Math 203A, Solution Set 8.

Problem 1.
(i) Show that any singular irreducible cubic in \(\mathbb{P}^2 \) is isomorphic to either the nodal or the cuspidal cubics:
\[
y^2z = x^2(x + z) \text{ or } y^2z = x^3.
\]
(ii) Using (i), show that irreducible cubics in \(\mathbb{P}^2 \) can have at most 1 singular point. Exhibit a cubic in \(\mathbb{P}^2 \) with 3 singular points.

Answer:
(i) Assume the singularity is at \([0 : 0 : 1]\) and let \(f \) be the polynomial giving the cubic. Then since
\[
\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial f}{\partial z} = 0,
\]
f may not contain an \(xz^2 \), \(yz^2 \) or \(z^3 \) terms. That is, \(z \) does not appear to a power higher than 1 in \(f \), and so we may write the cubic as
\[
(\text{quadratic polynomial in } x, y) \cdot z = Q(x, y)
\]
where \(Q \) is a cubic polynomial in \(x, y \).

The quadratic polynomial is either the square of a linear term or the product of two distinct linear terms in \(x \) and \(y \). In the first case, let \(y^{\text{new}} \) be that linear term, or in the second let \(x^{\text{new}} \) and \(y^{\text{new}} \) be the two linear terms. We obtain
\[
y^2z = Q(x, y) \quad \text{or} \quad xyz = Q(x, y)
\]

Consider the first case, \(y^2z = Q(x, y) \). We note first that \(Q \) must contain an \(x^3 \) term, as otherwise both sides are divisible by \(y \) contradicting that the conic is irreducible. First make a scaling change of coordinates of \(x \) so that this \(x^3 \) term has coefficient 1. We seek to "complete the cube" on the right-hand side. Given the coefficient of \(x^2y \) in \(Q \), there are specific coefficients for \(xy^2 \) and \(y^3 \) such that the right-hand side is a perfect cube. By making the change of coordinates
\[
z \mapsto \lambda x + \mu y + z,
\]
with the appropriate choices of \(\lambda \) and \(\mu \), we produce the terms \(\lambda xy^2 \) and \(\mu y^3 \), which can be used to complete the cube. This produces
\[
y^2z = (x + by)^3.
\]

With the final change of coordinates \(x^{\text{new}} = x + by \), we end with
\[
y^2z = x^3
\]
as desired.
Now consider the second case, \(xyz = Q(x, y) \). As before, \(Q \) must contain an \(x^3 \) and a \(y^3 \) term, or else it would violate irreducibility. First make scaling change of coordinates of \(x \) and \(y \) so that the coefficients of \(x^3 \) and \(y^3 \) are 1. Then by making the change of coordinates \(z \mapsto \lambda x + \mu y + z \), we once again complete the cube on the right-hand side (this time filling in the terms \(x^2y \) and \(xy^2 \)). This produces

\[
xyz = (x + y)^3.
\]

Now make the change of coordinates

\[
\begin{align*}
x' &= x + y \\
y' &= x - y \\
z' &= -z/4
\end{align*}
\]

with inverse

\[
\begin{align*}
x &= (x' + y')/2 \\
y &= (x' - y')/2 \\
z &= -4z'
\end{align*}
\]

Under these change of coordinates, the equation becomes

\[
(y^2 - x^2)z = x^3,
\]

or equivalently \(y^2z = x^2(x + z) \)

as desired.

(ii) Consider the case of the nodal cubic

\[
f = x^2(x + z) - y^2z = 0.
\]

Then

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 3x^2 + 2xz \\
\frac{\partial f}{\partial y} &= -2yz \\
\frac{\partial f}{\partial z} &= x^2 - y^2.
\end{align*}
\]

If the second is to vanish, then \(y = 0 \) or \(z = 0 \). If \(y = 0 \), then from the \(z \)-partial we get \(x = 0 \), so we find the point \([0 : 0 : 1]\), which is indeed singular. If \(z = 0 \), then from the \(x \)-partial we get \(x = 0 \), then from the \(z \)-partial we get \(z = 0 \). But then \(x = y = z = 0 \), which is impossible. Therefore, the only singularity is \([0 : 0 : 1]\).

For the cuspidal cubic

\[
f = x^3 - y^2z = 0,
\]

the partials are

\[
\begin{align*}
\frac{\partial f}{\partial x} &= 3x^2 \\
\frac{\partial f}{\partial y} &= -2yz \\
\frac{\partial f}{\partial z} &= -y^2.
\end{align*}
\]

If all are to vanish, then we must have \(x = y = 0 \), so we get the unique singular point \([0 : 0 : 1]\).

