Quiz 3

Math 3C: Precalculus October 17, 2019

When you finish, please remain seated until class is dismissed

Name: Solutions	PID:
Problem 1 (5 points). Let $f(x) = \sqrt{x-4} + 1$.	
(a) Determine a formula for $f^{-1}(x)$.	
Let y=f(x)=1x-4+1	
Then $y = \sqrt{x-4} + 1$	-Therefore,
Solve for x:	$f^{-1}(y) = (y-1)^2 + 4$
$y-1=\sqrt{x}-4$	/ 47 4
$\Rightarrow (y-1)^2 = x-4$	
$\Rightarrow (y-1)^2 + 4 = \times$	
(b) What is the range of $f(x)$?	

(b) What is the range of f(x)? $f(x) = \sqrt{x-4} + 1$, is like \sqrt{x} , but shifted right and up. The radical $\sqrt{x-4}$ only outputs numbers ≥ 0 , and then I add 1 to the radical. So $\sqrt{x-4} + 1$ is always ≥ 1 .

Therefore, range is all $y \geq 1$ (c) What is the domain of $f^{-1}(x)$?

Domain of fix) is fall yzll

(since the domain of $f^-(x)$ is the same as the range of f(x)) THERE IS A SECOND PAGE

Problem 2 (5 points). (a) Sketch the line $p(d) = \frac{1}{4}d - 2$.

(b) Let $q(d) = \frac{1}{2}d + 3$. Where do the lines p(d) and q(d) intersect? Write your answer as a coordinate pair.

Set
$$p(d) = q(d)$$

So $\frac{1}{4}d - 2 = \frac{1}{2}d + 3$
Solve for d : $\frac{1}{4}d = \frac{1}{2}d + 5$
 $\frac{1}{4}d = \frac{1}{2}d + 5$
 $\frac{1}{4}d = \frac{1}{2}d = 5$
 $\frac{1}{4}d = 5$
 $\frac{1}{4}d = 5$

Plug in d:
$$p(20) = \frac{1}{2} \cdot (-20) + 3 = -10 + 3 = \frac{-7}{2}$$

So, intersects at $[(-20, -7)]$