
Proof:

▶ $d = \deg f$. Define

$$\Phi: X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].$$

▶ Φ is well-defined since $p \notin X$.

▶ Image of Φ:

$$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$

▶ $\Phi(X)$ is projective cut out by

$$F_1 = \ldots = F_r = 0.$$
Proof:

- $d = \deg f$. Define

 $$\Phi : X \to \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].$$

- Φ is well-defined since $p \not\in X$.

- Image of Φ:

 $$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$

- $\Phi(X)$ is projective cut out by

 $$F_1 = \ldots = F_r = 0.$$

- **Claim:**

 $$Z(F_1, \ldots, F_r, y_0, \ldots, y_{n-1}) = \emptyset$$
Proof:

- $d = \text{deg } f$. Define

$$\Phi : X \rightarrow \mathbb{P}^n, \quad \Phi(x) = [x_0^d : \ldots : x_{n-1}^d : f].$$

- Φ is well-defined since $p \notin X$.

- Image of Φ:

$$y_0 = x_0^d, \ldots, y_{n-1} = x_{n-1}^d, \quad y_n = f(x).$$

- $\Phi(X)$ is projective cut out by

$$F_1 = \ldots = F_r = 0.$$

- Claim:

$$Z(F_1, \ldots, F_r, y_0, \ldots, y_{n-1}) = \emptyset$$
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_{j} F_j \cdot G_j \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_{j} F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_j F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_{j} F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\implies y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_j F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]

\[= \sum_{j=0}^{D-1} a_i(x_0, \ldots, x_{n-1}) f^j. \]
Nullstellensatz

\[y_n^D \in \langle F_1, \ldots, F_r, y_0, \ldots, y_{n-1} \rangle \]

\[\Rightarrow y_n^D = \sum_{i=0}^{n-1} y_i \cdot g_i + \sum_{j} F_j \cdot G_j \]

WLOG: \(\deg g_i = D - 1 \)

Substitute \(y = \Phi(x) \),

\[f^D = \sum_{i=0}^{n-1} x_i^d \cdot g_i(x_0^d, \ldots, x_{n-1}^d, f) \]

\[= \sum_{j=0}^{D-1} a_i(x_0, \ldots, x_{n-1}) f^j. \]
Pit stop

We know \(\dim \mathbb{P}^n = n \).
Pit stop

We know $\dim \mathbb{P}^n = n$.

Go further:

- Show $\dim Z(f) = n - 1$ for a single polynomial f?
Pit stop

We know $\dim \mathbb{P}^n = n$.

Go further:

- Show $\dim Z(f) = n - 1$ for a single polynomial f?
- Show $\dim X \cap Z(f) = \dim X - 1$
Pit stop

We know $\dim \mathbb{P}^n = n$.

Go further:

- Show $\dim Z(f) = n - 1$ for a single polynomial f?
- Show $\dim X \cap Z(f) = \dim X - 1$
- Discuss affine varieties and arbitrary varieties
Pit stop

We know \(\dim \mathbb{P}^n = n \).

Go further:

- Show \(\dim Z(f) = n - 1 \) for a single polynomial \(f \)?
- Show \(\dim X \cap Z(f) = \dim X - 1 \)
- Discuss affine varieties and arbitrary varieties
- Further topics ...
Pit stop

We know $\dim \mathbb{P}^n = n$.

Go further:

- Show $\dim Z(f) = n - 1$ for a single polynomial f?
- Show $\dim X \cap Z(f) = \dim X - 1$
- Discuss affine varieties and arbitrary varieties
- further topics ...
Pit stop
We know $\dim \mathbb{P}^n = n$.

Go further:
- Show $\dim Z(f) = n - 1$ for a single polynomial f?
- Show $\dim X \cap Z(f) = \dim X - 1$
- Discuss affine varieties and arbitrary varieties
- further topics ...
Detour: Finite maps - affine case

We already defined quasi-finite maps.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.

B is integral over A if all $x \in B$ satisfy a monic equation $x^n + a_1 x^{n-1} + ... + a_n = 0$, $a_i \in A$.

B is finite over A if B is finitely generated A-module.

$\text{finite} \implies \text{integral}$

for finitely generated k-algebras $\text{finite} \iff \text{integral}$
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subseteq B$ are rings.