The reducible cubic given by

\[
xyz = 0
\]

has the three singularities \([1 : 0 : 0]\), \([0 : 1 : 0]\), and \([0 : 0 : 1]\).
Problem 2. Let $C \subset \mathbb{P}^2$ be a non-singular curve, given as the zero locus of a homogeneous polynomial $f \in k[x, y, z]$. Consider the morphism

$$\Phi : C \to \mathbb{P}^2, p \mapsto \left[\frac{\partial f}{\partial x}(p) : \frac{\partial f}{\partial y}(p) : \frac{\partial f}{\partial z}(p) \right].$$

The image $\Phi(C) \subset \mathbb{P}^2$ is called the dual curve to C.

(i) Why is Φ a well-defined morphism? Find a geometric description of Φ, independent of coordinate choices.

(ii) If C is an irreducible conic, prove that its dual $\Phi(C)$ is also an irreducible conic. One way to prove this is to linearly change coordinates and assume the conic C is $\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0$. How does the morphism Φ change when we change coordinates?

(iii) For any five lines in \mathbb{P}^2 in general position (what does this mean?) show that there is a unique conic in \mathbb{P}^2 that is tangent to these five lines.

Answer: (i) If p is a nonsingular point of C, $\frac{\partial f}{\partial x}(p)$, $\frac{\partial f}{\partial y}(p)$, $\frac{\partial f}{\partial z}(p)$ cannot be zero simultaneously by the projective Jacobi criterion. Thus Φ is well-defined. The line L_p with equation

$$\frac{\partial f}{\partial x}(p)x + \frac{\partial f}{\partial y}(p)y + \frac{\partial f}{\partial z}(p)z = 0$$

is the tangent line to C at p. Under the identification of \mathbb{P}^2 with the dual projective space $(\mathbb{P}^2)^\vee$, Φ associates to each $p \in C$, the tangent line at p.

(ii) From previous homeworks, we’ve learned to use linear coordinate changes to make a irreducible conic into the form

$$\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0.$$

If one of the $\lambda_i = 0$, the conic is reducible. So we can assume $\lambda_i \neq 0$ for all i. Then

$$\Phi : C \to \mathbb{P}^2, [x : y : z] \mapsto [\lambda_1 x : \lambda_2 y : \lambda_3 z].$$

Therefore, for points in the image $\Phi(C)$ we have

$$X = \lambda_1 x, Y = \lambda_2 y, Z = \lambda_3 z,$$

with $\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0$.

Thus $\Phi(C)$ is the conic

$$\frac{1}{\lambda_1} X^2 + \frac{1}{\lambda_2} Y^2 + \frac{1}{\lambda_3} Z^2 = 0.$$

Taking into account the changes of coordinates, we see that $\Phi(C)$ is always a conic.
(iii) Let \(C \) be an arbitrary conic. We claim that the dual of the dual of \(C \) is \(C \).
Indeed, since the description of \(\Phi \) is independent of coordinates, we may first assume that \(C \) is of the form
\[
\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^2 = 0.
\]
We have seen above that the dual conic becomes
\[
\frac{1}{\lambda_1} X^2 + \frac{1}{\lambda_2} Y^2 + \frac{1}{\lambda_3} Z^2 = 0.
\]
Dualizing once more, we recover the original conic \(C \).

Suppose \(L_i \) are 5 lines \(a_i x + b_i + c_i z = 0 \) such that the 5 points \([a_i, b_i, c_i] \in \mathbb{P}^2\) are in general position, i.e. no three of this points are collinear (or equivalently no three of the lines are concurrent). Let \(D \) be the unique conic passing through the 5 points \([a_i, b_i, c_i]\). Thus the dual conic of \(D \) is still a conic. By definition, the dual conic of \(D \) in \(\mathbb{P}^2 \) is tangent to the five lines \(L_i \).

\[\square \]

Problem 3. Resolve the singularities of the following curve by subsequent blow-ups
\[
y^2 - x^{k+1} = 0.
\]

Answer: Assume first \(k = 2n \) is even. Let \(C_n \) be the curve \(y^2 - x^{2n+1} = 0 \). The only singularity for \(C_n \) is \((0,0)\). Let \(\pi \) be the blowup of \(\mathbb{A}^2 \) at the origin and let \(\overline{C}_n \) be the proper transform. The blowup has two charts. In one of the charts the blow down map is
\[
(u, v) \rightarrow (u, uv).
\]
In this chart, we compute the proper transform \(\overline{C}_n \). The curve \(\pi^{-1}(C_n) \) is given by
\[
f(u, uv) = (uv)^2 - u^{2n+1} = u^2(u^2 - v^{2n+1})
\]
is the union of \(\ell = \{u = 0\} \) and \(C_{n-1} \). The curve \(C_{n-1} \) is still singular at the origin.

