Problem 1. Let V be a finite dimensional vector space and let $\omega \in \wedge^2 V$. Show that the following statements are equivalent

(i) $\omega = v \wedge w$ for two vectors $v, w \in V$

(ii) there exists a nonzero $v \in V$ such that $v \wedge \omega = 0$

(iii) $\omega \wedge \omega = 0$.

Use (iii) to show that the Grassmannian $G(1, 3)$ is a (nondegenerate) quadric in \mathbb{P}^5.

Answer: We show (i) \iff (iii). It is clear that if $\omega = v \wedge w$ then $\omega \wedge \omega = 0$. Conversely, we will induct on $n = \dim V$, the base case $n = 2$ being clear. For the inductive step, if $\dim V$ is $n + 1$, let e_0, \ldots, e_n be a basis for V. Let us write

$$\omega = e_0 \wedge \eta + \omega'$$

where ω', η do not contain the vector e_0. Thus

$$0 = \omega \wedge \omega = 2e_0 \wedge \eta \wedge \omega' + \omega' \wedge \omega'.$$

By examining tensors which do or do not contain e_0, this implies that

$$\omega' \wedge \omega' = 0, \quad \eta \wedge \omega' = 0.$$

Hence by induction

$$\omega' = v \wedge w,$$

with v, w being in the subspace spanned by e_1, \ldots, e_n. Also, we know

$$\eta \wedge \omega' = \eta \wedge v \wedge w = 0.$$

This shows that η cannot be independent of v, w hence

$$\eta = av + bw.$$

Collecting terms we find

$$\omega = e_0 \wedge (av + bw) + v \wedge w = (v + be_0) \wedge (w + ae_0)$$

as claimed.

We show (i) \iff (ii). In one direction, $\omega = v \wedge w$ implies $v \wedge \omega = v \wedge v \wedge w = 0$. Conversely, assume $v \wedge \omega = 0$ for $v \neq 0$. Without loss of generality, we write $v_1 = v$ and complete to a basis v, v_2, \ldots, v_n of V. Write

$$\omega = \sum_{i<j} \omega_{ij} v_i \wedge v_j.$$

Then

$$v \wedge \omega = \sum_{i<j} \omega_{ij} v_1 \wedge v_i \wedge v_j$$
and in the sum we must have $i > 1$. Since $v \land \omega = 0$, it follows that $\omega_{ij} = 0$ for all $i, j > 1$. Thus

$$\omega = \sum_{k > 1} \omega_{1k}v_1 \land v_k = v \land w, \quad w = \sum_{k > 1} \omega_{1k}v_k.$$

For the Grassmannian $G(1, 3)$, write

$$\omega = \sum_{1 \leq i < j \leq 4} \omega_{ij}e_i \land e_j.$$

Then

$$\omega \land \omega = 2(\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23})e_1 \land e_2 \land e_3 \land e_4 = 0$$

so $G(1, 3)$ is given by the following quadric in \mathbb{P}^5:

$$\omega_{12}\omega_{34} - \omega_{13}\omega_{24} + \omega_{14}\omega_{23} = 0.$$

\[\text{Problem 2. Recall the Plücker embedding} \]

$$\Phi : G(k + 1, n + 1) \mapsto \mathbb{P}\left(\wedge^{k+1} \mathbb{C}^{n+1}\right), \quad W \mapsto \wedge^{k+1} W.$$

Show that Φ is well-defined and injective. Show that the image of Φ is closed, hence $G(k, n) = G(k + 1, n + 1)$ is projective.

\begin{proof}
Let v_1, \ldots, v_{k+1} be a basis for W, so that $\wedge^{k+1} W$ is spanned by $v_1 \land \ldots \land v_{k+1}$. This vector is not zero since v_1, \ldots, v_{k+1} are independent. If another basis v'_1, \ldots, v'_{k+1} is chosen, then

$$v_1 \land \ldots \land v_{k+1} = \det C \cdot v'_1 \land \ldots \land v'_{k+1}$$

where C is the change of basis. Thus the projective point $[v_1 \land \ldots \land v_{k+1}]$ is independent of choices, for each fixed W.

