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Abstract. In 1980, Stark posed a far reaching question regarding the second deriva-
tives at s = 0 of L–functions of order of vanishing two associated to abelian extensions
of number fields (global fields of characteristic 0) (see [St2]). Over the years, vari-
ous mathematicians, most notably Grant [Gra], Sands [Sa], and Tangedal [Tan] have
provided evidence in favor of an affirmative answer to Stark’s question. In [P2], we
extrapolated Stark’s question to the appropriate class of L–functions associated to
abelian extensions of function fields (global fields of characteristic p > 0) and showed
that, in general, it has a negative answer in that context. Unfortunately, the meth-
ods developed in [P2] are specific to the geometric, characteristic p > 0 situation and
cannot be carried over to the characteristic 0 case. In the present paper, we develop
new methods which permit us to prove that, in general, (even a weak form of) Stark’s
question has a negative answer in its original, characteristic 0 formulation as well.

1. STARK’S QUESTION IN THE GENERAL
CONTEXT OF STARK’S CONJECTURES

Throughout this section, K/k will denote an abelian extension of global fields (of
arbitrary characteristic) of Galois group G := G(K/k). For a field F (of charac-
teristic 0 in what follows), we denote by Ĝ(F ) the set of characters associated to
the irreducible F–representations of G. We let µK denote the group of roots of
unity in K and define wK := card(µK). Let S be a finite nonempty set of primes
in k, containing at least all the infinite primes and all the primes which ramify in
K/k. We denote by US the Z[G]–module of S–units in K, by AK,S the S–ideal
class group of K (i.e. the ideal–class group of the ring of S–integers OS of K.) For
every prime v ∈ S, we fix a prime w in K sitting above v, and denote by Gv the
decomposition group of w | v (which is clearly independent of the chosen w.) We
let XS denote the kernel of the usual (Z[G]–equivariant) augmentation map

(1) XS := ker

(⊕

v∈S

Z[G/Gv]
aug.−−→ Z

)
.

In what follows, if M is a group and R a commutative ring, we let RM := R⊗Z M .
Also, M̃ denotes the image of the natural map M −→ QM . All the exterior and
tensor products considered are viewed in the category of Z[G]–modules, unless
otherwise specified. The Q[G]–modules QUS and QXS are (non-canonically) iso-
morphic (see [Tat]). A canonical C[G]–module isomorphism

RS : CUS
∼−→ CXS
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is given by the C–linearization of the map RS(u) = − ∑
v∈S

∑
σ∈G/Gv

log |u|wσ · σ, for

all u ∈ US , where | . |wσ denotes the (canonically normalized) metric associated
to wσ. After choosing a canonical Q[G]–basis for the rank 1 free Q[G]–module
detQ[G](QXS) (see [P5] for the construction of the basis), which is equivalent to
fixing a Q[G]–module isomorphism ρS : detQ[G](QXS) ∼−→ Q[G], one obtains a
C[G]–module isomorphism (a so-called G–equivariant S–regulator map)

RS : detC[G](CUS)
det(RS)−−−−−→
∼

detC[G](CXS)
ρS⊗1C−−−−→
∼

C[G] .

For the basic properties of the determinant detR(M) of a finitely generated pro-
jective module M over a commutative, Noetherian ring R, the reader can consult
[P4]. A still unanswered fundamental question in number theory is the following.

Question I (integral version). What is the preimage LS := R−1
S (Z[G]), viewed

as a Z[G]–submodule of detC[G](CUS) ?
Question R (rational version). What is the preimage R−1

S (Q[G]) = QLS ,
viewed as a Q[G]–submodule of detC[G](CUS) ?

Example. In the simplest case, that where K = k (i.e. Z[G] = Z), the answer
to the integral version of the above question is equivalent to Dirichlet’s classical
S–class–number formula, up to a sign (i.e. an element in Z×). More precisely, the
following equivalent equalities hold.

LS = Z

(
hk,S

wk · ζ∗k,S(0)
u1 ∧ · · · ∧ ur

)
, ζ∗k,S(0) · LS = Z

(
hk,S

wk
u1 ∧ · · · ∧ ur

)

Above, ζ∗k,S(0) is the leading Taylor coefficient at s = 0 of the S–incomplete zeta
function ζk,S(s) of k, r := card(S)− 1, {u1, . . . , ur} is a Z–basis of ŨS , and hk,S :=
card(Ak,S). Note that detC[G](CUS) = C(u1∧· · ·∧ur). Also, if S = {v0, v1, . . . , vr},
then the Q[G]–basis of QXS is given by {1G/Gvi

− 1G/Gv0
| i = 1, . . . , r}.

