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Introduction

The Langlands program predicts a correspondence between two types of
objects. On the one side we have automorphic representations π and on the
other side we have some arithmetic objects M which may be called motives
or even objects of a more general nature. Both these objects produce L-
functions and the correspondence should be defined by the equality of these
L-functions. A special case is the Weil-Taniyama conjecture which has been
proved by Wiles-Taylor and others.

I. A Simple Example

On his home-page under www.math.ias.edu Langlands considers a couple
of very explicit and simple examples of this correspondence and here I re-
produce one of these examples together with some further explanation. This
example is so simple that the statement of the theorem can be explained to
everybody who has some basic education in mathematics.

The first object is a pair of integral, positive definite, quaternary quadratic
forms

P (x, y, u, v) = x2 + xy + 3y2 + u2 + uv + 3v2

Q(x, y, u, v) = 2(x2 + y2 + u2 + v2) + 2xu + xv + yu − 2yv

These forms have discriminant 112 and I mention that these two quadratic
forms Q,P are the only integral, positive definite quaternary forms with dis-
criminant 112. This may not be so easy to verify but it is true.

(Rainer Schulze-Pillot pointed out that this is actually not true; there
is a third form

S(x, y, u, v) = x2 + 4(y2 + u2 + v2) + xu + 4yu + 3yv + 7uv

but the two forms above are sufficient for the following considerations
(see [He1])).

This pair will give us automorphic forms, we come to this point later.

The second object is an elliptic curve E, for us this is simply a poly-
nomial

G(x, y) = y2 + y − x3 + x2 + 10x + 20.

This object is a diophantine equation, for any commutative ring R with
identity we can consider the set of solutions

{(a, b) ∈ R2|G(a, b) = 0}
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In the case where R is a field k we add a point at infinity (we should consider
the homogenized polynomial G̃(x, y, z) = y2z+yz2−x3+x2z+10xz2+20z3)
and define

E(k) = {(a, b) ∈ k2|G(a, b) = 0} ∪ {∞}
= {(a, b, c) ∈ k3 \ {(0, 0, 0)} | G̃(a, b, c) = 0}/k∗.

We come back to the first object. For any integer n we can define the
numbers

r(P, n) = #{γ ∈ Z4|P (γ) = n}
r(Q,n) = #{γ ∈ Z4|Q(γ) = n},

in classical terms: We consider the number of representations of n by the
two forms.

We can encode these numbers in generating series

Θ(P, t) =
∑

n

r(P, n)tn =
∑

γ∈Z4

tP (γ)

Θ(Q, t) =
∑

n

r(Q,n)tn =
∑

γ∈Z4

tQ(γ)

Of course it is not so difficult to write a few terms of these series

Θ(P, t) = 1 + 4t + 4t2 + 8t3 + 20t4 + 16t5 + 32t6 + 16t7 + 36t8 + 28t9 +
40t10 + 4t11 + 64t12 + 40t13 + 64t14 + 56t15 + 68t16 + 40t17 +

100t18 + 48t19 + 104t20 + . . .

Θ(Q, t) = 1 + 12t2 + 12t3 + 12t4 + 12t5 + 24t6 + 24t7 + 36t8 + 36t9 + 48t10+

72t12 + 24t13 + 48t14 + 60t15 + 84t16 + 48t17 + 84t18 + 48t19 + 96t20 + . . . .

Now we return to our second object. For any prime p we can reduce
our polynomial G(x, y) mod p and we can look at the solutions of our
equation G(x, y) = 0 in the field Fp with p elements. Actually this equation
defines what is called a curve over Fp and if we add the point at infinity
we get a projective curve. We say that this curve is smooth over Fp (or we
say that we have good reduction) if for any point in the algebraic closure
(a, b) ∈ E(F̄p) the vector of partial derivatives

(
∂G

∂x
(a, b),

∂G

∂y
(a, b)) %= 0.
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A simple calculation shows that we get a smooth curve over Fp except for
p = 11. For any p we may ask:

What is the number of solutions of our equation over Fp and this means
we want to know what #E(Fp) is.

To get a rough idea of what will happen we do the following: We choose
an a ∈ Fp and to find a point (a, b) ∈ E(Fp) we have to solve the quadratic
equation y2 + y = a3 − a2 − 10a− 20 in Fp. If p %= 2 then this equation has a
solution in Fp if and only if the element a3 − a2 − 10a− 20 + 1/4 is a square
in Fp. Now we know that exactly half the elements in F∗

p are squares and
hence our chance to hit a square is roughly 1/2. But if we hit a square then
we get two solutions for our equation -unless the number above should be
zero- therefore we can expect that the number of solutions is roughly p. For
p %= 11 we define the number ap by

#E(Fp) = p + 1 − ap,

so this number ap measures the deviation from our expectation.
We have the celebrated theorem by Hasse

For p %= 11 we have the estimate | ap | ≤ 2
√

p .