To show Φ is injective, assume $W = \langle v_1, \ldots, v_{k+1} \rangle$ and $W' = \langle v'_1, \ldots, v'_{k+1} \rangle$. If $\Phi(W) = \Phi(W')$ then

$$v_1 \land \ldots \land v_{k+1} = cv'_1 \land \ldots \land v'_{k+1}$$

for some constant $c \neq 0$. Thus, wedge product with v'_1 shows that

$$v'_1 \land v_1 \land \ldots \land v_{k+1} = cv'_1 \land v'_1 \land \ldots \land v'_{k+1} = 0.$$

This shows that $v'_1, v_1, \ldots, v_{k+1}$ are linearly dependent. Since v_1, \ldots, v_{k+1} are independent, it follows that

$$v'_1 \in \langle v_1, \ldots, v_k \rangle \implies v'_1 \in W.$$

Similarly, $v'_j \in W$ and hence $W' \subset W$. Similarly $W \subset W'$. This shows $W = W'$

Next we show the Plücker image is closed.

\begin{lemma}
Let $\omega \in \wedge^{k+1} \mathbb{C}^{n+1}$, $\omega \neq 0$, and consider the linear map

$$f_\omega : \mathbb{C}^{n+1} \mapsto \wedge^{k+2} \mathbb{C}^{n+1}, v \mapsto v \land \omega.$$

There exist v_1, \ldots, v_{k+1} such that $\omega = v_1 \land \ldots \land v_{k+1}$ if and only if the rank of f_ω is at most $n - k$.

\end{lemma}
Assuming this result, it is easy to see that \(\text{Im } \Phi \) can be described by requiring that the minors of the matrix of \(f_\omega \) of size \(n - k + 1 \) vanish. Write

\[
\omega = \sum \omega_I e_I
\]

where \(I = \{i_1 < \ldots < i_{k+1}\} \) is a multindex and

\[
e_I = e_{i_1} \wedge \ldots \wedge e_{i_{k+1}}.
\]

The matrix of \(f_\omega \) in the standard bases can easily be expressed in terms of \(\omega_I \)'s via the rules

\[
e_t \wedge \omega = \sum_{t \not\in I} \omega_I e_t \wedge e_I.
\]

The matrix has entries depending on \(\omega_I \)'s. The vanishing of the minors gives polynomial equations between the \(\omega_I \)'s which define the Plücker image.

Proof of the lemma. By the rank-nullity theorem, the statement is equivalent to the fact that the null space of \(f_\omega \) has dimension at least \(k + 1 \). If \(\omega = v_1 \wedge \ldots \wedge v_{k+1} \) it is clear that

\[
f_\omega(v_j) = v_j \wedge \omega = v_j \wedge v_1 \wedge \ldots \wedge v_{k+1} = 0
\]

so the kernel contains the \((k + 1)\) independent vectors \(v_1, \ldots, v_{k+1} \).

Conversely, assuming that the kernel of \(f_\omega \) contains \((k + 1)\) independent vectors \(v_1, \ldots, v_{k+1} \), we must have

\[
v_j \wedge \omega = 0.
\]

Complete \(v_1, \ldots, v_{k+1} \) to a basis \(v_1, \ldots, v_{n+1} \) of \(\mathbb{C}^{n+1} \). Using multindex notation, write

\[
\omega = \sum \omega_I v_I
\]

where \(|I| = k + 1 \). Note that

\[
v_j \wedge \omega = \sum_{j \not\in I} \omega_I v_j \wedge v_I.
\]

Since \(v_j \wedge \omega = 0 \) for all \(1 \leq j \leq k + 1 \), it follows that

\[
\omega_I = 0 \text{ if } j \not\in I.
\]

Thus

\[
\omega_I \neq 0 \implies j \in I
\]

for all \(j = 1, \ldots, k + 1 \). This shows that \(\{1, \ldots, k + 1\} \subset I \) hence \(I = \{1, \ldots, k + 1\} \). Thus

\[
\omega = cv_1 \wedge \ldots \wedge v_{k+1}.
\]

The statement follows by absorbing the constant \(c \) into one of the \(v_j \)'s.
Problem 3. (i) Let $\Phi : \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ be the Segre morphism. Show that if $t, s \in \mathbb{P}^1$, then

\[L_t = \Phi(\{t\} \times \mathbb{P}^1), \quad M_s = \Phi(\mathbb{P}^1 \times \{s\}) \]

are lines in \mathbb{P}^3 intersecting in the point $\Phi(t,s)$.