In the 1970s, inspired by this fundamental example, Stark had the clear vision
to formulate a conjectural answer to the rational version of the question above in
terms of G–equivariant L–functions. The G–equivariant L–function in question is

ΘS : C \ {1} −→ C[G] , ΘS(s) =
∑

χ∈Ĝ(C)

LS(χ, s) · eχ−1 ,

where LS(χ, s) denotes the complex valued Dirichlet L–function with Euler factors
at primes in S removed and eχ ∈ C[G] is the usual idempotent, for all χ ∈ Ĝ(C).
The function ΘS(s) is holomorphic for s 6= 1. For Re(s) > 1 it admits the usual
uniformly and absolutely convergent infinite product representation

(2) ΘS(s) =
∏

v 6∈S

(1− σ−1
v · (Nv)−s) ,
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where σv is the Frobenius morphism and Nv is the cardinality of the residue field
associated to v. The leading (first non–vanishing) Taylor coefficients Θ∗S(0) and
L∗S(χ, 0) at s = 0 obviously satisfy Θ∗S(0) =

∑
χ L∗(χ, 0) · eχ−1 . Obviously, Θ∗S(0)

is a non–zero divisor in C[G]. A theorem of Deligne-Ribet ([DR], [CN]) states that

(3) AnnZ[G](µK) ·ΘS(0) ∈ Z[G] .

Stark’s conjectural answer to Question R (rational version) formulated above is
easily seen to be equivalent to the following (compare [St1], [Tat].)

Conjecture A (Stark, 1970s). The following equivalent equalities hold.

QLS = Θ∗S(0)−1 · detQ[G](QUS) , Θ∗S(0) ·QLS = detQ[G](QUS) .

Obviously, the integral version of the above question is much more difficult and at
the present moment we have only partial conjectural answers to it, due to work
of Stark [St1, IV], Burns [Bu1-Bu2], Rubin [Ru], the present author [P1, P5].
However, one can try (as Stark, Rubin and the present author have done in loc.
cit.) to answer (at least conjecturally) a question which lies somewhere in between
the rational and integral versions above. We describe this semi-integral question
below. For every Q[G]–module M and ψ ∈ Ĝ(Q), let Mψ denote the ψ–eigenspace
of M . Obviously, M = ⊕ψMψ and Mψ is a Q(χ)–vector space, for all χ ∈ Ĝ(Q),
such that ψ =

∑
σ∈G(Q(χ)/Q) χσ. As Tate shows in [Ta], we have the following

equalities

(4) rS,ψ := dimQ(χ)(QUS)ψ = dimQ(χ)(QXS)ψ = ords=0LS(χ, s) =: rS,χ ,

for all ψ ∈ Ĝ(Q) and all χ ∈ Ĝ(Q), such that ψ =
∑

σ∈G(Q(χ)/Q) χσ .

Question SI (semi-integral version). For all n ∈ Z≥0, let eS,n :=
∑

χ,rS,χ=n eχ.

What is the preimage L(n)
S := R−1

S (eS,n · Z[G]) = eS,nLS ? Equivalently, describe
Θ∗S(0)L(n)

S = R−1
S (eS,nΘ∗S(0)Z[G]) .

Note that QLS =
⊕

n≥0 QL(n)
S , whereas in general LS (

⊕
n≥0 L(n)

S . Conse-
quently, answering the semi-integral version of the above question for all n ∈ Z≥0

will lead to an answer of the rational but not the integral version, in general. Also,
note that the definition of the determinant leads to the following equalities

detQ[G](QUS) =
⊕

ψ∈Ĝ(Q)

rS,ψ∧
Q[G]

(QUS)ψ =
⊕

n∈Z≥0

eS,n

(
Q

n∧US

)
.

Since detC[G] (CUS) = C⊗Q detQ[G] (QUS), we can view L(n)
S naturally as a Z[G]–

submodule of eS,n(C
n∧US) ⊆ C

n∧US , for all n ∈ Z≥0.

Now, let us fix an integer r ∈ Z≥0 and make the following additional hypotheses.
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Hypotheses (Hr). We have card(S) ≥ r + 1 and S contains r distinct primes
{v1, v2, . . . , vr} which split completely in K/k.

Let us fix a set of primes W := {w1, . . . , wr} in K, with wi sitting above vi, for
all i = 1, . . . , r. Under hypotheses (Hr), (1) and (4) above imply right away that
rS,χ ≥ r, for all χ ∈ Ĝ(Q). This shows that eS,n = 0 and L(n)

S = 0, for all n ≤ r−1.
Also, in this case, (4) implies that we have equalities

eS,rΘ∗S(0) = Θ(r)
S (0) := lim

s→0

ΘS(s)
sr

= lim
s→0

∑
χ,rχ,S=r

LS(χ, s)
sr

· eχ−1 .

Now, one can try to say something arithmetically meaningful about the first (poten-
tially) non-vanishing lattice L(r)

S in the sequence of lattices
(
L(n)

S

)
n≥0

. The main

reason why it is potentially easier to handle L(r)
S is because under the current hy-

potheses we have a simple canonical choice of an (eS,r ·Q[G])–basis for (eS,r ·QXS)
given by {eS,r · (1G/Gvi

− 1G/Gv0
) | i = 1, . . . , r}, for any v0 ∈ S \ {v1, ..., vr}. This

leads to a simple expression of the restriction R(r)
S of the regulator RS to the

eigenspace eS,r · detC[G] (CUS) ⊆ C
r∧US which contains the lattice L(r)

S . Namely

R(r)
S : eS,r · detC[G] (CUS) ↪→ C

r∧US
RW−−→ C[G],

where the left–most map is the inclusion and, for all u1, . . . , ur ∈ US , we have

RW (u1 ∧ · · · ∧ ur) = det

(
−

∑

σ∈G

log |ui|wσ
j
· σ

)
.