- B is integral over A if all $x \in B$ satisfy a monic equation

 \[x^n + a_1 x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: $A \subset B$ are rings.

- B is integral over A if all $x \in B$ satisfy a monic equation
 \[x^n + a_1 x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]

- B is finite over A if B is finitely generated A-module.
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: \(A \subset B \) are rings.

- \(B \) is integral over \(A \) if all \(x \in B \) satisfy a monic equation
 \[x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A. \]

- \(B \) is finite over \(A \) if \(B \) is finitely generated \(A \)-module.

- \(\text{finite} \implies \text{integral} \)
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: \(A \subset B \) are rings.

- \(B \) is integral over \(A \) if all \(x \in B \) satisfy a monic equation

\[
x^n + a_1x^{n-1} + \ldots + a_n = 0, \quad a_i \in A.
\]

- \(B \) is finite over \(A \) if \(B \) is finitely generated \(A \)-module.

- \(\text{finite} \implies \text{integral} \)

- for finitely generated \(k \)-algebras

\[
\text{finite} \iff \text{integral}
\]
Detour: Finite maps - affine case

We already defined quasi-finite maps. We next define finite maps.

Algebraically: \(A \subset B \) are rings.

- \(B \) is integral over \(A \) if all \(x \in B \) satisfy a monic equation
 \[
 x^n + a_1 x^{n-1} + \ldots + a_n = 0, \quad a_i \in A.
 \]

- \(B \) is finite over \(A \) if \(B \) is finitely generated \(A \)-module.

- \(\text{finite} \implies \text{integral} \)

- for finitely generated \(k \)-algebras
 \[
 \text{finite} \iff \text{integral}
 \]
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$
Geometrically: Let $f : X \rightarrow Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \rightarrow A(X).$$

- f^* is injective.
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is injective.

$$f^* \phi = 0$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X)$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.$$
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is **injective**.

 $$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.$$

- **think** $A(Y) \hookrightarrow A(X)$
Geometrically: Let \(f : X \to Y \) be dominant morphism of affine algebraic sets, and
\[
f^* : A(Y) \to A(X).
\]

- \(f^* \) is injective.

\[
f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.
\]

- think \(A(Y) \hookrightarrow A(X) \)

- \(f \) is finite if \(A(Y) \hookrightarrow A(X) \) is integral.
Geometrically: Let $f : X \to Y$ be dominant morphism of affine algebraic sets, and

$$f^* : A(Y) \to A(X).$$

- f^* is injective.

$$f^* \phi = 0 \implies \phi \circ f = 0 \implies \phi = 0 \text{ on } f(X) \implies \phi = 0 \text{ on } Y.$$

- think $A(Y) \hookrightarrow A(X)$

- f is finite if $A(Y) \hookrightarrow A(X)$ is integral.
Algebra is the offer made by the devil to the mathematician.

The devil says: ‘I will give you this powerful machine, it will answer any question you like. All you need to do is give me your soul: give up geometry and you will have this marvellous machine.’

M. Atiyah
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0$$

for $a_i \in A(Y)$. Thus $t_i(x)$ takes on finitely many values.

As y varies, the points in $f^{-1}(y)$ can come together but cannot disappear.
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \text{ for } a_i \in A(Y).$$

- for each $y \in Y$, $x \in f^{-1}(y)$,

$$t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0$$
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies
\[t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \quad \text{for } a_i \in A(Y). \]

- for each $y \in Y$, $x \in f^{-1}(y)$,
 \[t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0 \]

Thus $t_i(x)$ takes on finitely many values.
Intuitively: If $X \subset \mathbb{A}^n$, the coordinate function $t_i \in A(X)$ satisfies

$$t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0$$

for $a_i \in A(Y)$.