Conclude that if $Q \subset \mathbb{P}^3$ is a nondegenerate quadric, there are two families of lines (called rulings) $\{L_t\}$ and $\{M_s\}$ in \mathbb{P}^3 lying on the quadric Q. Furthermore, any point of Q is the intersection of two lines, one from each family.

(ii) Show that if $Q \subset \mathbb{P}^5$ is a nondegenerate quadric, there exist two families of planes in \mathbb{P}^5 lying on the quadric Q.

Answer: (i) The second paragraph of part (i) follows from the first since all nondegenerate quadrics $Q \subset \mathbb{P}^3$ are isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$ via a linear change of coordinates. It suffices to show L_t are lines in \mathbb{P}^3. Write $t = [a : b]$, let $[z : w]$ be the coordinates of the second \mathbb{P}^1, and let $[x_0 : x_1 : x_2 : x_3]$ be the coordinates in \mathbb{P}^3. Then points in L_t are of the form
\[\Phi([a : b], [z : w]) = [az : aw : bz : bw]. \]

We can describe L_t as the line with equation
\[bx_0 - ax_2 = bx_1 - ax_3 = 0. \]

(ii) All nondegenerate quadrics in \mathbb{P}^5 are isomorphic, and we have shown in $G(1,3)$ is a non-degenerate quadric in \mathbb{P}^5 in Question 1. Thus, we may assume that $Q = G(1,3)$ under its Plücker embedding.

We show that for each $p \in \mathbb{P}^3$, the locus
\[X_p = \{[\ell] \in G(1,3) : p \in \ell\} \]

is a plane in \mathbb{P}^5 lying in Q. To see that X_p is a plane, we use Plücker coordinates. The argument is the same as in Problem 4(i).

Without loss of generality, we may assume $p = [1 : 0 : 0 : 0]$, otherwise we change coordinates appropriately. We will think of lines L in terms of their Plucker coordinates
\[z_{ij} = a_ib_j - a_jb_i \]
where a, b are two points on L with
\[a = [a_0 : \ldots : a_3], b = [b_0 : \ldots : b_3]. \]

In Problem 4(i), we show that the condition $p \in \ell$ is given by the equations
\[p_i z_{jk} - p_j z_{ik} + p_k z_{ij} = 0 \]
for all $i < j < k$. In our case, these equations are
\[z_{12} = z_{13} = z_{23} = 0. \]
These equations describe a 2-plane in \mathbb{P}^5.

Similarly, if $H \subset \mathbb{P}^3$ is a hyperplane, then the locus

$$Y_H = \{[\ell] \in G(1, 3) : \ell \subset H\}$$

is a plane in \mathbb{P}^5 lying in Q. Indeed, without loss of generality, we may assume $H = \{x_0 = 0\}$. The line ℓ has to be spanned by vectors

$$a = \sum_{i=1}^{3} a_i e_i, \quad b = \sum_{i=1}^{3} b_i e_i$$

with $a_0 = b_0 = 0$, so that the Plücker coordinates are

$$z_{01} = z_{02} = z_{03} = 0.$$

These equations describe a plane in \mathbb{P}^5.

Conversely, any point in \mathbb{P}^5 with

$$z_{01} = z_{02} = z_{03} = 0$$

comes from a line in H. Indeed, for a point with coordinates (z_{ij}) as above, let

$$\omega = \sum_{1 \leq i,j \leq 3} z_{ij} e_i \wedge e_j.$$

Viewing ω as an element in $\wedge^2 \mathbb{C}^3$, by dimension reasons $\omega \wedge \omega = 0$ so $\omega = a \wedge b$ for $a, b \in \mathbb{C}^3$.

Now view a, b as vectors in \mathbb{C}^4 by making the first coordinate 0, let $\ell \subset H$ be spanned by a, b. The Plücker point of ℓ is the point we started with.

\[\square\]

Problem 4. Let $G(1, n)$ be the Grassmannian of lines in \mathbb{P}^n as in the previous homework. Show that:

(i) The set $\{(L, P) : P \in L\} \subset G(1, n) \times \mathbb{P}^n$ is closed.