In the case r = 1, Stark formulated in 1980 a far reaching conjecture regarding
L(1)

S , a weak form of which we state below (see [St1, IV] and [Tat] for the original
statement.)

Conjecture B (Stark, 1980 – weak form). Under hypotheses (H1), we have

Θ(1)
S (0) · L(1)

S ⊆ Z[1/wK ]ŨS .

Equivalently, there exists ε ∈ Z[1/wK ]ŨS, such that RW (ε) = Θ(1)
S (0) .

At this point, there is overwhelming evidence in favor of Conjecture B even in
its original, strong form. For example, it is known to hold true if k = Q, or
k = Q(

√−d) with d ∈ Z<0, or if char(k) = p > 0 (see [Tat]). Its implications and
applications to number theory are simply staggering (see [P3], for example.) During
the same year (1980), Stark started exploring the possibility of tackling the lattice
L(2)

S , under hypotheses (H2). Due to lack of evidence, he came up with a question
rather than conjecture, now known among experts as “Stark’s Question” (see [St2]).
We state a weak form of it below. For the original (stronger) formulation, the reader
may consult [Sa], [P2], for example.
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Stark’s Question (1980 - weak form). Assume that (H2) hold. Is it true that

Θ(2)
S (0) · L(2)

S ⊆ Z[1/wK ]
2̃∧US ?

Equivalently, does there exist ε ∈ Z[1/wK ]
2̃∧US, such that RW (ε) = Θ(2)

S (0) ?

Originally, Stark formulated his conjectures and questions in the case of number
fields (i.e. characteristic 0 global fields) only. The extension to arbitrary global
fields is natural. In the case of characteristic p > 0 global fields (function fields),
we showed in [P2] that the answer to the above question is negative, in general. In
the case of characteristic 0 global fields (number fields), various mathematicians,
most notably Grant [Gra], Sands [Sa], and Tangedal [Tan] have provided evidence
in favor of an affirmative answer to the above question even in its original, much
stronger form. In what follows, we will show that even in the case of number fields
the above question has a negative answer, in general.

We should mention that in recent years, Rubin [Ru] and the present author [P1]
have given conjectural descriptions of the lattice L(r)

S , under hypotheses (Hr), for
arbitrary values of r (including r = 2.) At this point, there is strong evidence in
support of these conjectures (see [P3].) Conjectural descriptions of the family of
lattices

(
L(n)

S

)
n≥0

, under no additional assumptions on S, have also been given

recently by Burns [Bu1-Bu2] and the present author [P5] (see also [Em]). All
these approaches are much more technical than Stark’s original approach to these
problems, but lead to the same type of far reaching applications in number theory.

2. STARK’S QUESTION AND FITTING IDEALS

Let R be an arbitrary commutative, unital, Noetherian ring and let M be a finitely
generated R–module. In what follows, we remind the reader of the definition of the
(first) Fitting ideal of the R–module M . We pick a set of say r generators for M
and construct an exact sequence of R–modules

K φ−→ Rr π−→ M −→ 0 ,

where π sends the standard basis of Rr into the chosen set of generators of M .
Also, let det(r)R :

r∧
R

Rr ∼−→ R be the canonical R–module isomorphism given by the

determinant associated to the standard basis of Rr.

Definition 2.1. The (first) Fitting ideal FitR(M) of the R–module M is defined
to be the image of the R–module morphism (det(r)R ◦ r∧

R
φ) :

r∧
R
K −→ R .

For the basic properties of Fitting ideals (including the independence on the various
choices we have made when giving the above definition) the reader can consult the
appendix of [MW], for example. The main property we will use here is the extension
of scalars property

FitR′(M ⊗R R′) = FitR(M)R′ ,

for all R–modules M and all commutative R–algebras R′ (see appendix of [MW]).
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Throughout the rest of the paper we work under the hypotheses that K/k is an
abelian extension of number fields and the set of data (K/k, S) satisfies hypotheses
(H2). Also, the notations will be the same as in the previous section. In addition,
we assume that the two primes v1, v2 in S which split completely in K/k are finite
primes. Let S0 := S \ {v1, v2} and let AS,S0 be the Z[G]–submodule of AK,S0

generated by the ideal–classes ŵ1 and ŵ2 associated to w1 and w2, respectively.
Then, we have an exact sequence of Z[G]–modules (see [Ru], for example)

(5) 0 −→ US0 −→ US
λW−−→ Z[G]⊕ Z[G]

jW−−→ AK,S0 −→ AK,S −→ 0 ,

where jW is the unique Z[G]–module morphism satisfying jW (1, 0) = ŵ1 and
jW (0, 1) = ŵ2 (obviously, Im(jW ) = AS,S0), and for all u ∈ US one defines

λW (u) :=
(
− 1

Nw1

∑
σ∈G

log |u|wσ
1
· σ, − 1

Nw2

∑
σ∈G

log |u|wσ
2
· σ

)
=

=
(
− ∑

σ∈G

ordw1(u
σ−1

) · σ , − ∑
σ∈G

ordw2(u
σ−1

) · σ
)

.

