Math 203, Problem Set 2. Due Friday, October 7.

For this problem set, you may assume that the ground field is \(k \) is algebraically closed.

1. (Identity principle.) The following question can be viewed as an analogue of the identity theorem in complex analysis.

 (i) Let \(F \to X \) be a sheaf on a topological space, and let \(s, t \in F(U) \) be two sections over an open set \(U \subset X \) whose germs \(s_x = t_x \in F_x \) for all \(x \in U \). Show that \(s = t \).

 (ii) Let \(X \) be an affine variety, \(U \subset X \) open and nonempty, and let \(s, t \in O_X(U) \) such that \(s_x = t_x \) for some point \(x \in U \). Show that \(s = t \).

2. (Isomorphisms of sheaves.) Let \(\alpha : F \to G \) be a morphism of sheaves on a topological space \(X \). Show that the following are equivalent:

 (i) \(\alpha \) is an isomorphism. That is, for all \(U \subset X \) open, \(\alpha_U : F(U) \to G(U) \) is an isomorphism.

 (ii) there exists an open cover \(X = \bigcup U_i \) such that for all \(i \), the restrictions \(\alpha|_{U_i} : F|_{U_i} \to G|_{U_i} \) are isomorphisms of sheaves.

 (iii) for all \(x \in X \) the maps on stalks \(\alpha_x : F_x \to G_x \) are isomorphisms.

3. (Stalks at subvarieties.) Let \(F \to X \) be a sheaf on a topological space, and let \(Y \subset X \) be an irreducible nonempty closed subset.

 Consider pairs \((s, U)\) with \(s \in F(U) \) and \(U \subset X \) open such that \(U \cap Y \neq \emptyset \). Define the equivalence relation \((s, U) \sim (t, V)\) iff there exists \(W \subset U \cap V \) such that

 \[W \cap Y \neq \emptyset \text{ and } s|_W = t|_W. \]

 Define the stalk of \(F \) at \(Y \) to be the set of equivalence classes of such pairs.

 Show that if \(X \) is an affine variety, and \(Y \) is a nonempty irreducible subset, then the stalk \(O_{X,Y} \) is the localization of \(A(X) \) at the prime ideal \(I(Y) \).

4. (Vakil, Exercise 2.5B - Sheaves over the base of a topology.) Let \(\mathcal{B} \) be a base of a topology on \(X \), and let \(F \) denote a sheaf (of abelian groups) on the base \(\mathcal{B} \). That is, for each open set \(B \in \mathcal{B} \), we are given an abelian group \(F(B) \), and furthermore, for all \(B, B' \in \mathcal{B} \) with \(B \subset B' \) we are given morphisms

 \[\rho_{B,B'} : F(B') \to F(B) \]

 satisfying the usual sheaf axioms (for the members of \(\mathcal{B} \)). Show that each sheaf \(F \) on the base \(\mathcal{B} \) extends to a sheaf \(F \) on \(X \) such that \(F(B) \simeq F(B) \) for \(B \in \mathcal{B} \).
Hint: First, define the stalks F_p for the sheaf F over the base. For any $U \subset X$ open, define $\mathcal{F}(U)$ to be the set of compatible germs. That is, set

$$\mathcal{F}(U) = \{(f_p) \in F_p : \text{ for all } p \in U, \text{ there exists } p \in B \subset U, \text{ with } B \in \mathfrak{B},$$

and a section $s \in F(B)$ such that $f_q = s_q$ for all $q \in B\}.$

Verify to your satisfaction that \mathcal{F} is a sheaf and that $\mathcal{F}(B) \simeq F(B)$.

Remark: (Vakil, Exercise 2.5C.) Morphisms of sheaves are also determined by morphism of sheaves over the base. That is, given sheaves \mathcal{F}, \mathcal{G} and homomorphisms

$$\alpha_B : \mathcal{F}(B) \to \mathcal{G}(B)$$

for all $B \in \mathfrak{B}$ compatible with restrictions of members of \mathfrak{B}, then there exists a morphism of sheaves

$$\alpha : \mathcal{F} \to \mathcal{G}$$

extending the α_B’s. You do not need to write down a proof of this fact, but it is a good exercise to solve.

5. (Hartogs theorem and quasi-affine algebraic sets.)

(i) Show that all regular functions on $\mathbb{A}^2 \setminus \{(0,0)\}$ are given by polynomials.

(ii) Show that the quasi-affine set $X = \mathbb{A}^2 \setminus \{(0,0)\}$ is not isomorphic to an affine algebraic set.

Hint: Argue by contradiction. Using your knowledge about the regular functions on X, what can you say about the inclusion $\iota : X \to \mathbb{A}^2$?

6. (Coordinate rings. Frobenius.)

(i) Show that the curve $X = \{x^2 - y^5 = 0\} \subset \mathbb{A}^2_C$ is not isomorphic to \mathbb{A}^1_C.

(ii) Show that if k is an algebraically closed field of characteristic p, the Frobenius morphism

$$F : \mathbb{A}^1 \to \mathbb{A}^1, F(x) = x^p$$

is a homeomorphism but not an isomorphism.