Again we can produce a list of values of ap for small primes

2 3 5 7 13 17 19
−2 −1 1 −2 4 −2 0

Now we can formulate a theorem which is a special case of the Langlands
correspondence but which was certainly known to Eichler:

Theorem For all p %= 11 we have

ap =
1
4
(r(P, p) − r(Q, p))

This is a surprising statement which is formulated in completely el-
ementary terms. We have two diophantine problems of rather different
nature, why are they related by the theorem above? I would like to say that
the theorem in the form as it stands looks like a miracle.

One possible interpretation is that it provides an elementary formula for
the numbers ap. But from the computational side it seems to me that the
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ap are easier to compute than the representation numbers. I come back to
this further down.

The theorem becomes comprehensible if we establish the connection to
modular forms. The following considerations go back into the 19-th century.
We consider the two generating functions for our two quadratic forms. We
make a substitution t → e2πiz and we observe that the functions

z )→ Θ(P, z), z )→ Θ(Q, z)

are holomorphic functions on the upper half plane H = {z | *(z) > 0}. It
is a classical result that these two functions are in fact modular forms of
weight 2 for the congruence subgroup

Γ0(11) = {
(

a b
c d

)
| a, b, c, d ∈ Z, c ≡ 0 mod 11}.

This means that they satisfy (? = P,Q)

Θ(?,
az + b

cz + d
) = (cz + d)2Θ(?, z)

for
γ =

(
a b
c d

)
∈ Γ0(11)

and in addition a certain growth condition for *(z) → ∞ is satisfied. [This
can be verified by a classical calculation. First of all it is easy to see that
in both cases the forms are invariant under z )→ z + 1 and then the Poisson
summation formula implies the rule

Θ(?, z) =
1

11z2
Θ(?,

1
−11z

).

(I skip the computation, it is based on the observation that for x ∈ R4 the
function

x )→
∑

ω∈Z4

e2πizQ(x+ω)

is periodic with period Z4. Hence it has a Fourier expansion, writing down
this expansion, putting x = 0 and another small manipulation yields the
assertion). Now the modularity follows. (See also [He1])]

Hence we get two modular forms of weight 2 for the group Γ0(11) and
by classical dimension formulae we know that they span the vector space
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of these modular forms. We know that this space of modular forms is also
spanned by two other forms: One of them is the Eisenstein series

E(z) =
∑

γ,c≡0 mod 11

1
(cz + d)2

− 1
11

∑

γ,c $≡0 mod 11

1
(cz + d)2

(this is a difference of two divergent series and this difference makes sense
(this is Hecke so we are in the 20-th century)) and the other one is a cusp
form, which in this case is

f(z) = e2πiz
∞∏

n=1

(1 − e2πniz)2(1 − e2π11niz)2

(also classical we have the Dedekind η-function η(z) = eπiz/12 ∏∞
n=1(1 −

e2πniz))
It is now also in [He1] that

f(z) =
1
4
(Θ(P, z) − Θ(Q, z)).

A small digression: Of course we would like have information on the indi-
vidual Theta series. In this context we still have another theorem by Siegel.
Our two quadratic forms are in fact in the same genus, that means over any
p-adic ring Zp they become equivalent (but of course they are not equivalent
over Z). Then we have a very general theorem by C.L. Siegel which asserts
that the sum over the Theta series over a genus where the summands are
multiplied by suitable weight factors (densities) gives us an Eisenstein series.
In our special situation we find

1
4

Θ(P, z) +
1
6

Θ(Q, z) = E(z) =
∞∑

n=0

σne2πinz

where the coefficients σn are given rather explicitly, for instance for a prime
p %= 11 we have

σp = p + 1.

I will say more about the other coefficients in a minute (See A below).

At this point I want to meditate a second. Here are two important points
to observe.
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A) If we look at the problem to understand the representation numbers
we want to know the r(P, n) for all integers n. If we go back to our elliptic
curve we get only numbers for each prime p, (p %= 11). Here the theory of
automorphic forms provides another remarkable and fundamental fact. The
coefficients in the two series

f(z) =
1
4
(Θ(P, e2πz) − Θ(Q, e2πiz)) =

∞∑

n=1

τne2πinz

and

E(z) =
1
4

Θ(P, e2πiz) +
1
6

Θ(Q, e2πiz) =
∞∑

n=0

σne2πinz

behave multiplicatively and I explain what this means: If we have any series
F (z) =

∑
λne2πinz then we build formally the Mellin transform. This is a

Dirichlet series, it is defined by

LF (s) =
∞∑

n=1

λnn−s .

(Let us ignore convergence problems, this construction has also been dis-
cussed in J. Cogdell’s lecture). Now multiplicativity means in our case that
the two Mellin transforms have an Euler product expansion

Lf (s) = (
∏

p $=11

1
1 − τpp−s + p1−2s

)
1

1 − 11−s

LE(s) = (
∏

p $=11

1
1 − (p + 1)p−s + p1−2s

)
1

1 − 11−s

and this is equivalent to some recursion formulae namely

τnm = τnτm, σnm = σnσm if n,m are coprime

and for p %= 11

τpr+1 = τprτp + pτpr−1, σpr+1 = σprσp + pσpr−1 if r ≥ 1

and hence we know the σ, τ if we know them for prime indices.
This follows from the theory of the Hecke operators which was actually

designed for proving such multiplicativity formulae (See [He2]). The two
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functions are eigenfunctions for this Hecke algebra and this is equivalent to
the multiplicativity of the coefficients. This makes it also clear that our two
functions are the only ones which have multiplicative coefficients.