Proposition 2.2. Let R := Z[1/wK ][G]. If the split primes v1 and v2 are finite
primes, then Stark’s Question has an affirmative answer if and only if

ΘS0(0) ∈ FitR(AS,S0 ⊗R) .

Proof. Since R is a flat Z[G]–algebra, the exact sequence above remains exact after
tensoring with R over Z[G]. Definition 2.1 implies that we have an equality

FitR(AS,S0 ⊗R) = (det(2)R ◦ (
2∧λW ⊗ 1R))(Z[1/wK ]

2̃∧US) .

However, the definitions of λW and RW lead to the equality

RW (ε) = (log Nw1 · log Nw2) · (det(2)R ◦ (
2∧λW ⊗ 1R))(ε) ,

for all ε ∈ Z[1/wK ]
2̃∧US . On the other hand, since v1 and v2 split completely in

K/k, (2) gives the following equality at the level of G–equivariant L–values.

Θ(2)
S (0) = (log Nw1 · log Nw2) ·ΘS0(0) .

Combining the last three equalities concludes the proof of the proposition. ¤
The main strategy employed in producing examples for which Stark’s Question has
a negative answer will consist of constructing examples where v1 and v2 are finite
primes, but where ΘS0(0) 6∈ FitR(AS,S0 ⊗R).

3. GREITHER’S “NICE” EXTENSIONS

In what follows, we describe a class of abelian extensions K/k of number fields,
first introduced by Greither in [Gre]. Assume that k is a totally real number field
and K is a CM–field, with K/k abelian of Galois group G := G(K/k). As usual,
K+ denotes the maximal totally real subfield of K. Since K is CM, G(K/K+) has
order two and is generated by the unique complex conjugation automorphism of
K, denoted by j in what follows. Let Kcl denote the Galois closure of K over Q.
It is not difficult to check that Kcl is a CM–field as well.
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Definition 3.1. Let p be a finite prime in k of residual characteristic p. Then p is
called critical for K/k if at least one of the following conditions is satisfied.

(1) p is ramified in K/k.
(2) Kcl ⊆ (Kcl)+(ζp), where ζp := e

2πi
p .

Definition 3.2. An extension K/k as above is called nice if the following condi-
tions are simultaneously satisfied.

(1) For all critical primes p in k, the decomposition group Gp of p in K/k
contains j.

(2) The Z[G]–module µK ⊗ Z[1/2] is G–cohomologically trivial.

In what follows, if R is a commutative ring containing Z[1/2][G] and M is an
R–module, we let M− := (1− j)M and M+ = (1 + j)M denote the usual “minus”
and “plus” eigenspaces of M relative to the action of j. Obviously, M− and M+

are R–submodules of M and one has a direct sum decomposition M = M−⊕M+.
Obviously, M− inherits a natural module structure over the ring R−.

Remark. Note that the rings R− and R− := R/(1 + j) are isomorphic via the
obvious projection modulo (1 + j) map. Also, note that under the current assump-
tions we have ΘS0(0) ∈ Z[1/wK ][G]−. Indeed, ΘS0(0) ∈ Z[1/wK ][G] (see (3) in §1
above), and (1 + j)ΘS0(0) = 0 because for all χ ∈ Ĝ(C) we have χ(1 + j) = 0 if
χ(j) = −1 and χ(ΘS0(0)) = 0 if χ(j) = +1 (apply (4) for the last equality.)

Let AK denote the ideal–class group of K. In [Gre], Greither proves the following.

Theorem 3.3 (Greither). Let K/k be a nice extension of Galois group G and
let S0 be the set consisting of all the primes in k which ramify in K/k. Let
R := Z[1/2][G] and let A := AnnR(µK ⊗ Z[1/2]). Then one has an R−–module
isomorphism

(AK ⊗R)− ∼−→ R−/(A ·ΘS0(0)) .

An immediate consequence of Greither’s theorem is the following.

Corollary 3.4. Under the assumptions of Theorem 3.3, let R := Z[1/wK ][G].
Then, one has an isomorphism of R−–modules

(AK,S0 ⊗R)− ∼−→ R−/(ΘS0(0)) .

In particular, FitR−((AK,S0 ⊗R)−) = ΘS0(0) ·R−.

Proof. First, let’s observe that since µK is cyclic, we have an R–module isomor-
phism µK ⊗ Z[1/2] ∼−→ R/A. If we tensor this isomorphism with Z[1/wK ] we
conclude that A ·R = R. Second, we have an exact sequence of Z[G]–modules

⊕

v∈S0

Z[G/Gv] −→ AK −→ AK,S0 −→ 0 ,

where the left–most map sends 1 ∈ Z[G/Gv] into the class ŵ of w in AK for the
fixed w sitting above v in K if v ∈ S0 is finite, and into 0 if v ∈ S0 is infinite. Since
R is a flat Z[G]–algebra, the sequence above remains exact after tensoring with R
and taking (−1)–eigenspaces. However, since j ∈ Gv, we have (Z[G/Gv]⊗R)− = 0,
for all v ∈ S0. Therefore, we obtain an isomorphism of R−–modules

(AK ⊗R)− ∼−→ (AK,S0 ⊗R)− .