(ii) If $Z \subset G(1, n)$ is any closed subset then the union of all lines $L \subset \mathbb{P}^n$ such that $L \in Z$ is closed in \mathbb{P}^n.

(iii) Let $X, Y \subset \mathbb{P}^n$ be disjoint projective varieties. Then the union of all lines in \mathbb{P}^n intersecting X and Y is a closed subset of \mathbb{P}^n. It is called the join $J(X, Y)$ of X and Y.

Answer:

(i) We let

$$J = \{(P, L) : P \in L\} \subset \mathbb{P}^n \times G(1, n).$$

We will think of lines L in terms of their Plücker coordinates

$$z_{ij} = a_i b_j - a_j b_i$$

where a, b are two points on L with

$$a = [a_0 : \ldots : a_n], \quad b = [b_0 : \ldots : b_n].$$
In fact, it will be useful to form the vectors
\[a = \sum a_i e_i, \quad b = \sum b_i e_i. \]

Similarly, a point \(P \in \mathbb{P}^n \) will have an associated vector
\[p = \sum p_i e_i. \]

Now, if \(P \in L \), then \(p = sa + tb \) hence
\[p \wedge a \wedge b = 0. \]

Then
\[
\left(\sum p_i e_i \right) \wedge \left(\sum a_i e_i \right) \wedge \left(\sum b_i e_i \right) = \left(\sum p_i e_i \right) \wedge \left(\sum_{j<k} z_{jk} e_j \wedge e_k \right)
\]
\[= \sum_{i<j<k} (p_i z_{jk} - p_j z_{ik} + p_k z_{ij}) e_i \wedge e_j \wedge e_k. \]

The conclusion is that \(J \) is defined by the equations
\[p_i z_{jk} - p_j z_{ik} + p_k z_{ij} = 0 \]
which are bihomogeneous in the variables. Thus, \(J \) is projective.

(ii) Let
\[p : J \to G(1,n), \quad q : J \to \mathbb{P}^n \]
be the natural projections. Then, for any \(Z \) closed in \(G(1,n) \), the preimage \(p^{-1}(Z) \) is also closed. Thus \(q(p^{-1}(Z)) \) is closed by the main theorem of projective varieties. This set consists in points \(P \) lying on lines \(L \) such that \(L \in Z \), hence it can be identified with the union of all lines in \(Z \).

(iii) We let \(A \) be the set of lines intersecting \(X \) and \(B \) be the set of lines intersecting \(Y \). We show \(A \) and \(B \) are closed in \(G(1,n) \), hence so is \(Z = A \cap B \). The join \(J(X,Y) \) is simply the union of lines contained in \(Z \) hence it must be closed in \(\mathbb{P}^n \) by item (ii).

It suffices to prove \(A \) is closed in \(G(1,n) \). Indeed, we can think of \(A \) as the projection under \(p \) of the set
\[
\{(P,L) : P \in L \} \cap X \times G(1,n) = J \cap q^{-1}(X).
\]

Hence
\[A = p(J \cap q^{-1}(X)) \]
which is closed because \(p \) is closed and \(q \) is continuous.

Problem 5. Show that \(\mathbb{P}^1 \times \mathbb{A}^1 \) and \(\mathbb{P}^2 \setminus \{x\} \) are neither affine nor projective.
Answer: Write \(t \) for the coordinate on \(\mathbb{A}^1 \). We claim that the regular functions on \(\mathbb{P}^1 \times \mathbb{A}^1 \) are polynomials \(f(t) \). This will show that \(\mathbb{P}^1 \times \mathbb{A}^1 \) is not projective, because projective varieties only have constants as regular functions. It also shows \(X = \mathbb{P}^1 \times \mathbb{A}^1 \) is not affine since it were affine, its coordinate ring would be

\[
A(X) = k[t] = A(\mathbb{A}^1).
\]

Then \(X \cong \mathbb{A}^1 \), but this is clearly impossible for dimension reasons.