B) Now we have the formula

1
4
r(P, p) +

1
6
r(Q, p) = p + 1

and together with our theorem we can say that we can express the repre-
sentation numbers in terms of p and ap. Combined with the theorem by
Hasse we get a consequence for the asymptotic behavior of the represen-
tation numbers and this was an application Eichler had in mind. From
|τp| = |14 (r(P, p) − r(Q, p))| ≤ 2√p we get the asymptotic formulae

r(P, p) =
12
5

p + O(p1/2)

r(Q, p) =
12
5

p + O(p1/2).

Now we return to our elliptic curve and I want to give a very sketchy out-
line of the proof of the theorem. We consider the Riemann surface Γ0(11)\H.
It was known to Fricke that this is a curve of genus 1 over C from which two
points are removed. These two points are the cusps of the action of Γ0(11)
on H, they can be represented by 0, i∞. The curve of genus 1 can also be
interpreted as Γ0(11)\H∗ where H∗ = H∪Q∪{∞} = H∪P1(Q) where this
space is endowed with a suitable topology. Fricke found an equation for this
curve which after some manipulation can be transformed into

y2 + y = x3 − x2 − 10x − 20

and in modern language this means that that we have a model X0(11)/Spec(Z)
of our complex curve which has good reduction at all primes p %= 11.

The Hecke operators Tp are so-called correspondences, they can be inter-
preted as curves Tp ⊂ Γ0(11)\H∗×Γ0(11)\H∗ which consist of the following
points: If a first coordinate is represented by z ∈ H then the second coordi-
nate is represented by one of the points {pz, z/p, (z+1)/p, . . . , (z+p−1)/p};
so in general there are p+1 second coordinates corresponding to a first coor-
dinate and vice versa. (Of course one has to check that replacing z by another
representative gives the same set of corresponding points). These Hecke op-
erators extend to correspondences also called Tp on the model X0(11). To
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see that this is so one has to go to the modular interpretation of X0(11),
this means roughly that X0(11) is the parameter space for the elliptic curves
with a cyclic subgroup of order 11. Then Eichler showed that these corre-
spondences Tp have a reduction mod p and this reduction is given by the
congruence formula ([Ei])

Tp mod p = Fp +t Fp.

Here Fp is given by the graph {(x, xp) ∈ E(F̄p)×E(F̄p)} and tFp is given
by {(xp, x) ∈ E(F̄p)×E(F̄p)}. Using the trace formula the coefficient τp can
be expressed in terms of the fixed points of Tp. But mod p the fixed points
of Fp and tFp are the points in E(Fp), and this gives a very rough indication
how the theorem can be proved.

The Taniyama-Shimura - Weil conjecture
Wiles, Taylor and others proved the general Taniyama-Weil conjecture. I
want to give some indication of the content of this general theorem. The
precise statement needs some finer concepts and results from the theory of
automorphic forms and the arithmetic of elliptic curves.

A congruence subgroup Γ ⊂ SL2(Z) is a subgroup of finite index which
can be defined by congruence conditions on the entries. To any integer N
we define the subgroup

Γ(N) =
{(

a b
c d

)
∈ SL2(Z) | a ≡ d ≡ 1 mod N

}
,

and a given subgroup Γ is called a congruence subgroup, if we can find an
integer N such that

Γ(N) ⊂ Γ ⊂ SL2(Z).

Such a group operates on the upper half plane H and the quotient Γ\H carries
the structure of a Riemann surface, more precisely we can compactify it to a
compact Riemann surface by adding a finite number of points. These finitely
many points are called the cusps.

A holomorphic modular form for a given congruence subgroup Γ of weight
k > 0 is a holomorphic function on the upper half plane

f : H −→ C

which satisfies
f

(
az + b

cz + d

)
= (cz + d)kf(z)



The Langlands Program (An overview) 219

for all γ ∈ Γ, and which satisfies a growth condition in the cusps (see 4.11
(2) in [V]). Now I need some results and concepts which I cannot explain
in detail. On the space of modular forms of weight k for Γ0(N) we have
an action of a commutative algebra T which is generated by operators Tp

for the primes p % |N . In this space of modular forms we have the subspace
of cusp forms. These are forms which vanish at infinity (see [V], .....), and
this subspace is invariant under the Hecke operators. It is a classical result
of Hecke that this space of cusp forms is a direct sum of spaces of common
eigenforms for the Hecke operators.

A modular form f for Γ0(N) is called a new form if

i) The form f and certain transforms of it is not a modular form for a
congruence subgroup Γ0(N ′) where N ′ | N and N ′ < N .

ii) The form f is an eigenform for all the Hecke operators Tp where p % |N .