Now, the corollary follows directly from Greither’s Theorem 3.3. ¤



8 CRISTIAN D. POPESCU

Lemma 3.5. Under the assumptions of Theorem 3.3, if v1 and v2 are two distinct
primes in k which split completely in K/k, then the answer to Stark’s Question for
(K/k, S := S0 ∪ {v1, v2}) is affirmative if and only if

ΘS0(0) ∈ FitR−((AS,S0 ⊗R)−) .

Proof. This is a direct consequence of Proposition 2.2 and the observation that,
under the current hypotheses, ΘS0(0) ∈ R− (see the Remark above). ¤

4. A SPECIAL CLASS OF “NICE” EXTENSIONS

In what follows, we will restrict our search to a class of nice extensions satisfying
a set of additional properties and show that for this class the answer to Stark’s
Question is negative. For the moment, let K/k be a nice extension of Galois group
G := G(K/k), such that the following hold.

(N1) There exists a prime number p which does not divide wK and a p–subgroup
P of G, such that G is the internal direct product G = 〈j〉 × P of P and
its subgroup 〈j〉 generated by the complex conjugation morphism j. Note
that this condition is satisfied if and only if card(G) = 2 ·pn, for some prime
number p - wK and some natural number n.

(N2) The subgroup P in (1) above is bicyclic, i.e. P = 〈σ1〉× 〈σ2〉, with σ1, σ2 ∈
P , both nontrivial.

Under these assumptions, we have obvious ring isomorphisms

Z[G]/(1 + j) ∼−→ Z[P ] , R− := Z[1/wK ][G]− ∼−→ Z[1/wK ][P ] , R−p
∼−→ Zp[P ] ,

where Zp denotes the ring of p–adic integers and R−p := (R ⊗ Zp)− = Zp[G]−.
Since P is a finite, abelian p–group, the ring Zp[P ] is a local ring of maximal ideal
M := pZp[P ] + IP , where IP is the usual augmentation ideal in Zp[P ]. Under the
current assumptions, IP is generated as an ideal by the set {σ1 − 1, σ2 − 1}.
Proposition 4.1. Let θ be a fixed element of M. Assume that θ is not a zero-
divisor in Zp[P ]. Let IP,θ denote the Zp[P ]–module (IP + θZp[P ])/θZp[P ]. Then

FitZp[P ](IP,θ) ⊆M2 .

Proof. Obviously, the Zp[P ]–module IP,θ is generated by the classes σ̂i − 1 of σi−1
modulo θZp[P ], for i = 1, 2. Therefore, we have an exact sequence of Zp[P ]–modules

0 −→ K −→ Zp[P ]⊕ Zp[P ] π−→ IP,θ −→ 0 ,

where π is the Zp[P ]–linear map satisfying π(1, 0) = σ̂1 − 1 and π(0, 1) = σ̂2 − 1 and
K := ker(π). According to Definition 2.1, the statement in the Proposition would
be a direct consequence of the inclusion K ⊆M⊕M . We proceed to proving this
inclusion. Let χ ∈ P̂ (Cp), χ 6= 1P . We extend χ in the obvious manner to a
(surjective) ring morphism χ̃ : Zp[P ] ³ Zp[χ], where Zp[χ] is the (finite, totally
ramified) extension of Zp generated by the values of χ. LetMχ denote the maximal
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ideal of the local ring Zp[χ]. Then, since Zp[P ] is local of Krull dimension one and
Zp[P ]/M ∼−→ Zp[χ]/Mχ

∼−→ Z/pZ, we have

(6) χ̃−1(Mχ) = M , x ∈ Zp[P ]× ⇐⇒ χ̃(x) ∈ Zp[χ]× ,

for all χ as above and all x ∈ Zp[P ]. Let χ1 denote a generator of the Cp–valued
character group of (the cyclic p–group) P/〈σ2〉 ∼−→ 〈σ1〉, and similarly define χ2.
Then Mχi

is generated by (1 − χi(σi)), for i = 1, 2. Let α := (α1, α2) be an
arbitrary element in Zp[G] ⊕ Zp[G]. Assume that α ∈ K. Then, by the definition
of IP,θ, there exists β ∈ Zp[P ], such that

α1 · (σ1 − 1) + α2 · (σ2 − 1) = β · θ .

However, since θ is not a zero divisor in Zp[P ], in particular θ 6∈ IP and therefore
β 6∈ Zp[P ]×. Consequently, β ∈ M. If we apply χ̃1 to the equality above and take
into account that χ̃1(θ) ∈ χ̃1(M) = Mχ1 and Mχ1 = (1− χ1(σ1))Zp[χ1], we get

χ̃1(α1) ∈ χ̃1(β)Zp[χ1] ⊆Mχ1 .

According to (6) above, this implies that α1 ∈M. Similarly, if one uses χ̃2 instead
of χ̃1, one proves that α2 ∈M. Consequently, α ∈M⊕M. This proves the desired
inclusion K ⊆M⊕M, concluding the proof of Proposition 4.1. ¤

In what follows, we identify the rings R−p := Zp[G]− and Zp[P ] via the canonical
ring isomorphism Zp[G]− ∼−→ Zp[G]/(1 + j) ∼−→ Zp[P ]. Therefore elements of
Zp[G]− (e.g. ΘS0(0)) will be viewed inside Zp[P ] via this identification. Next, we
will assume that the nice extension K/k satisfies the extra-hypotheses (N1)-(N2)
above and in addition the following hypothesis.