Indeed, let \(U, V \) be two affine opens covering \(\mathbb{P}^1 \). We have

\[
U \cong \mathbb{A}^1, \quad V \cong \mathbb{A}^1
\]

with coordinates \(z, w \) and \(w = \frac{1}{z} \) over overlaps. Let \(\phi \) be a regular function on \(\mathbb{P}^1 \times \mathbb{A}^1 \). Then \(\phi \) is regular on \(U \times \mathbb{A}^1 \cong \mathbb{A}^2 \) so

\[
\phi = p(z, t)
\]

for some polynomial \(p \). Similarly, \(\phi \) is regular on \(V \times \mathbb{A}^1 \cong \mathbb{A}^2 \) so

\[
\phi = q(w, t)
\]

for some polynomial \(q \). Over \((U \cap V) \times \mathbb{A}^1 \) we must have

\[
p(z, t) = q \left(\frac{1}{z}, t \right).
\]

The powers of \(z \) on the left have nonnegative exponents, while the powers of \(z \) on the right have nonpositive exponents, so the exponents must be 0. Thus,

\[
p(z, t) = q \left(\frac{1}{z}, t \right) = f(t) \quad \implies \quad \phi = f(t)
\]

for some polynomial \(f \).

For \(Y = \mathbb{P}^2 \setminus \{ x \} \), we claim that all regular functions are constant. This will show that \(Y \) cannot be affine because

\[
A(Y) = k = A(\text{point}) \implies Y \cong \text{point}
\]

which is clearly impossible for dimension reasons. Indeed, if \(\phi \) is regular on \(\mathbb{P}^2 \setminus \{ x \} \), then consider the restriction of \(\phi \) to \(U = \mathbb{A}^2 \setminus \{ 0 \} \). This extends to a regular function on \(\mathbb{A}^2 \) by the removable singularity theorem. Thus \(\phi \) extends to a regular function on \(\mathbb{P}^2 \), showing then that \(\phi \) must be constant.

To see \(Y \) is not projective, assume otherwise. Let \(L = \{ \ell = 0 \} \) be a line in \(\mathbb{P}^2 \) through \(x \). Then, \(Z = L \setminus \{ x \} \) is closed in \(Y \) so it must be projective. This is not true since \(Z = L \setminus \{ x \} \cong \mathbb{A}^1 \). \(Z \) admits nonconstant regular functions, so it cannot be projective. This contradiction shows that \(Y \) is not projective.

\[\square\]

Problem 6. Let \(n \geq 2 \). The set \(X \) of degree \(d \) homogeneous polynomials in \(n + 1 \) variables can be identified with a projective space \(\mathbb{P}^N \), by recording the coefficients in some order. What is \(N \)?

Using the fundamental theorem of elimination theory, show that the set of irreducible polynomials form an open dense subset of \(X \).
The space V_d of degree d polynomials in $n + 1$ variables has dimension $\binom{n + d}{d}$. Consider the morphism

$$\phi_k : \mathbb{P}(V_k) \times \mathbb{P}(V_{d-k}) \rightarrow \mathbb{P}(V_d), \quad (f, g) \mapsto f \cdot g.$$

Clearly, ϕ_k is a morphism. This can be seen by writing

$$f = \sum a_I z^I, \quad g = \sum b_J z^J \implies f \cdot g = \sum_{I+J=K} \left(\sum_{I} a_I b_J \right) z^K$$

which shows

$$\phi_k(a_I, b_J) = (c_K), \quad c_K = \sum_{I+J=K} a_I b_J.$$

This is a morphism. By the main theorem of projective geometry,

$$Y_k = \text{Image } \phi_k$$

is closed. The reducible polynomials are given as

$$Y = \bigcup_{k=1}^{d-1} Y_k.$$

This set is therefore also closed in X.

The set of irreducible polynomials is therefore open being the complement. It is also nonempty, hence dense. To see nonemptiness, the polynomial $x_0^d + \ldots + x_n^d$ is irreducible for $n \geq 2$ (in characteristic zero). This can be proved in several ways. For instance, when $n = 2$, it suffices to view

$$x_0^d + x_1^d + x_2^d$$

as a polynomial in $k[x_1, x_2][x_0]$ and apply the Eisenstein criterion to the prime ideal

$$p = (x_1 + \zeta x_2),$$

where ζ is a root of -1. Clearly,

$$x_1^d + x_2^d \in p \setminus p^2,$$

so the criterion applies. For $n > 2$, use induction to conclude $p = (x_1^d + \ldots + x_n^d)$ is prime, and apply Eisenstein to the polynomial $x_0^d + (x_1^d + \ldots + x_n^d)$ in $k[x_1, \ldots, x_n][x_0]$ for the ideal p.