It requires a little bit of work to show that this is a reasonable concept.
To such a new form f we can attach an L-function

L(f, s) =
∏

p

Lp(f, s),

where we have attached a local Euler factor Lp(s) to any prime p:

i) For the primes p % |N our form is an eigenform for Tp, i.e.

Tp f = ap f ap ∈ C,

and we put

Lp(f, s) =
1

1 − app−s + pk−1−2s
.

ii) For the primes p | N and p %= 2, 3 we have

Lp(s) =

{
1

1−εpp−s εp = ±1 if p2 % |N
1 if p2 | N.

The determination of the εp requires some knowledge of local representation
theory.

iii) For the primes p | N and p = 2 or 3 we also have

Lp(s) =

{
1

1−εpp−s εp = ±1
1
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but here the formulation of the conditions for the cases is even more subtle.

Now it is a general theorem that the completed L function Λ(f, s) =
Γ(s)
πs · L(f, s) is a holomorphic function in the entire plane and satisfies the

functional equation

Λ(2 − s) = N1−sW (f)N s−1Λ(s),

where W (f) = ±1. This is a so-called automorphic L-function.

Now I explain how we can attach an L function to an elliptic curve E
over Q. Let us consider an elliptic curve over Q. This is simply an equation

G(x, y, z) = y2z + a1xyz + a3yz2 − x3 − a2x
2z − a4xz2 − a6z

3 = 0

with rational coefficients a1, a3, a2, a4, a6. (This is a traditional notation,
these ai are not the ap which occur in the local L-factors.) We assume
that this equation defines a non singular curve and this means that for any
solution (x0, y0, z0) ∈ C3, (x0, y0, z0) %= 0 we have

(
∂G

∂x
(x0, y0, z0),

∂G

∂y
(x0, y0, z0),

∂G

∂z
(x0, y0, z0)

)
%= (0, 0, 0).

This is equivalent to the non vanishing of the discriminant

∆ = ∆(a1, a2, a3, a4, a6),

this is a complicated expression in the coefficients. ([Mod], the articles of
Tate and Deligne (Formulaire)). A special point is the point at infinity

O = (0, 1, 0).

It is the only point with z0 = 0.

Now we can perform substitutions in the variables, and we get new Weier-
straß equations. There is a so-called minimal Weierstraß equation

y2z + ã1xyz + ã3y = x3 + ã2x
2 + ã4x + ã6,

where all the ãi ∈ Z, and where the discriminant ∆ is minimal. (See Silver-
man [Si], Chap. III, § 1, VIII, § 8, [Hu], Chap. 5, § 2 and [Mod], articles by
Tate and Deligne.) We have an algorithm – which is implemented in Pari –
which produces this minimal equation.
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If now p is a prime, we can consider the reduction mod p. This gives
us an equation over the finite field Fp, and we say that our equation has
good reduction mod p, if the reduced equation defines an elliptic curve,
i.e. it is smooth.

If the mod p reduced curve is not smooth then we have exactly one
singular point P0 = (x0, y0, z0) ∈ E(Fp) which is different from the point O,
we may assume z0 = 1. Then we can introduce variables u = x−x0, v = y−y0

and our equation mod p becomes

αu2 + βuv + γv2 + higher order terms = 0.

It is not hard to see that the quadratic leading term is not identically
zero. Then we have two possibilities:

i) Over Fp2 we have αu2 + βuv + γv2 = (u − ξ1v)(u − ξ2v) where ξ1 %= ξ2

ii) The quadratic form is itself a square, i.e. αu2 + βuv + γv2 = (u − ξv)2

In the first case we say that E has multiplicative reduction mod p, in the
second case we say that E has potentially good reduction at p. (Potentially
good is much more unpleasant than multiplicative reduction.)

If we are in the case i) we define

εp =
{

1 ifξ1, ξ2 ∈ Fp,
−1 else.

From this type of bad reduction we can produce a number np(E) > 0. If
p %= 2, 3 then

np(E) =
{

1 multiplicative reduction,
2 potentially good reduction.

If we have p = 2 or p = 3 then the rule is more complicated, in this case we
need something finer than the minimal Weierstrass-equation, we need the
Neron model (see [O]) to produce np(E).

We define
N =

∏

p

pnp(E),

where p runs over the primes with bad reduction. This number N is the
conductor of our curve.
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Now in [We] Weil defines an Euler factor Lp(E, s) for any prime p. If we
have good reduction at p, we define as before

Lp(E, s) =
1

1 − app−s + p1−2s

where E(Fp) = p + 1 − ap.

If we have bad reduction, then the Euler factor depends on the type of
the bad reduction. The precise rule is (see [We] 2).

Lp(E, s) =

{
1 if we have potentially good reduction,

1
1−εpp−s if we have multiplicative reduction.

Then we can define

L(E, s) =
Γ(s)
πs

∏

p

Lp(E, s).

(Here Γ(s) is the Γ-function.)

Then the theorem of Wiles-Taylor asserts that to any elliptic curve E/Q
with conductor N we can find a new form f on Γ0(N) such that

Lf (s) = L(E, s).

Our first example is a special case of this theorem.