(N3) We have ΘS0(0) ∈M\M2, where M is the (unique) maximal ideal of the
local ring Zp[P ].

Remark. Note that, under the current hypotheses, we have equivalences

ΘS0(0) ∈M ⇐⇒ (AK ⊗ Zp)− 6= {0} ⇐⇒ (AK,S0 ⊗ Zp)− 6= {0} .

Indeed, this follows immediately if one tensors the isomorphisms in Theorem 3.3
and Corollary 3.4 with Zp and takes into account that Zp[P ]× = Zp[P ] \M.

Theorem 4.2. Let K/k be a nice extension satisfying hypotheses (N1)–(N3)
above. Then there exist infinitely many sets {v1, v2} of distinct primes in k which
split completely in K/k, such that the answer to Stark’s Question for the set of data
(K/k, S := S0 ∪ {v1, v2}) is negative.

Proof. According to Lemma 3.5, it is sufficient to construct sets {v1, v2} of distinct
primes in k, totally split in K/k, such that if we let S := S0 ∪ {v1, v2}, then
ΘS0(0) 6∈ FitR−p ((AS,S0 ⊗ Zp)−), where p is the (odd) prime number produced by
hypothesis (N1). Let θ := ΘS0(0). We tensor the isomorphism in Theorem 3.3
with Zp. On one hand, we conclude that θ ∈ M is not a zero-divisor of Zp[P ],
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because (AK,S0 ⊗ Zp)− is finite and therefore the ideal Zp[P ]θ has finite index in
the group ring Zp[P ]. On the other hand, we obtain a Zp[P ]–module isomorphism

ξp : Zp[P ]/θZp[P ] ∼−→ (AK,S0 ⊗ Zp)− .

Now, the module on the left has a submodule IP,θ defined in Proposition 4.1 and
generated by the classes ̂(σi − 1) of (σi − 1) modulo θZp[P ], for i = 1, 2. Cheb-
otarev’s Density Theorem implies that there are infinitely many sets {w1, w2} of
primes in K, satisfying the following properties.

(1) wi sits above a prime vi in k which splits completely in K/k, for all i = 1, 2.
(2) The primes v1 and v2 are distinct (i.e. w1 and w2 are not G–conjugate.)
(3) The class ŵi of wi in (AK,S0 ⊗Zp)− is equal to ξp( ̂(σi − 1)), for all i = 1, 2.

Choose {w1, w2} satisfying (1)–(3) above and let {v1, v2} be as in (2) above. We
claim that the answer of Stark’s Question for the set of data (K/k, S := S0∪{v1, v2})
is negative. Indeed, by (2) above ξp establishes a Zp[P ]–module isomorphism be-
tween IP,θ and the submodule of (AK,S0 ⊗Zp)− generated by {ŵ1, ŵ2}. Since this
submodule is by definition (AS,S0 ⊗ Zp)− (a direct consequence of tensoring exact
sequence (5) with R−p over Z[G]), ξp induces a Zp[P ]–module isomorphism

IP,θ
∼−→ (AS,S0 ⊗ Zp)− .

Consequently, Proposition 4.1 implies that FitZp[P ]((AS,S0 ⊗ Zp)−) ⊆ M2. Since
by hypothesis ΘS0(0) 6∈ M2, we have

ΘS0(0) 6∈ FitZp[P ]((AS,S0 ⊗ Zp)−) .

This concludes the proof of the Theorem. ¤

Remark. If in our proof of Theorem 4.2 we apply the full strength Chebotarev’s
Density Theorem, we can even show that the set of sets {v1, v2} for which the
conclusion of Theorem 4.2 holds true has density at least 2/card(G)2.

Obviously, Theorem 4.2 only shows that if we can find nice extensions K/k satisfy-
ing properties (N1)–(N3), then we can produce infinitely many examples in which
Stark’s Question has a negative answer. Our next task consists of showing that we
can construct such extensions indeed. This will be fulfilled in next two sections.

5. A CLOSER LOOK AT PROPERTIES (N1)–(N3)

In this section we take a closer look at the special class of nice extensions char-
acterized by properties (N1)–(N3) above. The point is that condition (N3) is
very difficult to verify in practice, which makes the construction of nice extensions
satisfying (N3) difficult. In this section we will replace (N3) by a condition which
is slightly stronger but much easier to verify in practice. This will help us construct
concrete examples of extensions for which Stark’s Question has a negative answer.

Let K/k be a nice extension satisfying the additional properties (N1)–(N2). We
use the same notations as in the previous section. Let K ′ := KP be the maximal
subfield of K fixed by P and let G′ := Gal(K ′/k). Since G′ ∼−→ G/P

∼−→ 〈j〉, in
order to avoid additional notation, we identify the generator of G′ with j. It is an
easy exercise to show that K ′/k is also a nice extension. Let

h−K := card((AK ⊗ Z[1/2])−) , h−K′ := card((AK′ ⊗ Z[1/2])−) .
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Proposition 5.1. Assume that the nice extension K/k satisfies properties (N1)–
(N2). Then K/k satisfies property (N3) if the following hold true.

