Problem 1 (3 points). Let $\theta = 240^{\circ}$.

(a) What quadrant is θ in?

(b) What is the reference angle of θ ?

(c) What are $sin(\theta)$ and $cos(\theta)$?

$$\sin(240) = -\sin(60) = \frac{-\sqrt{3}}{2}$$

 $\cos(240) = -\cos(60) = \frac{-1}{2}$

Problem 2 (3 points). Let $\theta = -210^{\circ}$.

(a) What quadrant is θ in?

(b) What is the reference angle of θ ?

Homework 8

 $Sin(-210^{\circ}) = Sin(30^{\circ}) = \frac{1}{2}$

(c) What are $sin(\theta)$ and $cos(\theta)$?

Problem 3 (3 points). Let $\theta = -\frac{3\pi}{4}$.

(a) What quadrant is θ in?

(b) What is the reference angle of θ (in radians)?

$\frac{T}{4}$

(c) What are $\sin(\theta)$ and $\cos(\theta)$? $\sin\left(-\frac{3}{4}\pi\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ $\cos\left(-\frac{3\pi}{4}\right) = -\cos\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$ **Problem 4** (3 points). Let $\theta = \frac{15\pi}{4}$.

(a) What quadrant is θ in?

(b) What is the reference angle of θ (in radians)?

(c) What are $sin(\theta)$ and $cos(\theta)$?

$$\sin\left(\frac{15\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
$$\cos\left(\frac{15\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2}$$

Problem 5 (4 points). True or False.

Let θ be an angle such that $\sin(\theta) > 0$. It is possible that θ is in the third quadrant.

Let γ be an angle such that $\sin(\gamma) < 0$. It is possible that γ is in the fourth quadrant.

Let β be an angle such that $\cos(\beta) < 0$. It is possible that β is in the fourth quadrant.

Let α be an angle such that $\cos(\alpha) < 0$ and $\sin(\alpha) > 0$. It is possible that α is in the second quadrant.

Problem 6 (4 points). Let α be an angle such that $\sin(\alpha) = \frac{3}{5}$, and α is in the second quadrant. What is $\cos(\alpha)$? (*HINT: recall that* $\cos(\theta)^2 + \sin(\theta)^2 = 1$ for any angle θ)

Pythagorean Identity: $\cos^2(\Theta)$ $+\sin^2(\Theta) = 1$ $\Rightarrow \cos^2(\theta) + \left(\frac{3}{4}\right)^2 = 1$ $\Rightarrow \cos^2(\theta) + \frac{9}{25} = \frac{25}{25}$ $\Rightarrow \cos^2(\theta) = \frac{16}{25}$ $\Rightarrow \cos(\theta) = \pm \sqrt{\frac{16}{25}}$ $\Rightarrow \cos(\theta) = \pm \frac{4}{5}$

BUT Θ is input the second quadrant, so $\cos(\Theta) < O$. Thus $T\cos(\Theta) = -\frac{4}{5}$

Problem 7 (6 points). Fill in the coordinate of each point on the unit circle below. **Note: You will be required to do this with no notes on quizzes/exams in the future!**

Problem 8 (2 points). Find the coordinates of the point on a circle of radius 6 at an angle of $\frac{\pi}{3}$ radians

$$X = r \cdot cos(6) = 6 \cdot cos(\frac{\pi}{3}) = 6 \cdot \frac{1}{2} = 3$$

$$Y = r \cdot sin(6) = 6 \cdot sin(\frac{\pi}{3}) = 6 \cdot \frac{\sqrt{3}}{2} = 3\sqrt{3}$$

$$(x, y) = (3, 3\sqrt{3})$$

Problem 9 (4 points). The point $(-7, -7\sqrt{3})$ lies on the circle of radius 14. At what angle around the circles does this point lie?

$$X = -7 = r \cdot c \circ s(\theta) = 14 \cdot c \circ s(\theta)$$

$$\Rightarrow -7 = 14 c \circ s(\theta)$$

$$\Rightarrow c \circ s(\theta) = -\frac{1}{2}$$

$$y = -7\sqrt{3} = (-\sin(\theta)) = 14\sin(\theta)$$

$$\Rightarrow -7\sqrt{3} = 14\sin(\theta)$$

$$\Rightarrow \sin(\theta) = -\frac{\sqrt{3}}{2}$$

What angle satisfies both $\cos(\theta) = \frac{1}{2}$ and $\sin(\theta) = -\frac{\sqrt{3}}{2}?$ $\Theta = 120^{\circ} \text{ or } 240^{\circ}$ $\Theta = 120^{\circ} \text{ or } 240^{\circ}$

Problem 10 (8 points). Compute the following:

(a)
$$\tan(135^{\circ})$$

 $fan(135^{\circ}) = \frac{\sin(135^{\circ})}{\cos(135^{\circ})} = \frac{\sqrt{2}}{-\sqrt{2}} = -1$

(b) $\csc(\frac{\pi}{6})$

$$\operatorname{csc}(\frac{\pi}{\epsilon}) = \frac{1}{\operatorname{sin}(\frac{\pi}{\epsilon})} = \frac{1}{\frac{1}{2}} = 2$$

$$\frac{(c) \cot(\frac{4\pi}{3})}{cot(\frac{4\pi}{3})} = \frac{\cos(\frac{4\pi}{3})}{\sin(\frac{4\pi}{3})} = \frac{-\frac{1}{2}}{-\frac{\sqrt{3}}{2}} = \frac{-1}{2} \cdot \frac{2}{\sqrt{3}} = \frac{1}{\sqrt{3}}$$

(d) sec(180°)

$$Sec(180) = \frac{1}{cos(180)} = \frac{1}{-1} = -1$$

Problem 11 (8 points). Simplify the following expressions into a single trig function with no fractions:

(a) $\cot(\theta) \sin(\theta)$

$$cot(0) sin(0) = \frac{cos(0)}{sin(0)} \cdot sin(0) = cos(0)$$

(b)
$$\sec(\theta) \csc(\theta)$$

Not graded
(c) $\csc(\theta) \cos(\theta)$
 $(c) \csc(\theta) = \frac{1}{\sin(\theta)} \cdot \cos(\theta) = \frac{1}{\cos(\theta)} = \frac{1}{\sin(\theta)} = \frac{1}{\sin(\theta)} = \frac{1}{\sin(\theta)} = 2 \cdot \frac{1}{\sin($