▶ for each $y \in Y$, $x \in f^{-1}(y),

$$t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0$$

Thus $t_i(x)$ takes on finitely many values.

finite \implies quasi − finite
Intuitively: If \(X \subset \mathbb{A}^n \), the coordinate function \(t_i \in A(X) \) satisfies

\[
t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \quad \text{for} \quad a_i \in A(Y).
\]

- for each \(y \in Y \), \(x \in f^{-1}(y) \),

\[
t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0
\]

Thus \(t_i(x) \) takes on finitely many values.

\[
\text{finite} \quad \Rightarrow \quad \text{quasi} - \text{finite}
\]

- As \(y \) varies, the points in \(f^{-1}(y) \) can come together but cannot disappear.
Intuitively: If \(X \subset \mathbb{A}^n \), the coordinate function \(t_i \in A(X) \) satisfies
\[
t_i^k + a_1 \cdot t_i^{k-1} + \ldots + a_k = 0 \quad \text{for } a_i \in A(Y).
\]

- for each \(y \in Y \), \(x \in f^{-1}(y) \),
\[
t_i(x)^k + a_1(y) \cdot t_i(x)^{k-1} + \ldots + a_k(y) = 0
\]
Thus \(t_i(x) \) takes on finitely many values.

\[
finitely \implies quasi-finite
\]

- As \(y \) varies, the points in \(f^{-1}(y) \) can come together but cannot dissapear. Draw!
Example:

\[Z = \{ xy - 1 = 0 \} , \quad \pi : Z \to \mathbb{A}^1 , \quad (x, y) \to x \]

is quasi-finite,
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite} \]
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \] is finite since \(A(X)^G \hookrightarrow A(X) \) is integral.
Example:

\[Z = \{xy - 1 = 0\}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \to k[x, y]/(xy - 1) \) but \(y \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite since } A(X)^G \to A(X) \text{ is integral.} \]

Example:

\(f : X \to Y, \quad g : Y \to Z \text{ finite} \implies g \circ f : X \to Z \text{ is finite.} \)
Example:

\[Z = \{ xy - 1 = 0 \}, \quad \pi : Z \to \mathbb{A}^1, \quad (x, y) \to x \]

is quasi-finite, but not finite.

Why? \(k[x] \hookrightarrow k[x, y]/(xy - 1) \) but \(x \) satisfies no monic equation.

Example:

\(X \) affine, \(G \) finite,

\[\pi : X \to X/G \text{ is finite since } A(X)^G \hookrightarrow A(X) \text{ is integral.} \]

Example:

\(f : X \to Y, \quad g : Y \to Z \) finite \(\implies \quad g \circ f : X \to Z \) is finite.
Lemma
For a finite morphism of affine sets $f : X \to Y$

Sketch:

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$.

There exists a maximal ideal n in $A(X)$ such that $n \cap A(X) = m$.

n corresponds to $x \in X \Rightarrow f(x) = y$.

(ii) Let $Z \subset X$ be closed. Work with $f : Z \to W$, $W = f(Z)$.

By (i), f is surjective, so $W = f(Z)$.

Thus $f(Z)$ is closed.
Lemma
For a finite morphism of affine sets $f : X \to Y$

(i) f is surjective
Lemma
For a finite morphism of affine sets $f : X \rightarrow Y$

(i) f is surjective
(ii) f is closed
Lemma
For a finite morphism of affine sets $f : X \rightarrow Y$

(i) f is surjective

(ii) f is closed

Sketch:

$A(Y) \hookrightarrow A(X)$ integral \implies satisfies going up
Lemma
For a finite morphism of affine sets $f : X \to Y$

(i) f is surjective

(ii) f is closed

Sketch:

$$A(Y) \hookrightarrow A(X) \text{ integral} \implies \text{satisfies going up}$$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$.
Lemma
For a finite morphism of affine sets $f : X \to Y$

(i) f is surjective

(ii) f is closed

Sketch:

$$A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies } \text{going up}$$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$. Let n maximal ideal in $A(X)$ such that

$$n \cap A(X) = m.$$
Lemma
For a finite morphism of affine sets $f : X \rightarrow Y$

(i) f is surjective
(ii) f is closed

Sketch:

$A(Y) \hookrightarrow A(X)$ integral \implies satisfies $going \; up$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$. Let n maximal ideal in $A(X)$ such that

$$n \cap A(X) = m.$$

n corresponds to $x \in X \implies f(x) = y.$
Lemma
For a finite morphism of affine sets \(f : X \to Y \)

(i) \(f \) is surjective
(ii) \(f \) is closed

Sketch:

\[A(Y) \hookrightarrow A(X) \text{ integral} \implies \text{satisfies going up} \]

(i) If \(y \in Y \), let \(m \) be the maximal ideal in \(A(Y) \). Let \(n \) maximal ideal in \(A(X) \) such that \(n \cap A(X) = m \).