(1) p divides h−K .
(2) p2 does not divide h−K′ .

Proof. If one tensors the isomorphism in Theorem 3.3 with Zp, one obtains an
isomorphism of Zp[P ]–modules

(AK ⊗ Zp)−
∼−→ Zp[P ]/ΘS0(0)Zp[P ] .

This implies that condition (1) above is equivalent to ΘS0(0) 6∈ Zp[P ]×, or equiva-
lently ΘS0(0) ∈M. It remains for us to show that condition (2) above implies that
ΘS0(0) 6∈ M2. This is an immediate consequence of the following.

Lemma 5.2. Assume that K/k is a nice extension satisfying (N1)–(N2). Let
n ∈ Z≥0 and assume that ΘS0(0) ∈Mn. Then pn |h−K′ .

Proof of Lemma 5.2. Let χ be the non-trivial character of G′. We identify χ with
the character of G = P×〈j〉 which is trivial on P and sends j to (−1). We extend χ
in the usual manner to a ring morphism χ : Zp[G] −→ Zp. Since χ(Zp[G]+) = {0},
the character χ induces a surjective ring morphism (also denoted by χ)

χ : Zp[P ] ∼−→ Zp[G]− ³ Zp ,

which sends the augmentation ideal IP of Zp[P ] to 0. Since M := IP + pZp[P ],
we have χ(M) = pZp. Consequently, for n as in the hypotheses of our lemma,
we have χ(ΘS0(0)) ∈ pnZp. On the other hand, χ(ΘS0(0)) = LS0(χ, 0) (see §1
above). However, in an open neighborhood of s = 0, we also have an equality of
holomorphic functions ζK′,S0(s) = LS0(χ, s) · ζk,S0(s) . Consequently, we have

(7) lim
s→0

ζK′,S0(s)
ζk,S0(s)

∈ pnZp .

Dirichlet’s class-number formula shows that the leading term in the power series
expansion of ζK′,S0(s) at s = 0 is given by,

(8) ζ∗K′,S0
(s) = −hK′,S0 ·RK′,S0

wK′
· srK′,S0 ,

where hK′,S0 = card(AK′,S0), RK′,S0 is the usual Dirichlet regulator of the group
UK′,S0 of S0–units in K ′ and rK′,S0 := dimQ QUK′,S0 . A similar formula holds for
ζ∗k,S0

(s). There is an exact sequence of Q[G′]–modules (see §1 above)

0 −→ QUK′,S0 −→
⊕

v∈S0

Q[G′/G′v] −→ Q −→ 0 ,

where the rightmost nontrivial term is endowed with the trivial G′–action. If we
tensor the above sequence with Q[G′]− over Q[G′] and take into account that
Q[G′/G′v]− = 0, for all v ∈ S0 (recall that j ∈ G′v, for all v ∈ S0), we conclude
that (QUK′,S0)

− = 0. Consequently, we have QUK′,S0 = (QUK′,S0)
+ = QUk,S0 .
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This equality, combined with the fact that p is odd (and therefore coprime to
card(G′) = 2) and coprime to wK′ , implies right away that

(9) rK′,S0 = rk,S0 , ZpUK′,S0 = ZpUk,S0 ,
RK′,S0

Rk,S0

∈ Z×p .

Since j ∈ G′v, for all v ∈ S0, and p is odd (therefore coprime to card(G′) = 2), a
standard application of class–field theory implies that the usual ideal–norm map
NK′/k : AK′,S0 −→ Ak,S0 induces an isomorphism

NK′/K : (AK′,S0 ⊗ Zp)+
∼−→ (Ak,S0 ⊗ Zp) .

This implies that (hK′,S0/hk,S0)Zp = h−K′,S0
Zp, where h−K′,S0

:= card((AK′,S0 ⊗
Z[1/2])−). If we combine this equality with (7–9) above, we conclude that indeed
pn | h−K′,S0

. However, as in the proof of Corollary 3.4, we have an isomorphism

(AK′,S0 ⊗ Z[1/2])− ∼−→ (AK′ ⊗ Z[1/2])− .

Therefore h−K′,S0
= h−K′ and pn | h−K′ . This concludes the proofs of Lemma 5.2 and

Proposition 5.1. ¤

Corollary 5.3. Let K/k be a nice extension satisfying properties (N1)–(N2) and
such that p | h−K and p2 - h−K′ . Then there are infinitely many sets {v1, v2} of
distinct primes in k which split completely in K/k, such that Stark’s Question for
the set of data (K/k, S := S0 ∪ {v1, v2}) has a negative answer.

Proof. Combine Theorem 4.2 with Proposition 5.1. ¤

6. CONSTRUCTING CONCRETE EXAMPLES

In this section, we apply Corollary 5.3 to construct a concrete example in which
Stark’s Question has a negative answer. In what follows, we let ζn := e2πi/n, for
all n ∈ Z>0. Let K1 be the unique subfield of Q(ζ31) with the property that
G(K1/Q) ∼−→ Z/6Z. Let K2 be the unique subfield of Q(ζ13) with the property
that G(K2/Q) ∼−→ Z/3Z. We define K to be the compositum K1 ·K2 of K1 and
K2 inside Q(ζ403). For obvious ramification related reasons, we have

G := G(K/Q) ∼−→ G(K1/Q)×G(K2/Q) ∼−→ Z/6Z× Z/3Z .