Converse theorems
I come back to the L-function to a newform f . I introduced the Mellin
transform very formally but as explained in Cogdell’s lecture we can also
define it by the integral

Λ(f, s) =
Γ(s)
(2π)s

L(f, s) =
∫ i∞

0
f(iy)ys dy

y

where f has to be suitably normalized. Now we can conclude from the theory
of automorphic forms that our newform satisfies

f(− 1
Nz

) = W (f)Nz2f(z),

where W (f) = ±1. We apply this to the integral representation: We choose
a positive real number A > 0 and split the integral into an integral from A
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to ∞ and the integral from 0 to A. Into the second term we plug in the
above transformation formula and get

Λ(f, s) =
∫ ∞

A
f(iy)ys dy

y
+ W (f)N1−s

∫ ∞

1/(NA)
f(iy)y2−s dy

y

From this integral representation we can derive that Γ(s)
(2π)s L(f, s) has an an-

alytic continuation into the entire plane and that we have the functional
equation

Λ(2 − s) = W (f)N1−sΛ(s).

Already Hecke observed that under certain circumstances we can go the
other way round. If we have a Dirichlet series

D(s) =
∞∑

n=1

an

ns

which defines a holomorphic function, which satisfies some boundedness con-
ditions and satisfies a suitable functional equation then it comes from a
modular form. Hecke considered the case of Sl2(Z) and Weil generalized it
in ([We]) but he had to assume that these properties remained true if the
series is twisted by Dirichlet characters. (See Venkataramas’s and Cogdell’s
lectures.) Such a theorem is called a converse theorem.

Of course one would like to prove that the L-function of an elliptic curve
has these nice analytic properties and then we could get a proof of Wiles
theorem. But this is not the way it works.

II. The General Picture

Now I want to give some vague idea of the general Langlands program. I must
confess that my own understanding is very limited. But on the other hand
the entire picture is so vast and a precise formulation requires an explanation
of so many subtle notions that I believe that a very rough approximation
may be even more helpful than a precise presentation.

The first datum is a reductive group G/Q, we may very well think that
G = Gln. During this summer school we have seen that automorphic cusp
forms should be understood as irreducible subrepresentations of the adele
group G(A) occurring in the space of cusp forms. So this is an irreducible
submodule

Hπ ⊂ L2
0(G(Q)\G(A))
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where the subscript π stands for the isomorphism class of our module. Sev-
eral lecturers told us that such a π is in fact a restricted tensor product of
local representations πv of G(Qv) and we write

π =
⊗′

πv.

These local representations have to satisfy some constraints. For instance
for almost all finite primes πp has to be in the unramified principal series
(see Prasad’s notes and below) and they must be unitary.

In Raghunathan’s lecture it was explained that

L2
0(G(Q)\G(A)) =

⊕
m(π)Hπ

and we state a fundamental problem:

Let us assume that there is a restricted product π =
⊗′ πv given to

us, which fulfills the above constraints. When does π occur in the space of
automorphic forms and what is m(π)?

Of course this question is rather vague because we should know how π
is given to us, i.e. what is the rule which produces the local data {πv}. The
speculative answer to this question is, that the rule should come from some
kind of arithmetic object.

The classical case again
We come back briefly to the special case Gl2. In our example a modular
form was a holomorphic function f on the upper half plane which satisfied

f(γ(z)) = (cz + d)2f(z) for γ in some congruence subgroup Γ ⊂ Sl2(Z).

In addition we required that it should be an eigenform for the so-called
Hecke operators and I explained briefly that this was equivalent to the re-
quirement that the Mellin transform of the Fourier expansion has an Euler
product expansion. Actually the Hecke operators Tp are only defined for
primes p not dividing the so-called level N of our form. In our example we
had N = 11. Hence we see that f provides a collection of local data {τp}p,p $|N
the eigenvalues of Tp. In our example we had in fact a rather simple rule
which provided the local data, we took the difference of the representation
numbers.

If we want to translate from the classical language to the modern lan-
guage then we have to assign a representation π(f) of Gl2(A) to our classical
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modular form: This representation should occur in the space of cusp forms
L2

0(Gl2(Q)\Gl2(A)). I do not construct it but I make a list of its properties
which define it uniquely. If we write

π(f) =
⊗′

πv

then

i) At the finite primes p not dividing the level the representation π(f)p is in
the unramified principal series and hence a unitarily induced representation

IndG(Qp)
B(Qp)λp

where λp is a quasicharacter λp(
(

t1 u
0 t2

)
) = |t1|s1 |t2|s2 . It gives two numbers

αp = λp(
(

p 0
0 1

)
) and βp = λp(

(
1 0
0 p

)
).

Then these numbers are related to the p-th Fourier coefficient of f by the
formula

τp =
√

p(αp + βp) and αpβp = ω(p).

Here ω is the so-called central character, it is the restriction of π(f) to
the center.

ii) In our special situation where f is holomorphic of weight two the rep-
resentation π(f)∞ of Gl2(R) will be the first discrete series representation.

If we have holomorphic modular form of weight k we get the (k − 1)-th
representation of the discrete series a infinity and in the formula for the ap

the √
p gets changed into p

k−1
2 .