Problem 7. *(Rational varieties.)* The definition of birational isomorphisms given in class extends to the projective category. Two projective varieties X and Y are birational if there are rational maps

$$f : X \dashrightarrow Y, \quad g : Y \dashrightarrow X,$$

which are rational inverses to each other. Just as in the affine case, a birational isomorphism $f : X \dashrightarrow Y$ induces an isomorphism of the fields of rational functions $f^* : K(Y) \rightarrow K(X).$
(i) Explain that if X is rational, then

$$K(X) \cong k(t_1, \ldots, t_n).$$

(ii) Show that $\mathbb{P}^n \times \mathbb{P}^m$ is rational, by constructing an explicit birational isomorphism with \mathbb{P}^{n+m}. Show that if X and Y are rational, then $X \times Y$ is rational.

(iii) Show that \mathbb{P}^2 is not isomorphic to $\mathbb{P}^1 \times \mathbb{P}^1$.

(iv) The group of automorphisms of the field of fractions in two variables $k(x, y)$ is called the Cremona group. Explain that the elements of the Cremona group correspond to birational self-isomorphisms of \mathbb{P}^2. Explain that the Cremona involution

$$(x, y) \rightarrow (x^{-1}, y^{-1})$$

extends to an automorphism of $k(x, y)$. What is the corresponding birational involution of \mathbb{P}^2? Where is this birational automorphism regular?

(v) More generally, show that $GL_2(\mathbb{Z})$ is a subgroup of the Cremona group.

Answer:

(i) Clearly, $K(\mathbb{A}^n) \cong k(t_1, \ldots, t_n)$. Thus X is rational iff

$$K(X) \cong k(t_1, \ldots, t_n).$$

(ii) Let $U \subset \mathbb{P}^n$ be the open set where the coordinate $x_0 \neq 0$. Then $U \cong \mathbb{A}^n$, showing that \mathbb{A}^n and \mathbb{P}^n are birational since they have an isomorphic open subset.

Similarly, let $V \subset \mathbb{P}^m$ be the open set where the coordinate $y_0 \neq 0$. We have $U \cong \mathbb{A}^n$, $V \cong \mathbb{A}^m$. Thus $U \times V \cong \mathbb{A}^{n+m}$ is an open subset of $\mathbb{P}^n \times \mathbb{P}^m$, hence $\mathbb{P}^n \times \mathbb{P}^m$ and \mathbb{A}^{n+m} are birational.

(iii) Two closed subsets $\{a\} \times \mathbb{P}^1$ and $\{b\} \times \mathbb{P}^1$ in $\mathbb{P}^1 \times \mathbb{P}^1$ have nonempty intersection. This is false in \mathbb{P}^2: any two curves intersect by the weak Bezout theorem. Hence \mathbb{P}^2 and $\mathbb{P}^1 \times \mathbb{P}^1$ cannot be isomorphic.

(iv) We explained in (ii) that

$$K(\mathbb{P}^2) = k(x, y)$$

hence any automorphism of $k(x, y)$ corresponds to an automorphism of $K(\mathbb{P}^2)$ which in turn gives a birational isomorphism of \mathbb{P}^2. The involution

$$(x, y) \rightarrow (x^{-1}, y^{-1})$$

corresponds to the birational map

$$f[x : y : z] = [x^{-1} : y^{-1} : z^{-1}] = [yz : xz : xy].$$

This map is regular on $\mathbb{P}^2 \setminus \{[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]\}$. Indeed, to show that the map is regular at the points where $(x, y) \neq (0, 0)$, we rewrite it in the form

$$f[x : y : z] = \left[\begin{array}{c} z \\ x \\ y \end{array} : \begin{array}{c} z \\ x \\ y \end{array} : 1 \right].$$
(v) The automorphism

$$ (x, y) \rightarrow (x^a y^b, x^c y^d) $$

where

$$ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbb{Z}) $$

belongs to the Cremona group. Its inverse is

$$ (x, y) \rightarrow (x^{a'} y^{b'}, x^{c'} y^{d'}) $$

where

$$ A^{-1} = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} $$

is the inverse of the matrix above.