The other chart of the blowup is similar, the blow down map being \((u, v) \rightarrow (uv, u)\). A similar argument shows that there are no singularities of the proper transform in this chart. Thus \(\pi : \overline{C}_n \rightarrow C_n \) and \(\overline{C}_n \) has one singular point, such that \(\overline{C}_n \) in an affine chart is isomorphic to \(C_{n-1} \subset \mathbb{A}^2 \). Continuing the process until \(n = 1 \), \(C_1 \) is given by \(y^2 - x = 0 \) is nonsingular, thus the singularities of \(C_n \) are resolved after a chain of \(n \) blow-ups. The exceptional set is a chain of lines.

The case \(k \) odd is entirely similar. \(\square \)

Problem 4. Let \(X \subset \mathbb{A}^n \) be an affine variety and let \(p \in X \). Let \(\mathfrak{m} \) is the maximal ideal of \(\mathcal{O}_{X,p} \). Show that there exists an isomorphism
\[
k[x_1, \ldots, x_n]/\mathfrak{m}^n \rightarrow \bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}.
\]
Remark: If i^{in} is radical, then the coordinate ring $A(C_{X,p})$ of the tangent cone of X at p is isomorphic to the graded algebra $\bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}$, so the tangent cone is intrinsic. However, the tangent cone is better defined as a “scheme”

$$\text{Spec} \left(k[x_1, \ldots, x_n]/i^{in}\right) = \text{Spec} \left(\bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}\right).$$

Answer: Let $i \subset k[x_1, \ldots, x_n]$ be the ideal of X, and assume $p = 0$. Let \mathfrak{m} denote the ideal of p in $A(X)$. Since $C_{X,p}$ was defined as the vanishing locus of the initial ideal i^{in}, we first explain the isomorphism

$$\phi : k[x_1, \ldots, x_n]/i^{in} \rightarrow \bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}.$$

This is defined via

$$\phi : f \mapsto f^{(k)}|_X$$

where $f^{(k)}$ are the homogeneous pieces of a polynomial f. This is well defined since if $f = h^{(in)}$ for some $h \in i$ then

$$h = f + \text{terms of order at least } k + 1 \equiv f \mod \mathfrak{m}^{k+1}.$$

Restricting to X, since $h|_X = 0$ we obtain that

$$\phi(f) = f|_X \in \mathfrak{m}^{k+1}$$

proving that ϕ is well-defined. Furthermore, ϕ is an algebra homomorphism. Since ϕ maps $x_i \rightarrow x_i$ which generate the algebra on the right hand side, ϕ is surjective. It is not hard to check that ϕ is injective. Indeed, if $\phi(f) = 0$ then

$$f^{(k)}|_X \in \mathfrak{m}^{k+1} \subset (x_1, \ldots, x_n)^{k+1}.$$

This implies that for some $h \in i$, we have

$$f^{(k)} - h \in (x_1, \ldots, x_n)^{k+1}.$$

In particular, looking at the pieces of degrees $j \in \{0, \ldots, k\}$, we obtain

$$f^{(k)} = h^{(k)}, \quad h^{(j)} = 0 \text{ for } j < k.$$

This means $f^{(k)} = h^{in} \in i^{in}$ for all k, which gives $f \in i^{in}$. This proves injectivity and establishes the isomorphism

$$k[x_1, \ldots, x_n]/i^{in} \rightarrow \bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}.$$

To complete the proof, we show

$$\bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1} \cong \bigoplus_{k \geq 0} \mathfrak{m}^k/\mathfrak{m}^{k+1}.$$
Recall that m is the maximal ideal in $\mathcal{O}_{X,p} = A(X)_m$. Thus it suffices to show the following algebraic statement:

Lemma. Let A be a ring, m a maximal ideal, $n = mA_m$ the maximal ideal in A_m. Then

$$\bigoplus_k \frac{m^k}{m^{k+1}} \cong \bigoplus_k \frac{n^k}{n^{k+1}}$$

is an isomorphism.

Proof. It suffices to prove

$$\pi_k : A/m^k \to A_m/n^k, \quad a \mapsto \frac{a}{1}$$

is an isomorphism. Then, using induction on k, and the exact sequences

$$0 \to \frac{m^k}{m^{k+1}} \to A/m^{k+1} \to A/m^k \to 0$$

$$0 \to \frac{n^k}{n^{k+1}} \to A_m/n^{k+1} \to A_m/n^k \to 0$$

we conclude the proof of the lemma.