Q(ζ403)

jjjjjjjjjjjjjjjjj

TTTTTTTTTTTTTTTTT

Q(ζ13)

Z/4Z FFFFFFFF
K := K1 ·K2

rrrrrrrrrrr

LLLLLLLLLLL Q(ζ31)

Z/5Zxxxxxxxx

K2

LLLLLLLLLLLL K1

K′:=Q(
√−31)
rrr

rr

rrr
rr

Q
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Proposition 6.1. For K defined above, the extension K/Q is “nice” and it satis-
fies the hypotheses of Corollary 6.2 for the prime number p := 3.

Proof. Step 1. First, we will show that the extension K/Q is a nice extension à
la Greither (see Definition 3.2 above). Since [Q(ζ31) : K1] = 5, the field K1 and
consequently K := K1 · K2 are imaginary abelian extensions of Q and therefore
CM–fields. Greither shows in [Gre] that if K/Q is an imaginary abelian extension
of Q such that [K+ : Q] is odd, then the critical primes for K/Q are precisely
the primes which ramify in K/Q. In our case, [K+ : Q] = 9 and consequently
the critical primes are p = 13 and p = 31. Now, it is an elementary exercise to
show that we have G13 = G31 = G, where Gp denotes the decomposition group of
p in K/Q, as usual. Consequently the complex conjugation morphism j belongs
to Gp, for all critical primes p. Obviously, we have µK = {+1,−1} in this case.
Consequently µK ⊗Z[1/2] is (G–cohomologically) trivial. This concludes the proof
of the fact that K/Q is a nice extension.

Step 2. Obviously, the extension K/Q satisfies properties (N1)-(N2) with
p := 3 and P := G(K/K ′) ∼−→ Z/3Z× Z/3Z, where K ′ := Q(

√−31) ⊆ K1.
Step 3. Finally, we have to show that for K and K ′ defined above and p := 3,

we have p | h−K and p2 - h−K′ . Indeed, the tables in [BSh] show that hK′ = 3 = p.
However, since h+

K′ := card(AK′ ⊗ Z[1/2])+ = card(AQ ⊗ Z[1/2]) = 1, this implies
that h−K′ = p. Also, since the extension K1/K ′ is totally ramified at p = 31 and
K/K1 is totally ramified at p = 13, a standard application of class-field theory
implies that the ideal-norm maps induce surjective morphisms of Z[G]-modules

AK

NK/K1³ AK1

NK1/K′
³ AK′ .

If we tensor the above diagram with Z[1/2][G]− over Z[G], then surjectivity is
preserved and we obtain a divisibility h−K′ | h−K . Since h−K′ = p, this implies that
p | h−K as well. This concludes the proof of Proposition 6.1. ¤
Corollary 6.2. For the extension K/Q defined above, there exist infinitely many
sets {v1, v2} of distinct primes in Q which split completely in K/Q, such that Stark’s
Question for the data (K/Q, S := {∞, 13, 31, v1, v2}) has a negative answer.

Proof. Combine Proposition 6.1 and Corollary 5.3 above. ¤

Final Comment. We conclude with a comment emphasizing the difference
between the class of examples we constructed in [P2] and the one constructed in
the present paper. In the characteristic p > 0 setting, we constructed in [P2]
examples of abelian extensions K/k for which the p–part of the so-called Strong
Brumer Conjecture (roughly stating that ΘS0(0) ∈ FitZp[G](AK,S0 ⊗ Zp)) is false.
For these examples we showed that (the p-part of) Stark’s Question has a negative
answer. In the characteristic 0 setting we work from the beginning with “nice”
extensions K/k, for which the odd part of the Strong Brumer Conjecture holds true
(see Theorem 3.3 above). Despite this fact, we show that for a special class of such
“nice” extensions Stark’s Question has a negative answer still. This situation might
seem mystifying at first. However, as Proposition 2.2 above shows, Stark’s Question
is equivalent to ΘS0 ∈ FitZp[G](AS,S0 ⊗ Zp), for all primes p - wK . Now, since the
groups G = Gal(K/k) we are considering have a non-cyclic p-Sylow subgroup P , for
some prime p as above, although AS,S0⊗Zp ⊆ AK,S0⊗Zp, there is in general no link
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between FitZp[G](AS,S0 ⊗ Zp) and FitZp[G](AK,S0 ⊗ Zp) (see appendix of [MW]).
That is one of the main reasons why although the Strong Brumer Conjecture is
true, Stark’s Question has a negative answer in general, in the cases considered in
this paper. Let’s note that for a “nice” extension K/k with the property that the
p–Sylow subgroups P of its Galois group are cyclic, for all primes p - wK , Stark’s
Question has an affirmative answer. Indeed, under these hypotheses we have an
inclusion FitZp[G](AK,S0 ⊗Zp) ⊆ FitZp[G](AS,S0 ⊗Zp) (see appendix of [MW]), for
all p - wK , and therefore Stark’s Question has an affirmative answer, as a direct
consequence of Proposition 2.2 and Greither’s Theorem 3.3.
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