The second player in the game is our elliptic curve E/Q. This elliptic
curve yields an object h1(E), this is a motive. It is not entirely clear what
this means but it creates some other objects

A) A compatible system of --adic representations of the Galois group
Gal(Q̄/Q).
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B) The Betti cohomology H1(E(C), Z) together with a so-called Hodge
filtration on H1(E(C), C).

I want to say a word about A). For any prime - we can look on the -n

division points
E[-n] = {x ∈ E(Q̄) | -nx = 0}

and at this point I assume that we know that E(Q̄) is an abelian group and
that E[-n] is isomorphic to Z/-nZ × Z/-nZ. Of course these division points
will have coordinates in larger and larger extensions of Q if n goes to infinity.
This means that we have a natural action of Gal(Q̄/Q) on all these groups
and if we form the projective limit

T% = lim
← n

E[-n]

the result is a free Z% -module of rank 2 together with a continuous action
of the Galois group.

I explained what it means that E has good reduction at a prime p. It is
not so difficult to see that for a prime - which is different from p the action
of the Galois group is unramified at this prime p, in other words the inertia
group acts trivially. Hence we can define a conjugacy class [Fp] defined by
the action of the Frobenius at p and the characteristic polynomial

det(Id − Fpp
−s |T%(E)) ∈ Z%[p−s]

is a well-defined quantity. Now it follows from the Lefschetz fixed point
formula that in fact

det(Id − Fpp
−s |T%(E)) = 1 − app

−s + p1−2s.

This has important consequences

1) det(Id − Fpp−s |T%(E)) ∈ Z[p−s]

2) det(Id − Fpp−s |T%(E)) does not depend on -.

Finally we have that

3) det(Id − Fpp−s |T%(E)) is defined outside a finite set of primes
S ∪ {-}.
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These three properties of our different Galois modules (- varies) are the
defining properties for compatible systems of Galois modules.

Hence we can reformulate the specific result in the first section:

In our example the modular form of weight two and the elliptic curve
provide a collection of local data

∞) A representation π∞ and a real Hodge structure on
H1(E(C), Z) ⊗ C

For almost all primes an unramified local representation πp of Gl2(Qp)
and an unramified two dimensional representation ρ(πp) of the Galois group
Gal(Q̄p/Qp) such that (in the notation used in the example)

p) the automorphic Euler factor L(πp, s) = (1 − τpp−s + p1−2s) is
equal to the arithmetic L- factor det(Id − Fpp−s |T%(E)).

This means that in our example we have a second rule which produces the
local components of a cusp form. This rule is provided by the elliptic curve.
In this particular case it is also possible to establish the local correspondence
also for the ramified primes, this has been shown by Langlands, Deligne and
Carayol.

It is now Langlands’ idea that such a correspondence between automor-
phic representations π =

⊗′πv and some kind of arithmetic objects M(π)
should always exist. The ideas of what nature these objects are, are also
conjectural.

Satake’s theorem
Let us assume that we picked a prime p such that G × Qp is split. If G =
Gln this can be any prime. Let Kp = G(Zp) be the maximal compact
subgroup defined by some Chevalley scheme structure G/Zp, if G = Gln
this could be Gln(Zp). To these data we attach the Hecke algebra Hp =
C(Kp\G(Qp)/Kp) : It consists of the C valued functions on G(Qp) which are
compactly supported and biinvariant under Kp and the algebra structure is
given by convolution.

We choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B such
that T (Qp)∩K = T (Zp) is the maximal compact subgroup our torus T (Qp).
Let X∗(T ) = Hom(Gm, T ) be the module of cocharacters, let W be the Weyl
group. We introduce the module of unramified characters on the torus, this
is

Homunram(T (Qp), C∗) = Hom(T (Qp)/T (Zp), C∗) = Hom(X∗(T ), C∗) = Λ(T ).
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We also view λ ∈ Λ(T ) as a character λ : B(Qp) → C∗, λ )→ λ(b) = bλ.
We will consider the group of characters Hom(T ×Q Qp, Gm) = X∗(T )Qp

as a subgroup of Λ(T ). An element γ ∈ X∗(T ) defines a homomorphism
T (Qp) → Q∗

p and this gives us the following element {x )→ |γ(x)|p} ∈ Λ(T )
which we denote by |γ|.

Since we have the Iwasawa decomposition G(Qp) = B(Qp)Kp we can
attach to any λ ∈ Λ(T ) a spherical function

φλ(g) = φλ(bpkp) = (λ+ |ρ|)(bp)

where ρ ∈ Λ(T ) is the half sum of positive roots. This spherical function is
of course an eigenfunction for Hp under convolution, i.e. for hp ∈ Hp

∫
φλ(gx−1)hp(x)dx = ĥp(λ)φλ(g)

and hp )→ ĥp(λ) is a homomorphism from Hp to C.
The theorem of Satake asserts that this provides an identification

Hom(Hp, C) ∼→Λ(T )/W.