Let $S = A - m$. Then

$$n^k = mA_m = \left\{ \frac{a}{s} : a \in m^k, s \in S \right\}.$$

To show π_k is injective, assume

$$\pi_k(a) = 0 \implies \frac{a}{1} \in n^k \implies \frac{a}{1} = \frac{\alpha}{s} \text{ with } \alpha \in m^k, s \in S.$$

Thus, for some $u \in S$, we have $asu = \alpha u$ so $asu \in m^k$ so $asu = 0$ in A/m^k. However, su is a unit in A/m^k. Indeed, A/m^k has only one maximal ideal m/m^k (since those maximal ideals correspond to maximal ideals in A containing m, hence to m itself), and su is not in the maximal ideal by assumption. Thus since su is a unit in A/m^k it follows $a = 0$ in A/m^k as needed.

To show π_k is surjective, consider $\frac{a}{s}$ an element in A_m/n^k. We seek $a \in A$ such that $\frac{a}{1} = \frac{a}{s} \mod n^k$ in A_m. Since $s \in S$, and the only maximal ideal in A/m^k is m/m^k which does not contain s, it follows s is a unit in A/m^k. Therefore

$$(s) + m^k = A.$$

Thus, there exists $b \in A$, $\beta \in m^k$ such that

$$bs + \beta = 1 \implies s \alpha + \beta \alpha = \alpha \implies \frac{\alpha}{s} = \frac{b\alpha}{1} + n^k.$$

Setting $a = b\alpha$, we have $\pi_k(a) = \frac{a}{s}$ as needed.

□

Problem 5. Consider the blowup of the affine variety $X \subset \mathbb{A}^n$ at $p \in X$. Show that the exceptional hypersurface is the projectivization of the tangent cone

$$E \cong \mathbb{P}(C_{X,p}).$$
You may want to generalize the argument we had in class for plane curves.

Answer: Changing coordinates we may assume $p = (0, \ldots, 0)$. Write X as the vanishing locus of f_1, \ldots, f_r, let $f_1^{\text{in}}, \ldots, f_r^{\text{in}}$ denote the initial terms, whose degrees are d_1, \ldots, d_r. We need to prove

$$E \cong Z_p(f_1^{\text{in}}, \ldots, f_r^{\text{in}}),$$

where Z_p denotes the projective vanishing locus.

The blowup at the origin $\widetilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$ can be covered by coordinate patches

$$U_i = \{(x, y) \in \widetilde{\mathbb{A}}^n, y_i \neq 0\},$$

where $x \in \mathbb{A}^n, y \in \mathbb{P}^{n-1}$. Each U_i is isomorphic to \mathbb{A}^n. For instance, the isomorphism

$$\mathbb{A}^n \hookrightarrow U_1 \subset \widetilde{\mathbb{A}}^n \subset \mathbb{A}^n \times \mathbb{P}^{n-1}$$

is given by

$$(x_1, y_2, \ldots, y_n) \mapsto ((x_1, x_1 y_2, \ldots, x_1 y_n), [1 : y_1 : \ldots : y_n]).$$

Consider $V_i = \mathcal{X} \cap U_i$, so that we have a covering

$$\mathcal{X} = \bigcup_{i=1}^n V_i.$$

We will work locally in each affine open U_i. Let $i = 1$. Over the subset $V_1 \subset U_1 \cong \mathbb{A}^n$ we must have

$$f_k(x_1, x_1 y_2, \ldots, x_1 y_n) = 0, \quad 1 \leq k \leq r.$$

Set

$$g_k(x_1, y_2, \ldots, y_n) = \frac{f_k(x_1, x_1 y_2, \ldots, x_1 y_n)}{x_1^{d_k}}.$$

Note that for $V_1 \cap \{x_1 \neq 0\} = V_1 \setminus E$, we must have $g_k = 0$, so that same thing must be true over the closure \overline{V}_1. Thus $V_1 \subset \mathbb{A}^n$ is cut out by the polynomials $g_k(x_1, y_2, \ldots, y_n)$.

Expanding

$$f_k = f_k^{\text{in}} + \text{h.o.t}$$

we obtain

$$g_k(x_1, y_2, \ldots, y_n) = f_k^{\text{in}}(1, y_2, \ldots, y_n) + \text{terms that involve } x_1.$$

Over the exceptional hypersurface E, we must have $x_1 = 0$, hence $E \cap V_1$ is given by setting $x_1 = 0$ in g_k yielding

$$f_k^{\text{in}}(1, y_2, \ldots, y_n),$$

which is just the restriction of f_k^{in} to the affine patch U_1. This proves that

$$E \cong Z_p(f_1^{\text{in}}, \ldots, f_r^{\text{in}}).$$

□