\(n \) corresponds to \(x \in X \implies f(x) = y \).

(ii) Let \(Z \subset X \) be closed. Work with

\[f : Z \to W, \quad W = \overline{f(Z)}. \]
Lemma

For a finite morphism of affine sets $f : X \to Y$

(i) f is surjective

(ii) f is closed

Sketch:

$$A(Y) \hookrightarrow A(X) \text{ integral} \implies \text{satisfies going \textit{–} up}$$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$. Let n maximal ideal in $A(X)$ such that $n \cap A(X) = m$.

n corresponds to $x \in X \implies f(x) = y$.

(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \to W, \ W = \overline{f(Z)}.$$

By (i), f is surjective,
Lemma

For a finite morphism of affine sets \(f : X \to Y \)

(i) \(f \) is surjective

(ii) \(f \) is closed

Sketch:

\[A(Y) \hookrightarrow A(X) \text{ integral} \implies \text{satisfies going \dash\dash\dash up} \]

(i) If \(y \in Y \), let \(m \) be the maximal ideal in \(A(Y) \). Let \(n \) maximal ideal in \(A(X) \) such that

\[n \cap A(X) = m. \]

\(n \) corresponds to \(x \in X \implies f(x) = y. \)

(ii) Let \(Z \subset X \) be closed. Work with

\[f : Z \to W, \ W = \overline{f(Z)}. \]

By (i), \(f \) is surjective, so \(W = f(Z) \).
Lemma
For a finite morphism of affine sets $f : X \rightarrow Y$

(i) f is surjective
(ii) f is closed

Sketch:

$$A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies going - up}$$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$. Let n maximal ideal in $A(X)$ such that

$$n \cap A(X) = m.$$

n corresponds to $x \in X \implies f(x) = y$.

(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \rightarrow W, \ W = \overline{f(Z)}.$$

By (i), f is surjective, so $W = f(Z)$. Thus $f(Z)$ closed.
Lemma
For a finite morphism of affine sets $f : X \rightarrow Y$

(i) f is surjective
(ii) f is closed

Sketch:

$$A(Y) \hookrightarrow A(X) \text{ integral } \implies \text{satisfies } \text{going up}$$

(i) If $y \in Y$, let m be the maximal ideal in $A(Y)$. Let n maximal ideal in $A(X)$ such that

$$n \cap A(X) = m.$$

n corresponds to $x \in X \implies f(x) = y$.

(ii) Let $Z \subset X$ be closed. Work with

$$f : Z \rightarrow W, \quad W = \overline{f(Z)}.$$

By (i), f is surjective, so $W = f(Z)$. Thus $f(Z)$ closed.
Finite maps in general

If X, Y are varieties, $f : X \rightarrow Y$ is finite if there exists an affine open cover V_i of Y s.t. $f^{-1}(V_i)$ is affine.
Finite maps in general

If X, Y are varieties, $f : X \rightarrow Y$ is finite if there exists an affine open cover V_i of Y s.t.

- $U_i = f^{-1}(V_i)$ is affine
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine open cover V_i of Y s.t.

- $U_i = f^{-1}(V_i)$ is affine
- $f : U_i \to V_i$ is finite.
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine open cover V_i of Y s.t.

- $U_i = f^{-1}(V_i)$ is affine
- $f : U_i \to V_i$ is finite.

Remark
- recovers old definition for affine sets
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine open cover V_i of Y s.t.

- $U_i = f^{-1}(V_i)$ is affine
- $f : U_i \to V_i$ is finite.

Remark

- recovers old definition for affine sets
- f finite is closed and surjective (both local conditions)
Finite maps in general

If X, Y are varieties, $f : X \to Y$ is finite if there exists an affine open cover V_i of Y s.t.

- $U_i = f^{-1}(V_i)$ is affine
- $f : U_i \to V_i$ is finite.

Remark
- recovers old definition for affine sets
- f finite is closed and surjective (both local conditions)
Rephrasing of Noether normalization

Theorem

Let $p \notin X \subset \mathbb{P}^n$. The *projection* away from p

$$\pi : X \to \pi(X)$$

is a *finite* morphism.