To such a character we can attach an induced representation

IndG(Qp)
B(Qp)(λ) = {f : G(Qp) → C | f(bg) = (λ+ |ρ|)(b)f(g)}

where in addition f |K is locally constant. These representations are called
the principal series representations. We denote these irreducible modules by
πp = πp(λp) and λp is the so-called Satake parameter of πp.

Let us now assume for simplicity that our group G/Q is split, for instance
G = Gln/Q. In this case we may choose a split torus T/Q. We have the
canonical isomorphism

Hom(X∗(T ), C∗) ∼→X∗(T ) ⊗ C∗

and the character module X∗(T ) can be interpreted as the cocharacter mod-
ule of the dual torus T̂ . If we interchange the roots and the coroots then
T̂ becomes the maximal split torus of the dual group Ĝ, which is now a
reductive group over C. If our group is G = Gln/Q then the dual group is
Gln(C).
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A general philosophy
Now we come back to our automorphic form π. If we write it as a restricted
tensor product, then almost all the components are in the unramified prin-
cipal series and now we can view the collection of unramified components
{πp(λp)} as a collection of semi simple conjugacy classes in the dual group.

Now Langlands philosophy assumes the existence of a very big group L
and I cannot say exactly what properties this group should have. It certainly
should somehow have the Weil group W (Q̄/Q) in it. This Weil group is
some kind of complicated modification of the Galois group. We have also
the local Weil groups W (Q̄p/Qp) and these are easier to explain: The group
W (Q̄p/Qp) ⊂ Gal(Q̄p/Qp) and consists of those elements whose image in
Gal(F̄p/Fp) is an integral power of the Frobenius.

The arithmetic object M(π) attached to π should be a representation

ρ(π) : L → Ĝ

which at least fulfills the following requirement:

At any prime p at which π is unramified the representation ρ(π) is also
“unramified”. The structure of L should be such that for an unramified πp

it provides an unramified representation

ρ(πp) : W (Q̄p/Qp) → Ĝ(C)

such that the image of the Frobenius Fp under ρ(πp) is in the conjugacy class
of the Satake parameter of πp.

An unramified representation of the Weil group is of course a represen-
tation of the image Z =< Fp > of W (Q̄p/Qp) in Gal(F̄p/Fp), therefore it is
enough to know the image of the Frobenius Fp.

Local Langlands correspondence
Of course we can also consider ramified representations

ρ : W (Q̄p/Qp) → Ĝ(C)

and the general Langlands programme predicts also a correspondence be-
tween these representations ρ and the admissible irreducible representations
of G(Qp). Actually the situation is more complicated than that, one has to
replace the Weil group be the Weil-Deligne group. This is a difficult sub-
ject, we have seen a little bit of the difficulties when we discussed the Euler
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factors of the automorphic and the arithmetic L-function in our discussion
of the Taniyama-Weil conjecture.

The local Langlands conjecture is proved for the group Gln by work of
Laumon-Rapoport-Stuhler ([L-R-S]) in characteristic p > 0 and by Harris-
Taylor ([H-T]) in characteristic 0. This is discussed in Wedhorns lectures at
this summer school ([Wed]).

Representations with cohomology and motives
I want to discuss a special case in which I feel a bit happier. Among the
representations of G(R) there is a certain class consisting of representations
π∞ which have non trivial cohomology. This means that there is a finite
dimensional, irreducible rational G-module E such that

H•(g,K∞, π∞ ⊗ E) %= {0}.

Then E is determined by π∞ and for any choice of E the number of such π∞
is finite.

We say that an automorphic representation π is cohomological if the
component π∞ has cohomology in some module E . In this case one might
speculate whether we can attach a motive or better a family of motives to
it. A motive is still a conjectural object but certainly simpler in nature than
L.

I want to give a rough idea what a motive should be. First of all I refer
to Delignes theorem that for a smooth projective scheme X/Q the - adic co-
homology groups H i(X̄, Q%) provide a compatible system of Galois modules.
A motive M is a piece in the cohomology which is defined by a projector
obtained from correspondences. (In the classical case these correspondences
are provided by Hecke operators).

Then it is clear that M also provides a compatible system of Galois
representations

ρ(M) : Gal(Q̄/Q) → Gl(H(M̄ , Q%))

and the Euler factor at an unramified prime is defined as before by

det(Id − Fpp
−s | H(M̄, Q%)) ∈ Z[p−s].

If we have an unramified principal series representation πp(λp) and we
choose in addition a finite dimensional irreducible representation r : Ĝ(C) →
Gln(C), then we define the Euler factor

L(πp(λp), r, s) = det(Id − r(πp(λp))p−s).



The Langlands Program (An overview) 231

If we know all these Euler factors for all choices of r then we know the con-
jugacy class of πp(λp) viewed as an element in Ĝ(C). Now we can speculate

To any cohomological π and which occurs in the space of (cuspidal) au-
tomorphic forms on G and to any representation r : Ĝ(C) → Gln(C) we
can find a motive M(π, r) such that for all unramified primes p we have an
equality of local Euler factors

L(r(πp(λp), r, s) = det(Id − ρ(M)(Fp)p−s)

There should also be a matching between π∞ and the Hodge structure on
the Betti cohomology of the motive.

This system of - representations (now r varies) should have the property
that is compatible with the operations in linear algebra: If we decompose a
tensor product r1⊗r2 into irreducibles then the Galois representations should
decompose accordingly, at least if we pass to a subgroup of finite index in the
Galois group.

Already in the formulation we need the properties of compatible system.
The right-hand side has a property which we a priori can not expect from the
left hand side: Why should the automorphic Euler factors be in Z[p−s]?? Can
such a statement ever be true? Here the assumption that π∞ has cohomology
helps. Using the rational (or even the integral structure) on the cohomology
we can show that in fact that L(πp, r, s) viewed as polynomial in p−s has
coefficients which are algebraic integers and which all lie in a finite extension
of Q which depends on πf . We say that a cohomological form π is rational
if these coefficients are in Z (this was so in our example). Otherwise we say
that π is defined over F if F ⊂ C is generated by the coefficients of all our
Euler factors.

Then we can add to our assumption in our statement above that π should
be rational. Otherwise we have to invent the notion of a motive with coef-
ficients in F . This notion has been introduced by Deligne and then we can
formulate the above assertion using this concept.

Of course one can ask the question in the opposite direction: Given a
motive is there somewhere an automorphic cohomological representation π
such that M = M(π, r) for some r? Can we find such a representation even
in the space of automorphic forms on Gln? The theorem of Wiles is a special
case where the answer to this question turns out to be yes.
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Functoriality
If we believe in this kind of correspondence between automorphic forms and
some sort of arithmetic objects, then we get remarkable consequences for
automorphic forms. Let us just stick to the cohomological case. If we have
two such motives we can form their product, which for the Galois modules
amounts to take their tensor product. Going backwards we should be able
to construct an automorphic form π1×π2 on some bigger group. This is the
principle of functoriality, which is suggested by the philosophy.

Let me give an example. We consider holomorphic modular forms of
weight 2, we can even go back to our example. We have seen that our
modular form provides a compatible system of two dimensional --adic rep-
resentations

ρ(H1(E)) : Gal(Q̄/Q) :→ Gl(H1(Ē, Q%))

Now we take symmetric powers of these representations, this means that we
take the k-fold tensor product of these representations first and this amounts
to taking the k-fold product of h1(E) by itself. Then we have an action of the
symmetric group and we can take the symmetric part. In terms of the Galois
representations this means that we get an representation on the symmetric
tensors

ρ(Symk(H1(E))) : Gal(Q̄/Q) :→ Gl(Symk(H1(Ē, Q%)))

and it is certainly a legitimate question whether this comes from an auto-
morphic form.

In this particular case we can look at our problem from a different point
of view. We look at the L function (let us stick to our example)

LE(s) = (
∏

p $=11

1
1 − τpp−s + p1−2s

)
1

1 − 11−s

and we rewrite the Euler factors

L(πp, s) =
1

1 − τpp−s + p1−2s
) =

1
(1 − αpp−s)(1 − ᾱpp−s)

and we mention that it follows from Hasse’s theorem that ᾱp is in fact the
complex conjugate of αp.

Now we form a new L-function, we pick a k > 1 and write a local L-factor
at p

L(πp, r, s) =
1

(1 − αk
pp

−s)(1 − αk−1
p ᾱpp−s) . . . (1 − ᾱk

pp
−s)
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We can form a global L-function attached to the k-th symmetric power

L(π, r, s) =
∏

p;p $|N

1
(1 − αk

pp
−s)(1 − αk−1

p ᾱpp−s) . . . (1 − ᾱk
pp

−s)
LN (π, r, s),

where I do not say anything about the factors at the ramified primes. In our
case where N = 11 the Euler factor at 11 should not depend on k.

Of course we can ask whether this is again an L-function attached to
an automorphic cusp form on Glk+1. This has been shown by Gelbart and
Jacquet for k = 2. Here we are again in the situation where we could try to
apply converse theorems, but we do not have methods to verify the necessary
analytic properties of the L-Functions (see Cogdell’s Notes). But the cases
k = 3, 4 have been treated successfully by Shahidi and Kim.

We come to the concept of base change. Let us assume we have a (cus-
pidal) automorphic form π on some reductive group over Q. Let us assume
we attached to it a representation

ρ(π) : L → Ĝ(C)

of our group L. Let us assume that we have a field extension K/Q, then it
should be possible to restrict the group L to K and we would get a restricted
representation

ρ(π)K : LK → Ĝ(C).

(This is another of the requirements one should put on L, if we work with
motives then we would just extend the motive or restrict the Galois repre-
sentations to Gal(Q̄/K)).

Hence we should expect that this restriction of the representation ρ(π)K
would provide an automorphic form on the group G × K which then would
be the lift of π to G × K .

The existence of such a lifting has indeed been proved for solvable ex-
tensions by Langlands in the case G = Gl2/F and by Arthur and Clozel
for G = Gln/F . This result plays a fundamental role in the proof of the
Taniyama-Weil conjecture for elliptic curves and the local Langlands corre-
spondence for Gln by Harris and Taylor.
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